導航:首頁 > 數字科學 > 100年前數學產生了什麼時候

100年前數學產生了什麼時候

發布時間:2022-07-09 02:37:43

『壹』 數字是什麼時候產生的

阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。

阿拉伯數字是古代印度人在生產和實踐中逐步創造出來的。

在古代印度,進行城市建設時需要設計和規劃,進行祭祀時需要計算日月星辰的運行,於是,數學計算就產生了。大約在公元前3000年,印度河流域居民的數字就比較先進,而且採用了十進位的計算方法。

到公元前三世紀,印度出現了整套的數字,但在各地區的寫法並不完全一致,其中最有代表性的是婆羅門式:這一組數字在當時是比較常用的。它的特點是從「1」到「9」每個數都有專字。現代數字就是由這一組數字演化而來。在這一組數字中,還沒有出現「0」(零)的符號。

「0」這個數字是到了笈多王朝(公元320—550年)時期才出現的。公元四世紀完成的數學著作《太陽手冊》中,已使用「0」的符號,當時只是實心小圓點「·」。後來,小圓點演化成為小圓圈「0」。這樣,一套從「1」到「0」的數字就趨於完善了。這是古代印度人民對世界文化的巨大貢獻。

(1)100年前數學產生了什麼時候擴展閱讀

數學含義

在相應的記數系統中,數字位置決定了它所表示的值。例如「3」這個數字:

在十進制數37 中,它表示的值為30(十進制);

在八進制數23 中,它表示的值為3(十進制);

在八進制數 37 中,它表示的值為3×8=24(十進制)。

『貳』 世界數學史分為哪四個時期

學術界通常將數學發展劃分為以下四個時期:數學形成時期、初等數學時期、變數數學時期、近現代數學時期。

一、數學形成時期;萌芽時期是最初的數學知識積累時期,是數學發展過程中的漸變階段。這一時期的數學知識是零散的、初步的、非系統的,但是這是數學發展史的源頭,為數學後續的發展奠定了基礎。

這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。

中國歷史悠久,發掘出來的大量石器、陶器、青銅器、龜甲以及獸骨上面的圖形和銘文表明: 幾何觀念遠在舊石器時代就已經在中國逐步形成。早在五六千年前,古中國就有了數學符號,到三千多年前的商朝,刻在甲骨或陶器上的數字已十分常見。

這時,自然數記數都採用了十進位制。甲骨文中就有從一到十再到百、千、萬的十三個記數單位。這說明古中國也形成了數學的基本概念。

二、初等數學時期(公元前600年至17世紀中葉);初等數學時期從公元前五世紀到公元十七世紀,延續了兩千多年、由於高等數學的建立而結束。

這個時期最明顯的結果就是系統地創立了初等數學,也就是現在中小學課程中的算術、初等代數、初等幾何(平面幾何和立體幾何)和平面三角等內容。

初等數學時期可以根據內容的不同分成兩部分,幾何發展的時期(到公元二世紀)和代數優先發展時期(從二世紀到十七進紀)。又可以按照歷史條件的不同把它分成「希臘時期」、「東方時期」和「歐洲文藝復興時期」。

希臘時期正好和希臘文化普遍繁榮的時代一致。希臘是一個文明古國,但是,和四大文明古國巴比倫、埃及、印度、中國相比,在文明史上,希臘文明要晚一段時間。

三、變數數學時期(17世紀中葉至19世紀20年代);變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。它是數學的一個基礎學科。

內容主要包括極限、微分學、積分學、方程及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。

積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

四、近現代數學時期(19世紀20年代);現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎。代數、幾何、分析中的深刻變化為特徵。近代數學是研究數量、結構、變化、空間以及信息等概念的一門學科。

17世紀,數學的發展突飛猛進,實現了從常量數學到變數數學的轉折。中國近代數學的研究是從1919年五四運動以後才真正開始的。

(2)100年前數學產生了什麼時候擴展閱讀:

歷史介紹:

數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。

史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。

當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。

『叄』 數學從什麼時候有的

數學最初是從結繩記事開始的。大約在三百萬年前,人類還處於茹毛飲血的原始時代,以採集野果、圍獵野獸為生。這種活動常常是集體進行的,所得的「產品」也平均分配。這樣,古人便漸漸產生了數量的概念。他們學會了在捕獲一頭野獸後用一塊石子、一根木條來代表;或者用在繩子上打結的方法來記事、記數。這樣,在原始社會人們的眼光中,一個繩結就代表一頭野獸,兩個結代表兩頭……,或者一個大結代表一頭大獸,一個小結代表一頭小獸……。數量的觀念就是在這些過程中逐漸發展起來的。隨著捕獲手段的提高,所獲的野獸越多,繩子的結越多,需要的數目也越大。

在距今大約五六千年以前,沿非洲的尼羅河出現了一個偉大的文明社會——埃及。埃及人較早地學會了農業生產。尼羅河每年7月定期泛濫,淹沒大片農地,11月洪水逐漸退落。埃及人通過長期觀察,注意到當天狼星和太陽同時出沒的時候,正是洪水將至的預兆。還發現,這種現象大約365天重復一次。這樣,埃及人就選擇在洪水泛濫之後留下的肥沃淤泥上下種,待6月洪水來臨之前收割,以獲得好的收成。這是通過天文觀測進行農業生產的結果其中也包含了數學知識的應用。另一方面,古埃及的農業制度,是把同樣大小的正方形土地分配給每一個人的,租用的人每年把他的收成提取一部分給土地所有者——國王。如果洪水沖毀了他們所分得的土地,他可以向國王報告,國王便派人前來調查並測量損失的那一部分,這樣,他交的租就會相應減少。這種對於土地的測量,導致了幾何學的誕生。實際上,幾何學的原意就是「土地測量」。

數學正是從打結記數和土地測量開始的。

與埃及同時,世界上還有幾個同樣偉大的文明社會,如亞洲西部的巴比倫,南部的印度和東部的中國,它們分別創造了自己的文字。同時也產生了各自的記數法和最初的數學知識。在距今大約兩千多年以前生活在歐洲東南部的希臘人,繼承了這些數學知識,並將數學發展成為一門系統的理論科學:古希臘文明被毀滅後,阿拉伯人保存和繼承了他們的文化,後來又傳回歐洲,使得數學重新繁榮起來,並最終導致了近代數學的創立。

『肆』 數學的由來是

數學的由來:

1、從人類的角度:

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

2、從時間的角度:

數學起源於公元前4世紀。公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。

(4)100年前數學產生了什麼時候擴展閱讀:

數學的發展史:

1、從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」

2、直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」

3、在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」

4、從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」

5、現代數學已包括多個分支,數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等。數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。

參考資料:數學-網路

『伍』 數學是什麼時候產生的

數學最初是從結繩記事開始的。大約在三百萬年前,人類還處於茹毛飲血的原始時代,以採集野果、圍獵野獸為生。這種活動常常是集體進行的,所得的「產品」也平均分配。這樣,古人便漸漸產生了數量的概念。他們學會了在捕獲一頭野獸後用一個石子、一根木條來代表;或者用在繩子上打結的方法來記事、記數。這樣,在原始社會人們的眼光中,一個繩結就代表一頭野獸,兩個結代表兩頭……,或者一個大結代表一頭大獸,一個小結代表一頭小獸……。數量的觀念就是在這些過程中逐漸發展起來的。隨著捕獲手段的提高,所獲的野獸越多,繩子的結越多,需要的數目也越大。

『陸』 數的發展史

1 中國古代數學的發展

在古代世界四大文明中,中國數學持續繁榮時期最為長久。從公元前後至公元14世紀,中國古典數學先後經歷了三次發展高潮,即兩漢時期、魏晉南北朝時期和宋元時期,並在宋元時期達到頂峰。

與以證明定理為中心的希臘古典數學不同,中國古代數學是以創造演算法特別是各種解方程的演算法為主線。從線性方程組到高次多項式方程,乃至不定方程,中國古代數學家創造了一系列先進的演算法(中國數學家稱之為「術」),他們用這些演算法去求解相應類型的代數方程,從而解決導致這些方程的各種各樣的科學和實際問題。特別是,幾何問題也歸結為代數方程,然後用程式化的演算法來求解。因此,中國古代數學具有明顯的演算法化、機械化的特徵。以下擇要舉例說明中國古代數學發展的這種特徵。

1.1 線性方程組與「方程術」

中國古代最重要的數學經典《九章算術》(約公元前2世紀)卷8的「方程術」,是解線性方程組的演算法。以該卷第1題為例,用現代符號表述,該問題相當於解一個三元一次方程組:

3x+2y+z=39

2x+3y+z=34

x+2y+3z=26

《九章》沒有表示未知數的符號,而是用算籌將x�y�z的系數和常數項排列成一個(長)方陣:

1 2 3

2 3 2

3 1 1

26 34 39

「方程術」的關鍵演算法叫「遍乘直除」,在本例中演算程序如下:用右行(x)的系數(3)「遍乘」中行和左行各數,然後從所得結果按行分別「直除」右行,即連續減去右行對應各數,就將中行與左行的系數化為0。反復執行這種「遍乘直除」演算法,就可以解出方程。很清楚,《九章算術》方程術的「遍乘直除」 演算法,實質上就是我們今天所使用的解線性方程組的消元法,以往西方文獻中稱之為「高斯消去法」,但近年開始改變稱謂,如法國科學院院士、原蘇黎世大學數學系主任P.Gabriel教授在他撰寫的教科書[4]中就稱解線性方程組的消元法為「張蒼法」,張蒼相傳是《九章算術》的作者之一。

1.2 高次多項式方程與「正負開方術」

《九章算術》卷4中有「開方術」和「開立方術」。《九章算術》中的這些演算法後來逐步推廣到開更高次方的情形,並且在宋元時代發展為一般高次多項式方程的數值求解。秦九韶是這方面的集大成者,他在《數書九章》(1247年)一書中給出了高次多項式方程數值解的完整演算法,即他所稱的「正負開方術」。

用現代符號表達,秦九韶「正負開方術」的思路如下:對任意給定的方程

f(x)=a0xn+a1xn-1+……+an-2x2+an-1x+an=0 (1)

其中a0≠0,an<0,要求(1)式的一個正根。秦九韶先估計根的最高位數字,連同其位數一起稱為「首商」,記作c,則根x=c+h,代入(1)得

f(c+h)=a0(c+h)n+a1(c+h)n-1+……+an-1(c+h)+an=0

按h的冪次合並同類項即得到關於h的方程:

f(h)=a0hn+a1hn-1+……+an-1h+an=0 (2)

於是又可估計滿足新方程(2)的根的最高位數字。如此進行下去,若得到某個新方程的常數項為0,則求得的根是有理數;否則上述過程可繼續下去,按所需精度求得根的近似值。

如果從原方程(1)的系數a0,a1,…,an及估值c求出新方程(2)的系數a0,a1,…,an的演算法是需要反復迭代使用的,秦九韶給出了一個規格化的程序,我們可稱之為「秦九韶程序」, 他在《數書九章》中用這一演算法去解決各種可以歸結為代數方程的實際問題,其中涉及的方程最高次數達到10次,秦九韶解這些問題的演算法整齊劃一,步驟分明,堪稱是中國古代數學演算法化、機械化的典範。

1.3 多元高次方程組與「四元術」

絕不是所有的問題都可以歸結為線性方程組或一個未知量的多項式方程來求解。實際上,可以說更大量的實際問題如果能化為代數方程求解的話,出現的將是含有多個未知量的高次方程組。

多元高次方程組的求解即使在今天也絕非易事。歷史上最早對多元高次方程組作出系統處理的是中國元代數學家朱世傑。朱世傑的《四元玉鑒》(1303年)一書中涉及的高次方程達到了4個未知數。朱世傑用「四元術」來解這些方程。「四元術」首先是以「天」、「地」、「人」、「物」來表示不同的未知數,同時建立起方程式,然後用順序消元的一般方法解出方程。朱世傑在《四元玉鑒》中創造了多種消元程序。

通過《四元玉鑒》中的具體例子可以清晰地了解朱世傑「四元術」的特徵。值得注意的是,這些例子中相當一部分是由幾何問題導出的。這種將幾何問題轉化為代數方程並用某種統一的演算法求解的例子,在宋元數學著作中比比皆是,充分反映了中國古代幾何代數化和機械化的傾向。

1.4 一次同餘方程組與「中國剩餘定理」

中國古代數學家出於歷法計算的需要,很早就開始研究形如:

X≡Ri (mod ai) i=1,2,...,n (1)

(其中ai 是兩兩互素的整數)的一次同餘方程組求解問題。公元4世紀的《孫子算經》中已有相當於求解下列一次同餘組的著名的「孫子問題」:

X≡2(mod3) ≡3(mod5) ≡2(mod7)

《孫子算經》作者給出的解法,引導了宋代秦九韶求解一次同餘組的一般演算法——「大衍求一術」。現代文獻中通常把這種一般演算法稱為「中國剩餘定理」。

1.5 插值法與「招差術」

插值演算法在微積分的醞釀過程中扮演了重要角色。在中國,早從東漢時期起,學者們就慣用插值法來推算日月五星的運動。起初是簡單的一次內插法,隋唐時期出現二次插值法(如一行《大衍歷》,727年)。由於天體運動的加速度也不均勻,二次插值仍不夠精密。隨著歷法的進步,到了宋元時代,便產生了三次內插法(郭守敬《授時歷》,1280年)。在此基礎上,數學家朱世傑更創造出一般高次內插公式,即他所說的「招差術」。 朱世傑的公式相當於

f(n)=n△+ n(n�1)△2+ n(n�1)(n�2)△3

+ n(n�1)(n�2)(n�3)△4+……

這是一項很突出的成就。

這里不可能一一列舉中國古代數學家的所有演算法,但僅從以上介紹不難看到,古代與中世紀中國數學家創造的演算法,有許多即使按現代標准衡量也達到了很高的水平。這些演算法所表達的數學真理,有的在歐洲直到18世紀以後依賴近代數學工具才重新獲得(如前面提到的高次代數方程數值求解的秦九韶程序,與1819年英國數學家W. 霍納重新導出的「霍納演算法」基本一致;多元高次方程組的系統研究在歐洲也要到18世紀末才開始在E. 別朱等人的著作中出現;解一次同餘組的剩餘定理則由歐拉與高斯分別獨立重新獲得;至於朱世傑的高次內插公式,實質上已與現在通用的牛頓-格列高里公式相一致)。這些演算法的結構,其復雜程度也是驚人的。如對秦九韶「大衍求一術」和「正負開方術」的分析表明,這些演算法的計算程序,包含了現代計算機語言中構造非平易演算法的基本要素與基本結構。這類復雜的演算法,很難再僅僅被看作是簡單的經驗法則了,而是高度的概括思維能力的產物,這種能力與歐幾里得幾何的演繹思維風格截然不同,但卻在數學的發展中起著完全可與之相媲美的作用。事實上,古代中國演算法的繁榮,同時也孕育了一系列極其重要的概念,顯示了演算法化思維在數學進化中的創造意義和動力功能。以下亦舉幾例。

1.6 負數的引進

《九章算術》「方程術」的消元程序,在方程系數相減時會出現較小數減較大數的情況,正是在這里,《九章算術》的作者們引進了負數,並給出了正、負數的加減運演算法則,即「正負術」。

對負數的認識是人類數系擴充的重大步驟。公元7世紀印度數學家也開始使用負數,但負數的認識在歐洲卻進展緩慢,甚至到16世紀,韋達的著作還迴避負數。

1.7 無理數的發現

中國古代數學家在開方運算中接觸到了無理數。《九章算術》開方術中指出了存在有開不盡的情形:「若開方不盡者,為不可開」,《九章算術》的作者們給這種不盡根數起了一個專門名詞——「面」。「面」,就是無理數。與古希臘畢達哥拉斯學派發現正方形的對角線不是有理數時驚慌失措的表現相比,中國古代數學家卻是相對自然地接受了那些「開不盡」的無理數,這也許應歸功於他們早就習慣使用的十進位制,這種十進位制使他們能夠有效地計算「不盡根數」的近似值。為《九章算術》作注的三國時代數學家劉徽就在「開方術」注中明確提出了用十進制小數任意逼近不盡根數的方法,他稱之為「求微數法」,並指出在開方過程中,「其一退以十為步,其再退以百為步,退之彌下,其分彌細,則……雖有所棄之數,不足言之也」。

十進位值記數制是對人類文明不可磨滅的貢獻。法國大數學家拉普拉斯曾盛贊十進位值制的發明,認為它「使得我們的算術系統在所有有用的創造中成為第一流的」。中國古代數學家正是在嚴格遵循十進位制的籌算系統基礎上,建立起了富有演算法化特色的東方數學大廈。

1.8 賈憲三角或楊輝三角

從前面關於高次方程數值求解演算法(秦九韶程序)的介紹我們可以看到,中國古代開方術是以�c+hn的二項展開為基礎的,這就引導了二項系數表的發現。南宋數學家楊輝著《詳解九章演算法》(1261年)中,載有一張所謂「開方作法本源圖」,實際就是一張二項系數表。這張圖摘自公元1050年左右北宋數學家賈憲的一部著作。「開方作法本源圖」現在就叫「賈憲三角」或「楊輝三角」。二項系數表在西方則叫「帕斯卡三角」�1654年。

1.9 走向符號代數

解方程的數學活動,必然引起人們對方程表達形式的思考。在這方面,以解方程擅長的中國古代數學家們很自然也是走在了前列。在宋元時期的數學著作中,已出現了用特定的漢字作為未知數符號並進而建立方程的系統努力。這就是以李冶為代表的「天元術」和以朱世傑為代表的「四元術」。所謂「天元術」,首先是「立天元一為某某」,這相當於「設為某某」,「天元一」就表示未知數,然後在籌算盤上布列「天元式」,即一元方程式。該方法被推廣到多個未知數情形,就是前面提到的朱世傑的「四元術」。因此,用天元術和四元術列方程的方法,與現代代數中的列方程法已相類似。

符號化是近世代數的標志之一。中國宋元數學家在這方面邁出了重要一步,「天元術」和「四元術」,是以創造演算法特別是解方程的演算法為主線的中國古代數學的一個高峰�。

2 中國古代數學對世界數學發展的貢獻

數學的發展包括了兩大主要活動:證明定理和創造演算法。定理證明是希臘人首倡,後構成數學發展中演繹傾向的脊樑;演算法創造昌盛於古代和中世紀的中國、印度,形成了數學發展中強烈的演算法傾向。統觀數學的歷史將會發現,數學的發展並非總是演繹傾向獨占鰲頭。在數學史上,演算法傾向與演繹傾向總是交替地取得主導地位。古代巴比倫和埃及式的原始演算法時期,被希臘式的演繹幾何所接替,而在中世紀,希臘數學衰落下去,演算法傾向在中國、印度等東方國度繁榮起來;東方數學在文藝復興前夕通過阿拉伯傳播到歐洲,對近代數學興起產生了深刻影響。事實上,作為近代數學誕生標志的解析幾何與微積分,從思想方法的淵源看都不能說是演繹傾向而是演算法傾向的產物。

從微積分的歷史可以知道,微積分的產生是尋找解決一系列實際問題的普遍演算法的結果�6�。這些問題包括:決定物體的瞬時速度、求極大值與極小值、求曲線的切線、求物體的重心及引力、面積與體積計算等。從16世紀中開始的100多年間,許多大數學家都致力於獲得解決這些問題的特殊演算法。牛頓與萊布尼茲的功績是在於將這些特殊的演算法統一成兩類基本運算——微分與積分,並進一步指出了它們的互逆關系。無論是牛頓的先驅者還是牛頓本人,他們所使用的演算法都是不嚴格的,都沒有完整的演繹推導。牛頓的流數術在邏輯上的瑕疵更是眾所周知。對當時的學者來說,首要的是找到行之有效的演算法,而不是演算法的證明。這種傾向一直延續到18世紀。18世紀的數學家也往往不管微積分基礎的困難而大膽前進。如泰勒公式,歐拉、伯努利甚至19世紀初傅里葉所發現的三角展開等,都是在很長時期內缺乏嚴格的證明。正如馮·諾伊曼指出的那樣:沒有一個數學家會把這一時期的發展看作是異端邪道;這個時期產生的數學成果被公認為第一流的。並且反過來,如果當時的數學家一定要在有了嚴密的演繹證明之後才承認新演算法的合理性,那就不會有今天的微積分和整個分析大廈了。

現在再來看一看更早的解析幾何的誕生。通常認為,笛卡兒發明解析幾何的基本思想,是用代數方法來解幾何問題。這同歐氏演繹方法已經大相徑庭了。而事實上如果我們去閱讀笛卡兒的原著,就會發現貫穿於其中的徹底的演算法精神。《幾何學》開宗明義就宣稱:「我將毫不猶豫地在幾何學中引進算術的術語,以便使自己變得更加聰明」。眾所周知,笛卡兒的《幾何學》是他的哲學著作《方法論》的附錄。笛卡兒在他另一部生前未正式發表的哲學著作《指導思維的法則》(簡稱《法則》)中曾強烈批判了傳統的主要是希臘的研究方法,認為古希臘人的演繹推理只能用來證明已經知道的事物,「卻不能幫助我們發現未知的事情」。因此他提出「需要一種發現真理的方法」,並稱之為「通用數學」(mathesis universakis)。笛卡兒在《法則》中描述了這種通用數學的藍圖,他提出的大膽計劃,概而言之就是要將一切科學問題轉化為求解代數方程的數學問題:

任何問題→數學問題→代數問題→方程求解而笛卡兒的《幾何學》,正是他上述方案的一個具體實施和示範,解析幾何在整個方案中扮演著重要的工具作用,它將一切幾何問題化為代數問題,這些代數問題則可以用一種簡單的、幾乎自動的或者毋寧說是機械的方法去解決。這與上面介紹的古代中國數學家解決問題的路線可以說是一脈相承。

因此我們完全有理由說,在從文藝復興到17世紀近代數學興起的大潮中,回響著東方數學特別是中國數學的韻律。整個17—18世紀應該看成是尋求無窮小演算法的英雄年代,盡管這一時期的無窮小演算法與中世紀演算法相比有質的飛躍。而從19世紀特別是70年代直到20世紀中,演繹傾向又重新在比希臘幾何高得多的水準上占據了優勢。因此,數學的發展呈現出演算法創造與演繹證明兩大主流交替繁榮、螺旋式上升過程:

演繹傳統——定理證明活動

演算法傳統——演算法創造活動

中國古代數學家對演算法傳統的形成與發展做出了毋容置疑的巨大貢獻。

我們強調中國古代數學的演算法傳統,並不意味中國古代數學中沒有演繹傾向。事實上,在魏晉南北朝時期一些數學家的工作中,已出現具有相當深度的論證思想。如趙爽勾股定理證明、劉徽「陽馬」�一種長方錐體體積證明、祖沖之父子對球體積公式的推導等等,均可與古希臘數學家相應的工作媲美。趙爽勾股定理證明示意圖「弦圖」原型,已被採用作2002年國際數學家大會會標。令人迷惑的是,這種論證傾向隨著南北朝的結束,可以說是戛然而止。囿於篇幅和本文重點,對這方面的內容這里不能詳述,有興趣的讀者可參閱參考文獻�3�。

3 古為今用,創新發展

到了20世紀,至少從中葉開始,電子計算機的出現對數學的發展帶來了深遠影響,並孕育出孤立子理論、混沌動力學、四色定理證明等一系列令人矚目的成就。藉助計算機及有效的演算法猜測發現新事實、歸納證明新定理乃至進行更一般的自動推理……,這一切可以說已揭開了數學史上一個新的演算法繁榮時代的偉大序幕。科學界敏銳的有識之士紛紛預見到數學發展的這一趨勢。在我國,早在上世紀50年代,華羅庚教授就親自領導建立了計算機研製組,為我國計算機科學和數學的發展奠定了基礎。吳文俊教授更是從70年代中開始,毅然由原先從事的拓撲學領域轉向定理機器證明的研究,並開創了現代數學的嶄新領域——數學機械化。被國際上譽為「吳方法」的數學機械化方法已使中國在數學機械化領域處於國際領先地位,而正如吳文俊教授本人所說:「幾何定理證明的機械化問題,從思維到方法,至少在宋元時代就有蛛絲馬跡可尋,」他的工作「主要是受中國古代數學的啟發」。「吳方法」,是中國古代數學演算法化、機械化精髓的發揚光大。

計算機影響下演算法傾向的增長,自然也引起一些外國學者對中國古代數學中演算法傳統的興趣。早在上世紀70年代初,著名的計算機科學家D.E.Knuth就呼籲人們關注古代中國和印度的演算法�5�。多年來這方面的研究取得了一定進展,但總的來說還亟待加強。眾所周知,中國古代文化包括數學是通過著名的絲綢之路向西方傳播的,而阿拉伯地區是這種文化傳播的重要中轉站。現存有些阿拉伯數學與天文著作中包含有一定的中國數學與天文學知識,如著名的阿爾·卡西《算術之鑰》一書中有相當數量的數學問題顯示出直接或間接的中國來源,而根據阿爾·卡西本人記述,他所工作的天文台中就有不少來自中國的學者。

然而長期以來由於「西方中心論」特別是「希臘中心論」的影響以及語言文字方面的障礙,有關資料還遠遠沒有得到發掘。正是為了充分揭示東方數學與歐洲數學復興的關系,吳文俊教授特意從他榮獲的國家最高科學獎中撥出專款成立了「吳文俊數學與天文絲路基金」,鼓勵支持年輕學者深入開展這方面的研究,這是具有深遠意義之舉。

研究科學的歷史,其重要意義之一就是從歷史的發展中獲得借鑒和汲取教益,促進現實的科學研究,通俗地說就是「古為今用」。吳文俊對此有精闢的論述,他說:「假如你對數學的歷史發展,對一個領域的發生和發展,對一個理論的興旺和衰落,對一個概念的來龍去脈,對一種重要思想的產生和影響等這許多歷史因素都弄清了,我想,對數學就會了解得更多,對數學的現狀就會知道得更清楚、更深刻,還可以對數學的未來起一種指導作用,也就是說,可以知道數學究竟應該按怎樣的方向發展可以收到最大的效益」。數學機械化理論的創立,正是這種古為今用原則的碩果。我國科學技術的偉大復興,呼喚著更多這樣既有濃郁的中國特色、又有鮮明時代氣息的創新。

『柒』 數學是怎麼產生的,它的發展歷史是什麼

產生:數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題

數學的發展史大致可以分為四個時期。

1、第一時期

數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。

2、第二時期

初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。

3、第三時期

變數數學時期。變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。

4、第四時期

現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。

(7)100年前數學產生了什麼時候擴展閱讀:

發展過程中研究出的數學成果:

1、李氏恆定式

數學家李善蘭在級數求和方面的研究成果,在國際上被命名為李氏恆定式。

2、華氏定理

華氏定理是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。

『捌』 數學的發展歷史

數學的發展史大致可以分為四個時期。第一時期是數學形成時期,第二時期是常量數學時期等。其研究成果有李氏恆定式、華氏定理、蘇氏錐面。

第一時期

數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。

第二時期

初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。

第三時期

變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分,即高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學、方程及其應用。

微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

第四時期

現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。

拓展資料:

華羅庚

中華民族是一個具有燦爛文化和悠久歷史的民族,在燦爛的文化瑰寶中數學在世界數學發展史中也同樣具有許多耀眼的光環。中國古代算數的許多研究成果裡面就早已孕育了後來西方數學才設計的先進思想方法,近代也有不少世界領先的數學研究成果就是以華人數學家命名的。

李氏恆定式

數學家李善蘭在級數求和方面的研究成果,在國際上被命名為【李氏恆定式】

華氏定理

「華氏定理」是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。

蘇氏錐面

數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」。

蘇步青院士對仿射微分幾何的一個極其美妙的發現是:他對一般的曲面,構做出一個訪射不變的4次代數錐面。在訪射的曲面理論中為人們許多協變幾何對象,包括2條主切曲線,3條達布切線,3條塞格雷切線和仿射法線等等,都可以由這個錐面和它的3根尖點直線以美妙的方式體現出來。

這個錐面被命名為蘇氏錐面。

『玖』 數學發展史時間軸

一般分為:1.數學的萌芽時期;2.常量數學時期;3.變數數學時期;4.現代數學時期。

數學起源於人類早期的生產活動,為古中國六藝之一,亦被古希臘學者視為哲學之起點。數學最早用於人們計數、天文、度量甚至是貿易的需要。這些需要可以簡單地被概括為數學對結構、空間以及時間的研究;對結構的研究是從數字開始的。

數學發展史的分期,一般來說,可以按照數學本身由低級到高級分階段進行,也就是分成四個本質不同的發展時期,每一新時期的開始都以卓越的科學成就作標志,這些成就確定了數學向本質上嶄新的狀態過渡。

(9)100年前數學產生了什麼時候擴展閱讀:

數學史對數學教育意義的意義

數學史在數學教育中有非常重要的地位和價值,是數學教育的重要內容,也是培養數學能力和實施數學素質教育的關鍵所在,是對數學教育來說十分有意義甚至是不可或缺的工具。

它可以活躍課堂氣氛並激起學生學習數學的興趣,可以培養學生的創新精神以及能讓學生了解數學的應用價值和文化價值,還可以通過數學史教育提高學生的綜合文化素質,還能幫助學生樹立科學品質,培養良好的科學精神。

在數學史教育中我們可以通過在教材中穿插相關的數學故事,來發揮激勵和榜樣作用,可以揭示數學發展的曲折歷程,培養學生的探索精神,可以在教學中追憶數學家的成敗歷程,吸取有益的教訓,還可以考察歷史上的數學思想方法,強化數學素質教育。

閱讀全文

與100年前數學產生了什麼時候相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:746
乙酸乙酯化學式怎麼算 瀏覽:1411
沈陽初中的數學是什麼版本的 瀏覽:1363
華為手機家人共享如何查看地理位置 瀏覽:1054
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:894
數學c什麼意思是什麼意思是什麼 瀏覽:1421
中考初中地理如何補 瀏覽:1312
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:712
數學奧數卡怎麼辦 瀏覽:1402
如何回答地理是什麼 瀏覽:1035
win7如何刪除電腦文件瀏覽歷史 瀏覽:1063
大學物理實驗干什麼用的到 瀏覽:1494
二年級上冊數學框框怎麼填 瀏覽:1713
西安瑞禧生物科技有限公司怎麼樣 瀏覽:1002
武大的分析化學怎麼樣 瀏覽:1255
ige電化學發光偏高怎麼辦 瀏覽:1345
學而思初中英語和語文怎麼樣 瀏覽:1666
下列哪個水飛薊素化學結構 瀏覽:1430
化學理學哪些專業好 瀏覽:1493
數學中的棱的意思是什麼 瀏覽:1071