① 作為高中生,如何感受數學之美(大家注意我的補充)
作為高中生,我只想說當年我是高中生的時候,真的是被數學傷透了腦筋,因為我真的不喜歡數學, 就是很討厭那種。每天做題目那種感覺,其實我也不是笨 只是那種對於數學的厭倦,也沒有一個耐心的老師能夠對我循循善誘的。打心眼兒里,我也是想學好數學的,但是奈何真的不像別人一樣,一點就通。
希望還是能夠學好數學吧,畢竟這個數學這個東西是你通往一個好的學校的,一個重要的一個部分環節,你不能在這個環節上面出了差錯,不好。
② 數學之美的內容
數學美是自然美的客觀反映,是科學美的核心。簡言之數學美就是數學中奇妙的有規律的讓人愉悅的美的東西。
作為科學語言的數學,數學具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。
數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。
(2)數學題的美在哪裡擴展閱讀:
數學美有別與其它的美,它沒有鮮艷的色彩,沒有美妙的聲音,沒有動感的畫面,它卻是一種獨特的美。
德國數學家克萊因曾對數學美作過這樣的描述:「音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科技可以改善物質生活,但數學卻能提供以上一切。」
大多數的數學家會由他們的工作及一般數學里得出美學的喜悅。他們形容數學是美麗的來表示這種喜悅。有時,數學家會形容數學是一種藝術的形式,或至少是一個創造性的活動。通常拿來和音樂和詩歌相比較。
③ 數學之美,你怎麼看
19世紀大數學家高斯就說過「數學是科學中的皇後」),它具有簡潔美(抽象美、符號美、統一美等)、和諧美(對稱美、形式美等)、奇異美(有限美、神秘美等)。美在一個困難問題的簡單解答,一個復雜問題的簡單答案;美在種種圖案、建築物、衣服式樣、傢具及裝飾等事物的對稱性上;美在人們對和諧、有規律的事物的喜愛以及從事物中發現普遍性與統一性的秩序和規律中。
1、美觀:數學對象以形式上的對稱、和諧、簡潔,總給人的觀感帶來美麗、漂亮的感受。
比如:幾何學常常給人們直觀的美學形象,美觀、勻稱、無可非議;
在算術、代數科目中也很多:
如(a+b)·c=a·c+b·c;
a+b=b+a
這些公式和法則非常對稱與和諧,同樣給人以美觀感受。
但是外形上的的美觀,並不一定是真實和正確的。
比如:sin(A+B)=sinA+sinB是何等的「對稱」、「和諧」、「美觀」啊!但是它是錯誤的,就象「」雖然美麗但是有「毒」。
2、美好:數學上的許多東西,只有認識到它的正確性,才能感覺到它的「美好」。
不美麗的例子很多,比如二次方程的求根公式,無論從哪方面看都不對稱、不和諧、不美觀。但是,當我們真正了解它、運用它,就會感到它的價值,它的美好。這一公式告訴我們許多信息:±表示它有兩個根,a≠0、△會顯示根的數目和方程的性質……
3、美妙:美妙的感覺需要培養,美妙的感覺往往來自「意料之外」但在「情理之中」的事物。三角形的高交於一點就是這樣;2個圓柱體垂直相截後將截面展開,其截線所對應的曲線竟然是一條正弦曲線,與原來猜想的是一斷圓弧大出「意料之外」,經過分析證明的確是正弦曲線,又在「情理之中」,美妙的感覺就油然而生了。
4、完美:數學總是盡量做到完美無缺。這就是數學的最高「品質」和最高的精神「境界」。歐氏幾何公理化體系的建立,「1+1」的證明都是追求數學完美的典型例子。
④ 數學的美體現在生活的哪些方面
數學的美體現在哪些方面
(1)完備之美
沒有那一門學科能像數學這樣,利用如此多的符號,展現一系列完備且完美的世界。就說數吧,實數集是完備的,任意多的實數隨便做加減乘除乘方開方,其結果依然是實數(注意:數學上完備是根據序列的收斂性嚴格定義的,我這里不是完備的嚴格說法,但可認為是廣義的說法)。引入虛數單位,實數集擴展到復數集,還是任意多的復數,還做那些運算,結果還是復數。
把具體的數抽象成空間中的點,在一定的假設和約定之下,可以得到完備的空間,這些空間可以是一維的,也可以是二維三維甚至多維的。三維之外,你就難以想像,但不能否認其存在。某空間的點、序列依一定的法則進行運算,依然不能離開那個空間,這就是完備性。這種完備性是很奇妙的。你可以把它想像成在一個球體中,不管你如何運動,總是不能鑽出球面。
具有完備性的空間,可以帶來許多好處。工程中用得最多的空間是Hilbert空間。順便提一句,Hilbert是個二十世紀最偉大的數學家之一。
另外,數學中的諸多體系,其本身也都是完備的,如歐式幾何,這是大家所熟知的,在幾個公理的基礎上,推演出一系列漂亮的結論,生命力經久不衰,尤其在工程運用中。
(2)對稱之美
提到對稱的美,大家首先想到的是幾何,其實幾何只是一方面,是「看得見」的那一方面。實際上,對稱性在數學中處處存在。如微積分的基本定理,展現了微分與積分之間的緊密聯系,本身具有很強的對稱性。如泛函中的對偶運算元,不但在運算上具有顯著的對稱性,在性質上也處處顯示出一致性。
(3)簡潔之美
數學中有個非常漂亮的公式,那就是歐拉公式。這個式子把數學中幾個「偉大的」數給聯繫到了一塊,它們分別是自然對數、圓周率、虛數單位以及1,其中前兩個是超越數,是無數個超越數中人類目前僅僅找到的兩個,而且這兩個對數學影響巨大。我大膽猜想,當下一個超越數被找到的時候,數學將會經歷另一場巨大的革命。虛數單位今天看起來沒什麼特別,但它剛被引進的時候曾受到眾多(大)數學家的置疑和反對,最後它終於還是進來了,而數學也開辟了一條康莊大道,那就是復變函數。
勿庸置疑,歐拉公式是簡潔而完美的,另一個可以跟它抗衡的式子出現在物理學中,那就是愛因斯坦的質能變換公式。我這種說法可能有點武斷,不過我目前只能想到這一點,呵呵。
(4)抽象之美
這一點可能會引起許多人的異議,因為在許多人看來,抽象是不好的,因為離現實太遠。可是我不這么認為,數學如果不抽象,便難以發展,雖然很多問題都是從現實引出的。數學建立在符號邏輯的基礎之上,即使是解決實際問題,也要把問題抽象出來,用數學符號表示,才可以很好的解決。另一方面,抽象的數學,能帶動你在無限的思維空間中遨遊,拋開一切雜念,成為一種美好的享受。當然,這有點理想化,但不可否認,這確實是一種美的體驗。
⑤ 數學的簡潔美主要體現在什麼地方
19世紀大數學家高斯就說過「數學是科學中的皇後」),它具有簡潔美(抽象美、符號美、統一美等)、和諧美(對稱美、形式美等)、奇異美(有限美、神秘美等)。美在一個困難問題的簡單解答,一個復雜問題的簡單答案;美在種種圖案、建築物、衣服式樣、傢具及裝飾等事物的對稱性上;美在人們對和諧、有規律的事物的喜愛以及從事物中發現普遍性與統一性的秩序和規律中。 1、美觀:數學對象以形式上的對稱、和諧、簡潔,總給人的觀感帶來美麗、漂亮的感受。 比如:幾何學常常給人們直觀的美學形象,美觀、勻稱、無可非議; 在算術、代數科目中也很多: 如(a+b)·c=a·c+b·c; a+b=b+a 這些公式和法則非常對稱與和諧,同樣給人以美觀感受。 但是外形上的的美觀,並不一定是真實和正確的。 比如:sin(A+B)=sinA+sinB是何等的「對稱」、「和諧」、「美觀」啊!但是它是錯誤的,就象「」雖然美麗但是有「毒」。 2、美好:數學上的許多東西,只有認識到它的正確性,才能感覺到它的「美好」。 不美麗的例子很多,比如二次方程的求根公式,無論從哪方面看都不對稱、不和諧、不美觀。但是,當我們真正了解它、運用它,就會感到它的價值,它的美好。這一公式告訴我們許多信息:±表示它有兩個根,a≠0、△會顯示根的數目和方程的性質…… 3、美妙:美妙的感覺需要培養,美妙的感覺往往來自「意料之外」但在「情理之中」的事物。三角形的高交於一點就是這樣;2個圓柱體垂直相截後將截面展開,其截線所對應的曲線竟然是一條正弦曲線,與原來猜想的是一斷圓弧大出「意料之外」,經過分析證明的確是正弦曲線,又在「情理之中」,美妙的感覺就油然而生了。 4、完美:數學總是盡量做到完美無缺。這就是數學的最高「品質」和最高的精神「境界」。歐氏幾何公理化體系的建立,「1+1」的證明都是追求數學完美的典型例子。
⑥ 數學之美
隨著社會的迅猛發展,經濟水平不斷提高,人們生活質量越來越好。但與此同時帶來的是人們對於資本的渴求的膨脹,人們越來越注重實際利益,注重實業重工的發展,相對而言,理論上的一些研究就理所當然的被視作一種無用之學科。首當其沖的便是數學,在中國,幾乎所有人都認為在大學里學純數學將來是沒有什麼前途的,事實上,在西方發達國家並非如此。在哲人的眼裡,數學是如此美麗,它巧奪天工,不可言喻。保羅•埃爾德什形容他對數學的觀點:「為何數字美麗呢?這就像在問貝多芬第九交響曲為什麼會美麗一般。若你不知道為什麼,其他人也沒辦法告訴你為什麼。我知道數字是美麗的,且若它們不美麗的話,世上也沒有事物會是美麗的了。」
一、數學之美所謂何然
數學美是自然美的客觀反映。歷史上曾有多位學者名人對數學美提出自己的見解,我國著名數學家華羅庚說過:「就數學本身而言,是壯麗多彩、千姿百態、引人入勝的……認為數學枯燥乏味的人,只是看到了數學的嚴謹性,而沒有體會出數學的內在美。」數學家徐利治說:「作為科學語言的數學,具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。」 隨著數學的發展和人類文明的進步,數學美的概念會有所發展,分類也不相同,但它的基本內容是相對穩定的,這就是:對稱美、簡潔美、統一美和奇異美。
數學的對稱美,從古希臘時代起就被認為是數學美的一個基本內容。所謂對稱性,既指組成某一事物或對象的兩個部分的對等性。數學中的這種對稱處處可見,較為形象的就是我們司空見慣的一些軸對稱圖形,尤其是圓,真可謂是三百六十度完全對稱無死角。畢達哥拉斯就曾說過:「一切平面圖形中最美的是圓,在一切立體圖形中最美的是球形。」這正是基於這兩種形體在各個方向上都是對稱的。而對於我來說,關於對稱印象最深刻的便是小學五年級的時候老師讓我做的一道數學題。當時老師在報紙上看到這道題,就拿給同辦公室的幾個老師做,結果居然那幾個老師都沒有做出來,於是老師就把我叫到辦公室去當場做,看小孩子的思維會不會活躍一些,題目是一個四位數乘以九得到的數等於這個數的倒序。我當時一看這題目,心想既然是對稱的,那麼第一個數字必是1,然後乘以九,那麼最後一個數字必是9,接著我又想第二個數字最大是1但一代進去顯然不行,那麼就只能是0了,這么一來就輕而易舉地猜出第三個數字是8,所以答案就是1089*9=9801.我記得自己當時是很快就把答案想出來了,老師們都很詫異,連連誇獎。當時心裡真的是特別高興,也是第一次對數字的對稱性有了基本的概念。現在想想那道題其實真的很簡單,但就是這么簡單的數學題里也蘊含著數學那高度的對稱美。
數學的簡潔美,是人類思想表達簡明化要求的反映。愛因斯坦說過:「美在本質上終究是簡單性。」 數學語言本身就是最簡潔的文字,同時反映客觀規律極其深刻,許多復雜的客觀現象,總結為一定的規律時,往往呈現為十分簡單的公式。歐拉給出的公式:V-E+F=2,堪稱「簡單美」的典範。世間的多面體有多少沒有人能說清楚。但它們的頂點數V、棱數E、面數F,都必須服從歐拉給出的公式,一個如此簡單的公式,概括了無數種多面體的共同特性,令人驚嘆不已。正如偉大的希而伯特曾說過:「數學中每一步真正的進展都與更有力的工具和更簡單的方法的發現密切聯系著」。如笛卡爾坐標系的引入。對數符號的使用,復數單位的引入。微積分的出現都體現了數學外在形式更簡潔,內容更深厚。數學中絕大部分公式都體現了「形式的簡潔性,內容的豐富性」。 數學的簡潔美還表現在形態上,即數學美的外部表現形態,是數學定理和數學公式(或表達式)的外在結構中呈現出來的美。形態美的主要特徵,在於它的簡單性。
數學的統一美,是審美對象在形式或內容上的某種共同性、關聯性或一致性,它能給人一種整體和諧的美感。一切客觀事物都是相互聯系的,因而,作為反映客觀事物的數學概念、數學定理、數學公式、數學法則也是互相聯系的,在一定條件下可處於一個統一體之中。例如,從結構上分析,解析法、三角法、復數法、向量法和圖解等具體方法,都可以統一於數形結合法。歐幾里德的《幾何原本》,把一些空間性質簡化為點、線、面、體幾個抽象概念和五條公設及五條公理,並由此導致出一套雅緻的演繹理論體系,顯示出高度的統一性。布爾基學派的《數學原本》,用結構的思想和語言來重新整理各個數學分支,在本質上揭示數學的內在聯系,使之成為一個有機整體,在數學的高度統一性上給人以美的啟迪。
二、數學之美所以何能
數學之美在各位先知哲人的眼裡是如此的美麗,那麼數學是憑著什麼從幾個簡單的阿拉伯數字和拉丁字母發展為如此瑰麗傳奇的數學世界的呢?僅憑個人的力量顯然是遠遠不夠的,它是數千年來祖輩們世世代代傳承積累下來的。
數學之美是人民之於數學的智慧結晶。人們在日常的生活中總會遇到一些需要用數學來解決的小問題,然後就有人提出一個改進的小方法,讓計算變得更為容易,這樣日積月累,慢慢地便使得數學的土壤越來越肥沃,培育出更多的數學芬芳之果,讓數學這個世界越變越豐富,越變越美麗。我不是數學考古專家,不能調研到什麼具體的人民對於數學方面的小改進。但是我可以講講自己的例子。身邊的人都知道我的速算是很厲害的,倒不是我有多聰明,而是我會把一些難算的式子在腦子里做一些的變換然後再計算,這樣就容易多了,就我個人而言,這改進雖然很小,或者都稱不上是改進,但是就是因為人民大眾這樣一點一滴的積累,使得數學越來越美。
數學之美是智者之於數學的靈感源泉。我國數學家陳景潤身居陋室,但為了攻破歌德巴赫猜想這一世界數學難題,不斷演算,通過努力終於摘取了數學皇冠上的明珠。接下來我講一個蒲豐用投針求圓周率的近似值的試驗。有一天蒲豐邀請許多賓朋來家做了一個奇特的實驗。他事先在白紙上畫好了一條條有等距離的平行線,將紙鋪在桌上,又拿出一些質量勻稱長度為平行線間距離之半的小針,請客人把針一根根隨便仍到紙上,蒲豐則在一旁計數,結果共投2212次,其中與任意平行線相交的有704次,蒲豐又做了一簡單的除法 ,然後他宣布這就是圓周率的近似值,還說投的次數越多越精確。這個實驗使人震驚,圓周率和一個表面看來毫不相乾的隨便投針實驗溝通在一起。然而,這確實是有理論根據的。計算圓周率的這一方法新穎、奇妙而讓人叫絕。
數學之美是社會之於數學的發展需要。我們面臨一個科學技術迅猛發展的時代。信息的數字化和信息的數學處理已經成為幾乎所 有高科技項目共同的核心技術。從事先設計、制定方案,到試驗探索、不斷改進,到指揮控制、具體 操作,處處倚重於數學技術。許多國家認識到,發展高清晰度電視是未來經濟技術競爭的主戰場之一。應該指出,電視屏幕不僅是現代人們日常生活所不可缺少的,而且可能通過聯網成為信息傳 遞處理的工作面。幾乎所有重要的工作崗位都將與之有關。數學技術在如此重要項目的激烈較量 中起了決定作用。1991年的海灣戰爭是一場現代高科技戰爭,其核心技術竟然也是數學技術。這一事實引 起人們不小的驚訝。美國總結海灣戰爭經驗得出結論是:「未來的戰場是數字化的戰爭」。
二、數學之美所知何用
現如今,越來越多的大學生在填大學專業方向時,都不願填寫數學這個專業,理由是畢業後工作不好找。我自己也是,其實我個人是非常熱愛數學的,我可以一天不吃不喝在那邊做一道數學題並且樂在其中。但是最終還是迫於家庭和社會各方面壓力選擇了大家普遍認為將來就業可能比較好的電子專業,雖然我自己不是很喜歡,但是既來之,則安之。然而,在此我還是要說學習數學是有用的,而且是非常地有用,未來的社會必是數字化的時代。
數學之美的社會應用——揭示自然規律,指導工程設計。1995年1月,在販神大地震之後,美國利用數學模型進行地震預測,預告本世紀末加州南部可能發生大地震;1995年3月,我國中央人民廣播電視台宣布啟用數字式轉播方式,指出以前的模擬式轉播方式效果差,所以改用新的轉播方式;1995年6月,歐州聯盟開會研討未來數字化通信的統一制式;1996年2月,我國電子工業部宣布「九五計劃」開發重點:數字化信息技術。所訂的兩個重點研製項目是:數字式高清晰度電視接受機樣機和數字式激光碟;1996年4月,我國國家科委發布招標公告,正式宣布數字式高清晰度電視開發項目。僅以幾件事為例就能清楚地看到數學對當代人們的生產和生活所起的重要作用。
數學之美的突出表現——黃金比例分割。黃金分割又稱黃金律,是指事物各部分間一定的數學比例關系,即將整體一分為二,較大部分與較小部分之比等於整體與較大部分之比,其比值為1∶0.618或1.618∶1,即長段為全段的0.618。0.618被公認為最具有審美意義的比例數字。採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。
伯特蘭•羅素以下列文字來形容他對數學之美的感覺:數學,如果正確地看它,則具有……至高無上的美——正像雕刻的美,是一種冷而嚴肅的美,這種美不是投合我們天性的微弱的方面,這種美沒有繪畫或音樂的那些華麗的裝飾,它可以純凈到崇高的地步,能夠達到嚴格的只有最偉大的藝術才能顯示的那種完美的境地。一種真實的喜悅的精神,一種精神上的亢奮,一種覺得高於人的意識——這些是至善至美的標准,能夠在詩里得到,也能夠在數學里得到。
參考文獻:
(1)(美)西奧妮•帕帕斯 . 理性的樂章--從名言中感受數學之美. 王幼軍 譯. 上海:上海科技教育出版社,2010.
(2)(英)波斯特 . 數學證明之美 . 賀俊傑,鐵紅玲 譯 . 湖南:湖南科技出版社,2012
(3)(美)克利福德•A•皮科夫 . 馬東璽 譯 . 湖南:湖南科學技術出版社,2010
(4)吳軍 . 數學之美系列文章 . 2006——2007.
⑦ 數學數學到底哪裡有趣了,數學之美又在哪裡
數字黑洞 6174
任意選一個四位數(數字不能全相同),把所有數字從大到小排列,再把所有數字從小到大排列,用前者減去後者得到一個新的數。重復對新得到的數進行上述操作,7 步以內必然會得到 6174。
例如,選擇四位數 6767:
7766 - 6677 = 10899810 - 0189 = 96219621 - 1269 = 83528532 - 2358 = 61747641 - 1467 = 6174……
6174 這個「黑洞」就叫做 Kaprekar 常數。對於三位數,也有一個數字黑洞——495。
3x + 1 問題
從任意一個正整數開始,重復對其進行下面的操作:如果這個數是偶數,把它除以 2 ;如果這個數是奇數,則把它擴大到原來的 3 倍後再加 1 。你會發現,序列最終總會變成 4, 2, 1, 4, 2, 1, … 的循環。
例如,所選的數是 67,根據上面的規則可以依次得到:
67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17,52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...
數學家們試了很多數,沒有一個能逃脫「421 陷阱」。但是,是否對於 所有 的數,序列最終總會變成 4, 2, 1 循環呢?
這個問題可以說是一個「坑」——乍看之下,問題非常簡單,突破口很多,於是數學家們紛紛往裡面跳;殊不知進去容易出去難,不少數學家到死都沒把這個問題搞出來。已經中招的數學家不計其數,這可以從 3x + 1 問題的各種別名看出來: 3x + 1 問題又叫 Collatz 猜想、 Syracuse 問題、 Kakutani 問題、 Hasse 演算法、 Ulam 問題等等。後來,由於命名爭議太大,乾脆讓誰都不沾光,直接叫做 3x + 1 問題算了。
直到現在,數學家們仍然沒有證明,這個規律對於所有的數都成立。
特殊兩位數乘法的速算
如果兩個兩位數的十位相同,個位數相加為 10,那麼你可以立即說出這兩個數的乘積。如果這兩個數分別寫作 AB 和 AC,那麼它們的乘積的前兩位就是 A 和 A + 1 的乘積,後兩位就是 B 和 C 的乘積。
比如,47 和 43 的十位數相同,個位數之和為 10,因而它們乘積的前兩位就是 4×(4 + 1)=20,後兩位就是 7×3=21。也就是說,47×43=2021。
類似地,61×69=4209,86×84=7224,35×35=1225,等等。
這個速算方法背後的原因是,(10 x + y) (10 x + (10 - y)) = 100 x (x + 1) + y (10 - y) 對任意 x 和 y 都成立。
幻方中的幻「方」
一個「三階幻方」是指把數字 1 到 9 填入 3×3 的方格,使得每一行、每一列和兩條對角線的三個數之和正好都相同。下圖就是一個三階幻方,每條直線上的三個數之和都等於 15。
大家或許都聽說過幻方這玩意兒,但不知道幻方中的一些美妙的性質。例如,任意一個三階幻方都滿足,各行所組成的三位數的平方和,等於各行逆序所組成的三位數的平方和。對於上圖中的三階幻方,就有
816 2 + 357 2 + 492 2 = 618 2 + 753 2 + 294 2
利用線性代數,我們可以證明這個結論。
天然形成的幻方
從 1/19 到 18/19 這 18 個分數的小數循環節長度都是 18。把這 18 個循環節排成一個 18×18 的數字陣,恰好構成一個幻方——每一行、每一列和兩條對角線上的數字之和都是 81 (註:嚴格意義上說它不算幻方,因為方陣中有相同數字)。
196 演算法
一個數正讀反讀都一樣,我們就把它叫做「迴文數」。隨便選一個數,不斷加上把它反過來寫之後得到的數,直到得出一個迴文數為止。例如,所選的數是 67,兩步就可以得到一個迴文數 484:
67 + 76 = 143143 + 341 = 484
把 69 變成一個迴文數則需要四步:
69 + 96 = 165165 + 561 = 726726 + 627 = 13531353 + 3531 = 4884
89 的「迴文數之路」則特別長,要到第 24 步才會得到第一個迴文數,8813200023188。
大家或許會想,不斷地「一正一反相加」,最後總能得到一個迴文數,這當然不足為奇了。事實情況也確實是這樣——對於 幾乎 所有的數,按照規則不斷加下去,遲早會出現迴文數。不過,196 卻是一個相當引人注目的例外。數學家們已經用計算機算到了 3 億多位數,都沒有產生過一次迴文數。從 196 出發,究竟能否加出迴文數來?196 究竟特殊在哪兒?這至今仍是個謎。
Farey 序列
選取一個正整數 n。把所有分母不超過 n 的 最簡 分數找出來,從小到大排序。這個分數序列就叫做 Farey 序列。例如,下面展示的就是 n = 7 時的 Farey 序列。
定理:在 Farey 序列中,對於任意兩個相鄰分數,先算出前者的分母乘以後者的分子,再算出前者的分子乘以後者的分母,則這兩個乘積一定正好相差1 !
這個定理有從數論到圖論的各種證明。甚至有一種證明方法巧妙地藉助 Pick 定理,把它轉換為了一個不證自明的幾何問題!
唯一的解
經典數字謎題:用 1 到 9 組成一個九位數,使得這個數的第一位能被 1 整除,前兩位組成的兩位數能被 2 整除,前三位組成的三位數能被 3 整除,以此類推,一直到整個九位數能被 9 整除。
沒錯,真的有這樣猛的數:381654729。其中 3 能被 1 整除,38 能被 2 整除,381 能被 3 整除,一直到整個數能被 9 整除。這個數既可以用整除的性質一步步推出來,也能利用計算機編程找到。
另一個有趣的事實是,在所有由 1 到 9 所組成的 362880 個不同的九位數中,381654729 是唯一一個滿足要求的數!
數在變,數字不變
123456789 的兩倍是 246913578,正好又是一個由 1 到 9 組成的數字。
246913578 的兩倍是 493827156,正好又是一個由 1 到 9 組成的數字。
把 493827156 再翻一倍,987654312,依舊恰好由數字 1 到 9 組成的。
把 987654312 再翻一倍的話,將會得到一個 10 位數 1975308624,它裡面仍然沒有重復數字,恰好由 0 到 9 這 10 個數字組成。
再把 1975308624 翻一倍,這個數將變成 3950617248,依舊是由 0 到 9 組成的。
不過,這個規律卻並不會一直持續下去。繼續把 3950617248 翻一倍將會得到 7901234496,第一次出現了例外。
三個神奇的分數
1/49 化成小數後等於 0.0204081632 …,把小數點後的數字兩位兩位斷開,前五個數依次是 2、4、8、16、32,每個數正好都是前一個數的兩倍。
100/9899 等於 0.01010203050813213455 … ,兩位兩位斷開後,每一個數正好都是前兩個數之和(也即 Fibonacci 數列)。
而 100/9801 則等於 0. … 。
利用組合數學中的「生成函數」可以完美地解釋這些現象的產生原因。
我愛數學