『壹』 高等數學 函數的周期性求法
1。f(x)是周期函數
那麼f(x)的平方
和f(x+2)是一定是周期函數,只不過f(x)的平方的周期未必和f(x)一樣,例如f(x)=
cosx
周期是2π,但平方後周期是π,f(x+2)周期和f(x)一樣,平移不改變周期。
2、f(x)=x
cosx
非周期函數
『貳』 周期的計算公式
周期是指事物在發展變化過程中,某些特徵重復出現,其接續兩次出現所經過的時間
如:0、資金運轉周期=銷售收入凈額/(平均流動資產-平均流動負債)1、應收賬款周轉率(1)應收賬款周轉次數=主營業務收入凈額/應收賬款平均余額
主營業務收入凈額=主營業務收入-銷售退回、折讓和折扣
應收賬款平均余額=(期初應收賬款+期末應收賬款)/2(2)應收賬款周轉天數=360/應收賬款周轉次數2、存貨周轉率(1)存貨周轉次數=銷貨成本<或主營業務成本>/平均存貨
平均存貨=(期初存貨+期末存貨)/2(2)存貨周轉天數=360/存貨周轉次數3、流動資產周轉率(1)流動資產周轉次數=主營業務收入凈額/流動資產平均余額
流動資產平均余額=(流動資產期初數+流動資產期末數)/2(2)流動資產周轉天數=360/流動資產周轉次數4、總資產周轉率(1)總資產周轉次數=主營業務收入凈額/總資產平均余額
總資產平均余額=(總資產期初數+總資產期末數)/2(2)總資產周轉天數=360/總資產周轉次數
『叄』 周期怎麼算數學公式是什麼
f(x+a)=-f(x)周期為2a。證明過程:因為f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
sinx的函數周期公式T=2π,sinx是正弦函數,周期是2π
cosx的函數周期公式T=2π,cosx是餘弦函數,周期2π。
tanx和 cotx 的函數周期公式T=π,tanx和 cotx 分別是正切和餘切
secx 和cscx 的函數周期公式T=2π,secx 和cscx 是正割和餘割。
(3)數學周期函數怎麼計算周期擴展閱讀:
y=Asin(wx+b) 周期公式T=2π/w
y=Acos(wx+b) 周期公式T=2π/w
y=Atan(wx+b) 周期公式T=π/w
重要推論:
如果函數f(x)(x∈D)在定義域內有兩條對稱軸x=a,x=b則函數f(x)是周期函數,且周期T=2|b-a|(不一定為最小正周期)。
如果函數f(x)(x∈D)在定義域內有兩個對稱中心A(a,0),B(b,0)則函數f(x)是周期函數,且周期T=2|b-a|(不一定為最小正周期)。
如果函數f(x)(x∈D)在定義域內有一條對稱軸x=a和一個對稱中心B(b, 0)(a≠b),則函數f(x)是周期函數,且周期T=4|b-a|(不一定為最小正周期)。
『肆』 高中數學的函數怎麼算它的周期,對稱軸
舉例說明如下:
f(x-2)=f(x+2),那麼f(x)=f(x+4),即函數周期是4。
接下來,f(x)是偶函數,那麼f(x-2)=f(2-x)。
而題目中又給出了f(x-2)=f(x+2)。
所以f(2-x)=f(2+x),所以函數關於x=2對稱。
而f(x)又是周期為4的周期函數,所以函數的對稱軸也是周期性的,所以對稱軸為x=2+4n(n為整數)。
(4)數學周期函數怎麼計算周期擴展閱讀
周期函數的性質共分以下幾個類型:
(1)若T(≠0)是f(x)的周期,則-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,則nT(n為任意非零整數)也是f(x)的周期。
(3)若T1與T2都是f(x)的周期,則T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那麼f(x)的任何正周期T一定是T*的正整數倍。
(5)若T1、T2是f(x)的兩個周期,且T1/T2是無理數,則f(x)不存在最小正周期。
(6)周期函數f(x)的定義域M必定是至少一方無界的集合。
『伍』 高中數學函數周期的求法
周期有個固定的公式為:
t=2π/ω,其中ω為未知數的系數
例如:y=sin2x吧,其中 ω=2
故,周期t=2π/2=π
望採納,不懂歡迎追問!!!
『陸』 怎樣求周期函數的周期
令t=x-1;則f(t)=f(t+4)周期為4。
求周期函數的周期,可以直接利用定義來求,也可以利用基本周期函數的周期間接來求。基本周期函數的周期是:y=sinx 、y=cosx的周期是2π,y=tanx的周期是π。
比如: y=sin3x, y=sin3x=sin(3x+2π)=sin[3(x+2π/3)
∴ y=sin3x的周期是 2π/3。
再比如說:y=sin²x y=sin²x =1/2(1-cos2x) cos2x的周期是π,
∴ y=sin²x 的周期是 π。
(6)數學周期函數怎麼計算周期擴展閱讀:
周期函數的性質 共分以下幾個類型:
(1)若T(≠0)是f(x)的周期,則-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,則nT(n為任意非零整數)也是f(x)的周期。
(3)若T1與T2都是f(x)的周期,則T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那麼f(x)的任何正周期T一定是T*的正整數倍。
(5)若T1、T2是f(x)的兩個周期,且T1/T2是無理數,則f(x)不存在最小正周期。
(6)周期函數f(x)的定義域M必定是至少一方無界的集合。
參考資料:周期函數_網路
『柒』 數學周期公式
自己畫圖,設A是擺線與鉛垂線的夾角,擺長L,小球質量m,重力加速度g,則
ma=m*g*sinA
當A很小時(趨於0),sinA約等與A
m*a=m*g*A……(1)
(1)式對應的微分方程是一個二階常微分方程,其解
s=C1*sin[sqrt(g/L)*A+B]+C2
(S表示離中心位置的位移,C1,C2,B,由初始條確定)
所以周期
T=2*pi/(sqrt(g/L))=2*pi*sqrt(l/g)
『捌』 高中數學中函數周期怎麼求
!:f(x+2)=f(x):
f(x+1+1)=-f(x+1)
(2)
然後將(1式)中的f(x+1)=-f(x)帶入(2)的右端,證明這類函數的周期性所用的方法一律是代換法(注意:不是換元法)
過程如下,周期t=2
祝好成績函數的周期性共有六種常用的形式:f(x+1)=-f(x)是其中的一種,可得:
f(x+1+1)=-f(x+1)=-(-f(x))=f(x)
亦即:有條件f(x+1)=-f(x)
(1)用x+1代換式子中的x得
『玖』 周期怎麼算數學公式
f(x+a)=-f(x)周期為2a。證明過程:因為f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
sinx的函數周期公式T=2π,sinx是正弦函數,周期是2π
cosx的函數周期公式T=2π,cosx是餘弦函數,周期2π。
tanx和cotx的函數周期公式T=π,tanx和cotx分別是正切和餘切
secx 和cscx的函數周期公式T=2π,secx和cscx是正割和餘割。
(9)數學周期函數怎麼計算周期擴展閱讀:
y=Asin(wx+b) 周期公式T=2π/w
y=Acos(wx+b) 周期公式T=2π/w
y=Atan(wx+b) 周期公式T=π/w
重要推論:
如果函數f(x)(x∈D)在定義域內有兩條對稱軸x=a,x=b則函數f(x)是周期函數,且周期T=2|b-a|(不一定為最小正周期)。
如果函數f(x)(x∈D)在定義域內有兩個對稱中心A(a,0),B(b,0)則函數f(x)是周期函數,且周期T=2|b-a|(不一定為最小正周期)。
如果函數f(x)(x∈D)在定義域內有一條對稱軸x=a和一個對稱中心B(b, 0)(a≠b),則函數f(x)是周期函數,且周期T=4|b-a|(不一定為最小正周期)。