⑴ 數學的發展史!!!!
中國數學發展史
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」
和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。
宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。
就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。
(三)屬於幾何方面的材料
自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。
中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。
漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。
圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。
在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。
祖沖之所得的結果π=355/133要比歐洲早一千多年。
在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。
中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果.
正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。
(四)屬於三角方面的材料
三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。
劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。
在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。
十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。
在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。
⑵ 數學的起源和演變誰知道哦
非洲東北部的尼羅河流域,孕育了埃及的文化。在公元前3500~3000年間,這里曾建立了一個統一的帝國。
目前我們對古埃及數學的認識,主要源於兩份用僧侶文寫成的紙草書,其一是成書於公元前1850年左右的莫斯科紙草書,另一份是約成書於公元前1650年的蘭德(Rhind)紙草書,又稱阿梅斯(Ahmes)紙草書。阿梅斯紙草書的內容相當豐富,講述了埃及的乘法和除法、單位分數的用法、試位法、求圓面積問題的解和數學在許多實際問題中的應用。
古埃及人使用象形文字,其數字以十進製表示,但並非位值制,而分數還有一套專門的記法。由埃及數系建立起來的算術具有加法特徵,其乘、除法的計算也只是利用連續加倍的方法來完成。古埃及人將所有的分數都化成單位分數(分子為 1的分數之和),在阿梅斯紙草書中,有很大一張分數表,把2/(2n+1)狀分數表示成單位分數之和,如:2/5=1/3+1/15,2/7=1/4+1/28,…,2/97=1/56+1/679+
1/776,等等。
古埃及人已經能解決一些屬於一次方程和最簡單的二次方程的問題,還有一些關於等差數列、等比數列的初步知識。
如果說巴比倫人發展了卓越的算術和代數學,那麼在另一方面,人們一般認為埃及人在幾何學方面要勝過巴比倫人。一種觀點認為尼羅河水每年一次的定期泛濫,淹沒河流兩岸的谷地。大水過後,法老要重新分配土地,長期積累起來的土地測量知識逐漸發展為幾何學。
埃及人能夠計算簡單平面圖形的面積,計算出的圓周率為 3.16049;他們還知道如何計算棱椎、圓椎、圓柱體及半球的體積。其中最驚人的成就在於方棱椎平頭截體體積的計算,他們給出的計算過程與現代的公式相符。
至於在建造金字塔和神殿過程中,大量運用數學知識的事實表明,埃及人已積累了許多實用知識,而有待於上升為系統的理論。
返回
--------------------------------------------------------------------------------
印度數學(Hin mathematics)
印度是世界上文化發達最早的地區之一,印度數學的起源和其它古老民族的數學起源一樣,是在生產實際需要的基礎上產生 的。但是,印度數學的發展也有一個特殊的因素,便是它的數學和歷法一樣,是在婆羅門祭禮的影響下得以充分發展的。再加上 佛教的交流和貿易的往來,印度數學和近東,特別是中國的數學便在互相融合,互相促進中前進。另外,印度數學的發展始終與天文學有密切的關系,數學作品大多刊載於天文學著作中的某些篇章。
《繩法經》屬於古代婆羅門教的經典,可能成書於公元前6世紀,是在數學史上有意義的宗教作品,其中講到拉繩設計祭壇時所體現到的幾何法則,並廣泛地應用了勾股定理。
此後約1000年之中,由於缺少可靠的史料,數學的發展所知甚少。
公元5-12世紀是印度數學的迅速發展時期,其成就在世界數學史上佔有重要地位。在這個時期出現了一些著名的學者,如6世紀的阿利耶波多(第一)( ryabhata),著有《阿利耶波多歷數書》;7世紀的婆羅摩笈多(Brahmagupta ),著有《婆羅摩笈多修訂體系》(Brahma-sphuta-sidd'h nta ),在這本天文學著作中,包括「算術講義」和「不定方程講義 」等數學章節;9世紀摩訶毗羅(Mah vira );12世紀的婆什迦羅(第二)(Bh skara ),著有《天文系統極致》(Siddh nta iromani ),有關數學的重要部份為《麗羅娃提》(Lil vati) )和《演算法本源》(V jaganita)等等。
在印度,整數的十進制值制記數法產生於6世紀以前,用9個數字和表示零的小圓圈,再藉助於位值制便可寫出任何數字。他們由此建立了算術運算,包括整數和分數的四則運演算法則;開平方和開立方的法則等。對於「零」,他們不單是把它看成「一無所有」或空位,還把它當作一個數來參加運算,這是印度算術的一大貢獻。
印度人創造的這套數字和位值記數法在8世紀傳入伊斯蘭世界,被阿拉伯人採用並改進。13世紀初經斐波納契的《算盤書》 流傳到歐洲,逐漸演變成今天廣為利用的1,2,3,4,…,等等,稱為印度-阿拉伯數碼。
印度對代數學做過重大的貢獻。他們用符號進行代數運算,並用縮寫文字表示未知數。他們承認負數和無理數,對負數的四 則運演算法則有具體的描述,並意識到具有實解的二次方程有兩種形式的根。印度人在不定分析中顯示出卓越的能力,他們不滿足於對一個不定方程只求任何一個有理解,而致力於求所有可能的整數解。印度人還計算過算術級數和幾何級數的和,解決過單利 與復利、折扣以及合股之類的商業問題。
印度人的幾何學是憑經驗的,他們不追求邏輯上嚴謹的證明,只注重發展實用的方法,一般與測量相聯系,側重於面積、體積的計算。其貢獻遠遠比不上他們在算術和代數方面的貢獻大。在三角學方面,印度人用半弦(即正弦)代替了希臘人的全弦, 製作正弦表,還證明了一些簡單的三角恆等式等等。他們在三角學所做的研究是十分重要的。
返回
--------------------------------------------------------------------------------
阿拉伯數學[Arabic mathematics]
從九世紀開始,數學發展的中心轉向阿拉伯和中亞細亞。
自從公元七世紀初伊斯蘭教創立後,很快形成了強大的勢力,迅速擴展到阿拉伯半島以外的廣大地區,跨越歐、亞、非三大洲。在這一廣大地區內,阿拉伯文是通用的官方文字,這里所敘述的阿拉伯數學,就是指用阿拉伯語研究的數學。
從八世紀起大約有一個到一個半世紀是阿拉伯數學的翻譯時期,巴格達成為學術中心,建有科學宮、觀象台、圖書館和一個學院。來自各地的學者把希臘、印度和波斯的古典著作大量地譯為阿拉伯文。在翻譯過程中,許多文獻被重新校訂、考證和增補,大量的古代數學遺產獲得了新生。阿拉伯文明和文化在接受外來文化的基礎上,迅速發展起來,直到15世紀還充滿活力。
花拉子米[Al-khowarizmi]是阿拉伯初期最主要的數學家,他編寫了第一本用阿拉伯語在伊斯蘭世界介紹印度數字和記數法的著作。公元十二世紀後,印度數字、十進制值制記數法開始傳入歐洲,又經過幾百年的改革,這種數字成為我們今天使用的印度—阿拉伯數碼。花拉子米的另一名著《ilm al-jabr wa'lmugabalah》[《代數學》]系統地討論了一元二次方程的解法,該種方程的求根公式便是在此書中第一次出現。現代」algebra」[代數學]一詞亦源於書名中出現的」al jabr」。
三角學在阿拉伯數學中佔有重要地位,它的產生與發展和天文學有密切關系。阿拉伯人在印度人和希臘人工作的基礎上發展了三角學。他們引進了幾種新的三角量,揭示了它們的性質和關系,建立了一些重要的三角恆等式。給出了球面三角形和平面三角形的全部解法,製造了許多較精密的三角函數表。其中著名的數學家有:阿爾.巴塔尼[Al-Battani]、阿卜爾.維法[Abu'l-Wefa]、阿爾.比魯尼[Al-Beruni]等。系統而完整地論述三角學的著作是由十三世紀的學者納西爾丁[Nasir ed-din]完成的,該著作使三角學脫離天文學而成為數學的獨立分支,對三角學在歐洲的發展有很大的影響。
在近似計算方面,十五世紀的阿爾.卡西[Al-kashi]在他的《圓周論》中,敘述了圓周率π的計算方法,並得到精確到小數點後16位的圓周率,從而打破祖沖之保持了一千年的記錄。此外,阿爾.卡西在小數方面做過重要工作,亦是我們所知道的以「帕斯卡三角形」形式處理二項式定理的第一位阿拉伯學者。
阿拉伯幾何學的成就低於代數和三角。希臘幾何學嚴密的邏輯論證沒有被阿拉伯人接受。
總的來看,阿拉伯數學較缺少創造性,但當時世界上大多數地方正處於科學上的貧瘠時期,其成績相對顯得較大,值得贊美的是他們充當了世界上大量精神財富的保存者,在黑暗時代過去後,這些精神財富才傳回歐洲。歐洲人主要就是通過他們的譯著才了解古希臘和印度以及中國數學的成就。
返回
--------------------------------------------------------------------------------
日本數學[Mathematics in Japan]
人類從何時才開始定居於日本列島,至今仍無定論。公元四世紀中葉,日本建立了第一個統一的國家。在十世紀以前,日本主要吸收外來的文化。中國、朝鮮和印度的文化對日本都有很大的影響,十世紀以後,真正的日本文化才發展起來。日本數學的繁榮則更晚,是十七世紀以後的事。
日本人把受西方數學影響以前,按自己的特點發展起來的數學叫和算,也算日本傳統數學。十七世紀後期至十九世紀中葉是和算的興盛時期。 和算在中國古代數學的影響下發展起來。公元六世紀始,中國的歷法和數學就直接或間接地[通過朝鮮]傳入日本,日本政府亦多次派留學生到中國唐朝學習數學。到八世紀初,日本已仿照隋唐時期的數學教育制度設立算學博士並採用《周髀算經》、《九章算術》、《孫子算經》、《綴術》等中國古算書作為教材,這是中國數學輸入日本的第一個時期。
十三至十七世紀,是中國數學傳入日本的第二個時期,《楊輝演算法》、《算學啟蒙》、《演算法統宗》等陸續傳入日本,對日本數學的發展有重要的影響。吉田光由的《塵劫記》[1627]使珠算術在日本迅速得到普及,其內容與《演算法統宗》極為相似,只是其中許多例題是根據日本的實際情況編寫的。這時期還有幾本著作是專門介紹和解釋《算學啟蒙》的。 十七世紀初,日本數學家開始寫出自己的著作,如毛利重能的《割算書》[1622]、今村知商的《豎亥錄》[1639]等。到十七世紀末期,通過關孝和等人的工作,逐漸形成了日本數學體系——和算。
關孝和在日本被尊為「算聖」,十七世紀末到十八世紀初,以他為核心形成一個學派[關流],這一學派的主要成就是「點 術」和「圓理」。「點 術」是把由中國傳入的天文術改為筆算,並改進了算式的記法,是和算特有的筆算代數學。「圓理」可看作是和算特有的數學分析。建部賢弘求得弧長的無窮級數表達式,又稱圓理公式。久留島義太推廣了圓理公式,發展了圓理的極數術[極值問題],並在西方數學家之前發現了歐拉函數和行列式展開定理。關氏學派的第四代大師安島直圓深入到微積分領域,提出一種求弧長的方法;又將此法推廣,形成二重積分,求出了兩相交圓柱公共部份的體積。晚期的關氏學派數學家和田寧進一步改進了圓理,使計算弧長、面積、體積等問題更加簡化,他使用的方法和現在積分法的原理相近。
除了關氏學派外,還有一些較小的學派。他們總結了和算中的各種幾何問題;深入研究了計算橢圓、球面等面積和體積的公式;探討了代數方程理論等等。 十九世紀中葉,日本政府採取了開國政策,西方數學大量傳入。明治維新時期,日本政府實行「和算廢止,洋算專用」政策,和算迅速衰廢[只有珠算沿用至今],同時開始了近代數學的研究。時至今日,日本已步入世界上數學研究先進國家的行列。
⑶ 數學的來歷
數學」一詞是來自希臘語,字面意思有學習、科學之意。它起源於人類早期的生產活動,其基本概念的精煉早在古埃及、美索不達米亞及古印度就已經出現。
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」)。
向左轉|向右轉
(3)數學是怎麼從甲骨文到現在的擴展閱讀:
發展
一、商周數學
大約4000年前夏朝的建立,標志著中國進入了奴隸社會。隨著社會的發展,商代出現了比較成熟的文字---甲骨文,西周則演變為金文,即刻在青銅器上的銘文。
二、秋戰國時代的數學
春秋戰國時代,中國正經歷著由奴隸社會到封建社會的巨大變革,學術思想十分活躍.這一時期形成的諸子百家,對科學文化影響極大。數學園地更是生機盎然,朝氣勃勃。
四、周髀算經
《周髀》是西漢初期的一部天文、數學著作。髀是量日影的標桿(亦稱表),因書中記載了不少周代的天文知識,故名《周髀》。唐初鳳選定數學課本時,取名《周髀算經》。
⑷ 誰知道數學的發展歷史
中國古代數學的成就與衰落
數學在中國歷史久矣。在殷墟出土的甲骨文中有一些是記錄數字的文字,包括從一至十,以及百、千、萬,最大的數字為三萬;司馬遷的史記提到大禹治水使用了規、矩、准、繩等作圖和測量工具,而且知道「勾三股四弦五」;據說《易經》還包含組合數學與二進制思想。2002年在湖南發掘的秦代古墓中,考古人員發現了距今大約2200多年的九九乘法表,與現代小學生使用的乘法口訣「小九九」十分相似。
算籌是中國古代的計算工具,它在春秋時期已經很普遍;使用算籌進行計算稱為籌算。中國古代數學的最大特點是建立在籌算基礎之上,這與西方及阿拉伯數學是明顯不同的。
但是,真正意義上的中國古代數學體系形成於自西漢至南北朝的三、四百年期間。《算數書》成書於西漢初年,是傳世的中國最早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。
《九章算術》標志以籌算為基礎的中國古代數學體系的正式形成。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。
趙爽是三國時期吳人,在中國歷史上他是最早對數學定理和公式進行證明的數學家之一,其學術成就體現於對《周髀算經》的闡釋。在《勾股圓方圖注》中,他還用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。另外,《海島算經》也是劉徽編撰的一部數學論著。
南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。
祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。
隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。
秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。
明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。
由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》〔2卷〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷〕是介紹西方三角學的著作。
此外在數學方面鮮有較大成就取得,中國古代數學自此便衰落了。
http://www.hanhuncn.com/Html/Clwm/20060417212251123.html
⑸ 數學的來歷~-~
矩,在甲骨文中已產生一套十進制數字和記數法,而且每年還增加超過七萬五千份的細目,又稱算學,後來才改為數學。
編輯本段歷史
奇普。由於生活和勞動上的需求。據《史記·夏本紀》記載,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικό。數學對這些領域的應用通常被稱為應用數學。其基本概念的精煉早在古埃及。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展;θημα(máthēma),可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα
μαθηματικά。名家認為經過抽象以後的名詞概念與它們原來的實體不同、結構、變化以及空間模型等概念的一門學科,並使兩者都得到好處?wtp=tt"
target="_blank">http://ke..com/view/1284.html,不管用年、月、日還是用時、分、秒來量度
⑹ 數字的演變歷史
我國古代也很重視記數符號,最古老的甲骨文和鍾鼎中都有記數的符號,不過難寫難認,後人沒有沿用。到春秋戰國時期,生產迅速發展,適應這一需要,我們的祖先創造了一種十分重要的計算方法--籌算。籌算用的算籌是竹製的小棍,
也有骨制的。按規定的橫豎長短順序擺好,就可用來記數和進行運算。隨著籌算的普及,算籌的擺法也就成為記數的符號了。算籌擺法有橫縱兩式,都能表示同樣的數字。
從算籌數碼中沒有"10"這個數可以清楚地看出,籌算從一開始就嚴格遵循十位進制。9位以上的數就要進一位。同一個數字放在百位上就是幾百,放在萬位上就是幾萬。這樣的計演算法在當時是很先進的。因為在世界的其他地方真正使用十進位制時已到了公元6世紀末。
但籌算數碼中開始沒有"零",遇到"零"就空位。比如"6708",就可以表示為"┴ ╥ "。數字中沒有"零",是很容易發生錯誤的。
所以後來有人把銅錢擺在空位上,以免弄錯,這或許與"零"的出現有關。不過多數人認為,"0"這一數學符號的發明應歸功於公元6世紀的印度人。他們最早用黑點(·)表示零,後來逐漸變成了"0"。說起"0"的出現,應該指出,我國古代文字中,"零"字出現很早。不過那時它不表示"空無所有",而只表示"零碎"、"不多"的意思。如"零頭"、"零星"、"零丁"。"一百零五"的意思是:
在一百之外,還有一個零頭五。隨著阿拉數字的引進。"105"恰恰讀作"一百零五","零"字與"0"恰好對應,"零"也就具有了"0"的含義。
(6)數學是怎麼從甲骨文到現在的擴展閱讀
公元7世紀,團結在伊斯蘭教下的阿拉伯人征服了周圍的民族,建立了東起印度,西經非洲到西班牙的撒拉孫大帝國。後來,這個伊斯蘭大帝國分裂成東、西兩個國家。
由於這兩個國家的各代君王都鼓勵文化和藝術,所以兩國的首都非常繁榮,特別繁榮的是東都——巴格達,這里產生了獨特的阿拉伯文化。
公元751年,有一位印度的天文學家拜訪巴格達王宮,他帶來了印度製作的天文表,並把它獻給了當時的國王。
印度數字以及印度式的計算方法(即我們現在用的計演算法)也正是這個時候介紹給阿拉伯人的。由於印度數字和印度計演算法既簡單又方便,它的優點遠遠超過其他的計演算法,所以很快由阿拉伯人廣泛傳播到歐洲各國。在印度產生的數字被稱為「阿拉伯數字」的原因就在於此。
⑺ 數學的由來是
數學的由來:
1、從人類的角度:
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
2、從時間的角度:
數學起源於公元前4世紀。公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。
數學的發展史:
1、從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」
2、直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」
3、在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」
4、從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」
5、現代數學已包括多個分支,數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等。數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。
⑻ 數學是怎麼產生的,它的發展歷史是什麼
產生:數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題
數學的發展史大致可以分為四個時期。
1、第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
2、第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
3、第三時期
變數數學時期。變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。
4、第四時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
(8)數學是怎麼從甲骨文到現在的擴展閱讀:
發展過程中研究出的數學成果:
1、李氏恆定式
數學家李善蘭在級數求和方面的研究成果,在國際上被命名為李氏恆定式。
2、華氏定理
華氏定理是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。
⑼ 數學起源於哪裡
數學起源於公元前4世紀。公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。
從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)
直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」
從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」
學數學意義
學數學的意義就是不光會做老師們純粹為了考大家的題目,更重要的是把這些討厭的問題變成人人都喜聞樂見的實際性成果,數學家們是默默無聞卻強大無比的歷史推進者!
掌握數字規律,訓練邏輯思維,能訓練人們的思維能力.開發腦力.更理性的去認識這個世界.數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題 掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學.意義深遠!
⑽ 數學的來歷 50字
數學」一詞是來自希臘語,字面意思有學習、科學之意。它起源於人類早期的生產活動,其基本概念的精煉早在古埃及、美索不達米亞及古印度就已經出現。
人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支。
(10)數學是怎麼從甲骨文到現在的擴展閱讀:
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統。
把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。
代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法。