⑴ 數學趣題及答案
1.小華的爸爸1分鍾可以剪好5隻自己的指甲。他在5分鍾內可以剪好幾只自己的指甲?
2.小華帶50元錢去商店買一個價值38元的小汽車,但售貨員只找給他2元錢,這是為什麼?
3.小軍說:「我昨天去釣魚,釣了一條無尾魚,兩條無頭的魚,三條半截的魚。你猜我一共釣了幾條魚?」同學們猜猜小軍一共釣了幾條魚?
4.6匹馬拉著一架大車跑了6里,每匹馬跑了多少里?6匹馬一共跑了多少里?
5.一隻綁在樹幹上的小狗,貪吃地上的一根骨頭,但繩子不夠長,差了5厘米。你能教小狗用什麼辦法抓著骨頭呢?
6.王某從甲地去乙地,1分鍾後,李某從乙地去甲地。當王某和李某在途中相遇時,哪一位離甲地較遠一些?
7.時鍾剛敲了13下,你現在應該怎麼做?
8.在廣闊的草地上,有一頭牛在吃草。這頭牛一年才吃了草地上一半的草。問,它要把草地上的草全部吃光,需要幾年?
9.媽媽有7塊糖,想平均分給三個孩子,但又不願把餘下的糖切開,媽媽怎麼辦好呢?
10.公園的路旁有一排樹,每棵樹之間相隔3米,請問第一棵樹和第六棵樹之間相隔多少米?
11.把8按下面方法分成兩半,每半各是多少?算術法平均分是____,從中間橫著分是____,從中間豎著分是____。
12.一個房子4個角,一個角有一隻貓,每隻貓前面有3隻貓,請問房裡共有幾只貓?
13.一個房子4個角,一個角有一隻貓,每隻貓前面有4隻貓,請問房裡共有幾只貓?
14.小軍、小紅、小平3個人下棋,總共下了3盤。問他們各下了幾盤棋?(每盤棋是兩個人下的)
15.小明和小華每人有一包糖,但是不知道每包里有幾塊。只知道小明給了小華8塊後,小華又給了小明14塊,這時兩人包里的糖的塊數正好同樣多。同學們,你說原來誰的糖多?多幾塊?
答案:
1.20隻,包括手指甲和腳指甲
2.因為他付給售貨員40元,所以只找給他2元;
3.0條,因為他釣的魚是不存在的;
4.6里,36里;
5.只要教小狗轉過身子用後腳抓骨頭,就行了。
6.他們相遇時,是在同一地方,所以兩人離甲地同樣遠;
7.應該修理時鍾;
8.它永遠不會把草吃光,因為草會不斷生長;
9.媽媽先吃一塊,再分給每個孩子兩塊;
10.15米;
11.4,0,3。
12.4隻;
13.5隻;
14.2盤;
15.原來小華糖多;14-8=6塊,因為多給了6塊兩人糖的塊數正好同樣多,所以原來小華比小明多12塊
⑵ 數學趣題(要有趣!!!!)
1.地鐵車廂並排坐著5個女孩,A坐在離B和離C正好相同距離的位置上,D坐在離A和離C正好相同距離的作為上,E坐在她的親友之間。誰是E的親友?
答案:E坐在A和B之間,A、B是她的親友。
2.某要塞有步兵692人,每4人站一橫排,各排相距1米向前行走1每分鍾走86米。現在要通過長86米的橋,請問第一排上橋到最後一排離橋需要幾分鍾?
答案:3分鍾。
3.一位農民養了9隻羊、7口豬、5頭牛。論價格,2隻羊可換一口豬,5隻羊可換1頭牛。他要把這些牛、羊、豬分給3個兒子,不但沒人分得的家畜頭數要相同,而且價值也要相等。你能想出一個分配方案嗎?
答案:大兒子分1頭牛、5口豬、1隻羊;二兒子分2頭牛、1口豬、4隻羊;三兒子分2頭牛、1口豬、4隻羊。
4.兩輛車相距1500米。假設前面的車以90km/h的速度前進,後面的車以 144km/h的速度追趕,那麼兩輛車在相撞錢一秒鍾相距多遠?
答案:相距15米。
5.有甲、乙兩個公司招聘經理。甲公司年薪10萬元,沒年提薪一次,每次加薪2萬元;乙公司半年薪金5萬元,每半年提薪一次,每次加薪5千元。問去哪個公司掙得的薪水更多?
答案:去乙公司掙得的薪水更多。
6.俄國著名數學家羅蒙諾索夫向鄰居借《數學原理》一書,鄰居對他說:「你幫我劈10天柴,我就把書送給你,另給你20個盧布.」結果他只劈了7天柴。鄰居把書送給他後,另外付了5個盧布。《數學原理》這本書的價格是多少盧布?
答案:書的價格是30盧布 。
7.瓶中裝有濃度15%的酒精1000克,現分別將100克400克的a、b兩種酒精倒入瓶中,則瓶中酒精的濃度變為14%,已知a種酒精的濃度是b種酒精的2倍,求a種酒精的濃度?
答案:20%
⑶ 有哪些數學趣題
智力題,考智商.一共多少個方塊?
16+9+4+5+5+1=40(個)
考考大家: 這是一道可以測出一個人有沒有商業頭腦的數學題。王師傅是賣魚的,一斤魚進價45元,現虧本大甩賣,顧客35元買了一公斤,給了王師傅100元假錢,王師傅沒零錢,於是找鄰居換了100元。事後鄰居存錢過程中發現錢是假的,被銀行沒收了,王師傅又賠了鄰居100元,請問王師傅一共虧了多少?
注意:斤與公斤的區別
一共虧了100+(45×2-35)=100+55=155元
⑷ 數學趣味題有哪些
1科學家設計了一隻怪鍾,這只怪鍾一晝夜20小時,每小時50分針。有一天,小亮睡覺時正好0點整,他希望第二天早上標准時間6點起床,他應該把這只鍾定在什麼時刻,才能被按時叫醒?
2現在是環法自行車的最後一個環節,這是讓選手展現自己的最後機會。不一會兒已經有十位選手成功甩掉了隊里的夥伴。他們一個跟著一個,各自來自不同的國家。
挪威人在西班牙人前面。
荷蘭人與法國人中間只有一位選手,荷蘭人在前面。
葡萄牙人和義大利人之間有兩位選手,其中一問來自德國,葡萄牙人在前面。
比利時人與德國人之間有三位選手,比利時人在前面。
盧森堡人與瑞典人之間有四位選手,其中一問來自義大利,盧森堡人在前面。
十位中哪一位是領頭羊。
⑸ 求20道數學趣題,帶答案!最好是初一難度的!
有人編寫了一個程序, 從1開始, 交替做乘法或加法, (第一次可以是加法,也可以是乘法), 每次加法, 將上次運算結果加2或是加3;每次乘法,將上次運算結果乘2或乘3, 例如30, 可以這樣得到: 1 +3 =4*2=8+2=10*3=30,請問怎樣可以得到:2的100次+2的97次-2
解答:1+3=4+2=2的3次-2=2的3次+2-2=(2的3次+2-2)*2=……==2的100次+2的97次-2的97次=2的100次+2的97次-2的97次+2=2的100次+2的97次-2的97次+2+2=……=2的100次+2的97次-2
2.下詩出於清朝數學家徐子雲的著作,請算出詩中有多少僧人?
巍巍古寺在雲中,不知寺內多少僧。
三百六十四隻碗,看看用盡不差爭。
三人共食一隻碗,四人共吃一碗羹。
請問先生明算者,算來寺內幾多僧?
解答:三人共食一隻碗:則吃飯時一人用三分之一個碗,
四人共吃一碗羹:則吃羹時一人用四分之一個碗,
兩項合計,則每人用1/3+1/4=7/12個碗,
設共有和尚X人,依題意得:
7/12X=364
解之得,X=624
3.兩個男孩各騎一輛自行車,從相距2O英里(1英里合1.6093千米)的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一隻蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉嚮往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。如果每輛自行車都以每小時1O英里的等速前進,蒼蠅以每小時15英里的等速飛行,那麼,蒼蠅總共飛行了多少英里?
解答:每輛自行車運動的速度是每小時10英里,兩者將在1小時後相遇於2O英里距離的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。
4.《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下: 令有雉(雞)兔同籠,上有三十五頭,下有九十四足。問雄、兔各幾何?
解答:設x為雉數,y為兔數,則有
x+y=b, 2x+4y=a
解之得:y=b/2-a,
x=a-(b/2-a)
根據這組公式很容易得出原題的答案:兔12隻,雉22隻。
5.我們大家一起來試營一家有80間套房的旅館,看看知識如何轉化為財富。
經調查得知,若我們把每日租金定價為160元,則可客滿;而租金每漲20元,就會失去3位客人。 每間住了人的客房每日所需服務、維修等項支出共計40元。
問題:我們該如何定價才能賺最多的錢?
解答:日租金360元。
雖然比客滿價高出200元,因此失去30位客人,但餘下的50位客人還是能給我們帶來360*50=18000元的收入; 扣除50間房的支出40*50=2000元,每日凈賺16000元。而客滿時凈利潤只有160*80-40*80=9600元。
6. 數學家維納的年齡:我今年歲數的立方是個四位數,歲數的四次方是個六位數,這兩個數,剛好把十個數字0、1、2、3、4、5、6、7、8、9全都用上了,維納的年齡是多少?
解答:設維納的年齡是x,首先歲數的立方是四位數,這確定了一個范圍。10的立方是1000,20的立方是8000,21的立方是9261,是四位數;22的立方是10648;所以10=<x<=21 x四次方是個六位數,10的四次方是10000,離六位數差遠啦,15的四次方是50625還不是六位數,17的四次方是83521也不是六位數。18的四次方是104976是六位數。20的四次方是160000;21的四次方是194481; 綜合上述,得18=<x<=21,那隻可能是18,19,20,21四個數中的一個數;因為這兩個數剛好把十個數字0、1、2、3、4、5、6、7、8、9全都用上了,四位數和六位數正好用了十個數字,所以四位數和六位數中沒有重復數字,現在來一一驗證,20的立方是80000,有重復;21的四次方是194481,也有重復;19的四次方是130321;也有重復;18的立方是5832,18的四次方是104976,都沒有重復。 所以,維納的年齡應是18。
7.把1,2,3,4……1986,1987這1987個自然數均勻排成一個大圓圈,從1開始數:隔過1劃2,3;隔過4劃掉5,6,這樣每隔一個數劃掉兩個數,轉圈劃下去,問:最後剩下哪個數。
解答:663
8.在一幅長90厘米,寬40厘米的風景畫的四周外圍向上一條寬度相同的金色紙邊,製成一幅掛圖,如果要求風景畫的面積是整個掛圖面積的百分之72,那麼金色紙邊的寬應為多少?
解答:根據題意有(90+2X)(40+2X)*72%=90*40
(90+2X)(40+2X)=3600/0.72
3600+180X+80X+4X2=5000
4X2+260X-1400=0
(4X-20)(X+70)=0
得 4x-20=0 X+70=0
4*x=20 X=5
X=-70 不成立
所以X=5CM
9.用黑白兩種顏色的皮塊縫制而成的足球,黑色皮塊是正五邊形,白色皮塊是正六邊形,若一個球上共有黑白皮塊32塊,請計算,黑色皮塊和白色皮塊的塊數
解答:等量關系:
白色皮塊中與黑色皮塊中共用的邊數=黑色皮塊中與白色皮塊共用的邊數
設:有白色皮塊x
3x=5(32-x)
解得 x=20
10.抽屜中有十隻相同的黑襪子和十隻相同的白襪子,假若你在黑暗中打開抽屜,伸手拿出襪子,請問至少要拿出幾只襪子,才能確定拿到了一雙?
解答:3
11.小趙,小錢,小孫,小李4人討論一場足球賽決賽究竟是哪個隊奪冠。小趙說:「D對必敗,而C隊能勝。」小錢說:「A隊,C隊勝於B隊敗會同時出現。」小孫說:「A隊,B隊C隊都能勝。」小李說:「A隊敗,C隊,D隊勝的局面明顯。」
他們的話中已說中了哪個隊取勝,請問你猜對究竟哪個隊奪冠嗎?
解答:小趙,小錢,小孫,小李4人討論一場足球賽決賽究竟是哪個隊奪冠。小趙說:「D對必敗,而C隊能勝。」小錢說:「A隊,C隊勝與B隊敗會同時出現。」小孫說:「A隊,B隊C隊都能勝。」小李說:「A隊敗,C隊,D隊勝的局面明顯。」
小趙的話說明 D隊敗
小錢的話說明 B隊敗
小孫的話說明 D隊敗
小李的話說明 A隊敗
所以,C隊勝利
12.如果長度為a,b,c的三條線段能夠成三角形,那麽線段根號a,根號b,根號c是否能夠成三角形?
如果一定能構成或一定不能構成,請證明
如果不一定能夠,請舉例說明.
解答:可以。
不妨假設a最小,c最大,那麼abc構成三角形的充要條件就是a+b>c;
這時√a+√b與√c比較,其實就是a+b+2√ab與c比較(兩邊平方),a+b已經大於c了,那麼顯然可以構成三角形。
13.有一位農民遇見魔鬼,魔鬼說:"我有一個主意,可以讓你發財!只要你從我身後這座橋走過去,你的錢就會增加一倍,走回來又會增加一倍,每過一次橋,你的錢都能增加一倍,不過你必須保證每次在你的錢數加倍後要給我a個鋼板,農民大喜,馬上過橋,三次過橋後,口袋剛好只有a個鋼板,付給魔鬼,分文不剩,請有含a的單項式表示農民最初口袋裡的鋼板數。
解答:設最初錢數為x
2[2(2x-a)-a]-a=0
解方程得x=7a/8
14.三個同學放學回家,途中見到一輛黃色汽車,等他們再往前走時,聽說那輛車撞傷一位老人後竟然逃之夭夭.可是誰也沒記下這輛汽車的車牌號.警察詢問這三個中學生時,他們都說車牌號是一個四位數.其中一個記得這個號碼的前兩位相同,另一個記得這個號碼的後兩位數字相同,第三個記得這個四位數恰好是完全平方數,你能確定這輛肇事汽車的車牌號嗎
解答:四位數可以表示成
a×1000+a×100+b×10+b
=a×1100+b×11
=11×(a×100+b)
因為a×100+b必須被11整除,所以a+b=11,帶入上式得
四位數=11×(a×100+(11-a))
=11×(a×99+11)
=11×11×(9a+1)
只要9a+1是完全平方數就行了。
由a=2、3、4、5、6、7、8、9驗證得,
9a+1=19、28、27、46、55、64、73。
所以只有a=7一個解;b=4。
因此四位數是7744=11^2×8^2=88×88
15.已知1加3等於4等於2的2次方,1加3加5等於9等於3的2次方,1加3加5加7=16等於4的2次方,1加3加5加7加9等於25等於5的2次方,等......
<1>仿照上例,計算1加2加3加5加7加...加99等於?
<2>根據上面規律,請用自然數n(n大於等於1)表示一般規律。
解答:<1>1+3+5+...+99=50的平方
<2>1+3+5+...+n=[(n-1)/2+1]的平方
16.有一次,一隻貓抓了20隻老鼠,排成一列。貓宣布了它的決定:首先將站在奇數位上的老鼠吃掉,接著將剩下的老師重新按1、2、3、4…編號,再吃掉所有站在奇數位上的老鼠。如此重復,最後剩下的一隻老鼠將被放生。一隻聰明的老鼠聽了,馬上選了一個位置,最後剩下的果然是它,貓將它放走了!
你知道這只聰明的小老鼠站的是第幾個位置嗎?
解答:排在第16個。第1次能被2整除的剩下了,第2次能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)整除的剩下了,第4次能被16(2的4次方)整除的剩下了,所以只有第16個不會被吃掉。
17.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)
解答:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)
=(1-1/2-1/3)+(1/2-1/3-1/4)+(1/3-1/4-1/5)+......1/98-1/99-1/100
=1-1/100
=99/100
備註:1/(1*2*3)=1-1/2-1/3
18.小偉和小明交流暑假中的活動情況,小偉說:「我參加了科技夏令營,外出一個星期,這七天的日期數之和是84,你知道我是幾號出發的嗎?」小明說:「我假期到舅舅家住了七天,日期數的和再加月份數也是84,你能猜出我是幾月幾號回家的嗎?
解答:第一題:設出發那天為X號
X+X+1+X+2+X+3+X+4+X+5+X+6=84
X=9
小偉是9號出發的。
第二題:因為是暑假裡的活動,所以只能是7或者8月份
設回來那天為X號
列示為
7+X+X-1+X-2+X-3+X-4+X-5+X-6=84
或者
8+X+X-1+X-2+X-3+X-4+X-5+X-6=84
第一式解出X=14
第二式結果不為整數
所以只能是7月14號到家
19.某校初一有甲、乙、丙三個班,甲班比乙班多4個女生,乙班比丙班多1個女生,如果將甲班的第一組同學調入乙班,同時將乙班的第一組同學調入丙班,同時將丙班的第一組同學調入甲班,則三個班的女生人數恰好相等。已知丙班第一組有2名女生,問甲、乙兩班第一組各有多少女生?
解答:設甲乙兩班第一組的女生分別有m和n個 丙班女生有x個乙班就有x+1個,甲班就有x+5個 平均x+2個 (利用改變數來計算)丙班:-2+n=(x+2)-x
甲班:+2-m=(x+2)-(x+5) 可以得出 m=5 n=4
20.有一水庫,在單位時間內有一定量的水流量,同時也向外放水。按現在的放水量,水庫中的水可使用40天。因最近庫區降雨,使流入水庫的水量增加20%,如果放水量也增加10%,那麼仍可使用40天。問:如果按原來的放水量放水,可使用多少天?
解答: 設水庫總水量為x 一天的進水量和出水量分別為m和n
則有x/(n-m)=40=x/[n(1+10%)-m(1+20%)] 要求x/[n-m(1+20%)]
可以先化簡得n=2m x=40m 帶入第二個式子即可得到x=50天
⑹ 給我幾個數學趣題,要答案~~~急
1.小華的爸爸1分鍾可以剪好5隻自己的指甲。他在5分鍾內可以剪好幾只自己的指甲?
2.小華帶50元錢去商店買一個價值38元的小汽車,但售貨員只找給他2元錢,這是為什麼?
3.小軍說:「我昨天去釣魚,釣了一條無尾魚,兩條無頭的魚,三條半截的魚。你猜我一共釣了幾條魚?」同學們猜猜小軍一共釣了幾條魚?
4.6匹馬拉著一架大車跑了6里,每匹馬跑了多少里?6匹馬一共跑了多少里?
5.一隻綁在樹幹上的小狗,貪吃地上的一根骨頭,但繩子不夠長,差了5厘米。你能教小狗用什麼辦法抓著骨頭呢?
6.王某從甲地去乙地,1分鍾後,李某從乙地去甲地。當王某和李某在途中相遇時,哪一位離甲地較遠一些?
7.時鍾剛敲了13下,你現在應該怎麼做?
8.在廣闊的草地上,有一頭牛在吃草。這頭牛一年才吃了草地上一半的草。問,它要把草地上的草全部吃光,需要幾年?
9.媽媽有7塊糖,想平均分給三個孩子,但又不願把餘下的糖切開,媽媽怎麼辦好呢?
10.公園的路旁有一排樹,每棵樹之間相隔3米,請問第一棵樹和第六棵樹之間相隔多少米?
11.把8按下面方法分成兩半,每半各是多少?算術法平均分是____,從中間橫著分是____,從中間豎著分是____。
12.一個房子4個角,一個角有一隻貓,每隻貓前面有3隻貓,請問房裡共有幾只貓?
13.一個房子4個角,一個角有一隻貓,每隻貓前面有4隻貓,請問房裡共有幾只貓?
14.小軍、小紅、小平3個人下棋,總共下了3盤。問他們各下了幾盤棋?(每盤棋是兩個人下的)
15.小明和小華每人有一包糖,但是不知道每包里有幾塊。只知道小明給了小華8塊後,小華又給了小明14塊,這時兩人包里的糖的塊數正好同樣多。同學們,你說原來誰的糖多?多幾塊?
答案:
1.20隻,包括手指甲和腳指甲
2.因為他付給售貨員40元,所以只找給他2元;
3.0條,因為他釣的魚是不存在的;
4.6里,36里;
5.只要教小狗轉過身子用後腳抓骨頭,就行了。
6.他們相遇時,是在同一地方,所以兩人離甲地同樣遠;
7.應該修理時鍾;
8.它永遠不會把草吃光,因為草會不斷生長;
9.媽媽先吃一塊,再分給每個孩子兩塊;
10.15米;
11.4,0,3。
12.4隻;
13.5隻;
14.2盤;
15.原來小華糖多;14-8=6塊,因為多給了6塊兩人糖的塊數正好同樣多,所以原來小華比小明多12塊。
望採納
⑺ 和數學有關的趣味題
你好,很高興為你解答:
1. 你參加賽跑追過第2名,你是第幾名?
你如果追過第2名,你只是取代那個人的位置,這時你是第2名。
2. 你參加賽跑,你追過最後一名,你是第幾名?
在比賽中,你怎能追過最後一名,所以你不會是倒數第二名,如果是長跑的話,你已經領先了最後一名至少一圈以上。
3. 心算題:以1000加上40,再加上1000,再加30,再加1000,現在加上20,再加上1000,現在加上10,總數是什麼?
很多人會把答案誤算為5100.其實正確答案是4100。不信的話自己用計算器算一遍。
4. 假如1=4 2=8 3=16 4=?
因為1=4,所以4=1。
5. 教室里有9盞燈,關掉了3盞,還剩下幾盞?
題目問的事還剩下幾盞燈,並不是問還剩下幾盞燈亮著,所以原來有9盞,現在還有9盞。
6. 桌面上點燃了8支蠟燭,吹滅了5支,最後還剩下幾只?
沒吹滅的最後都燃燒完了,吹滅的5支最後剩了下來。
7. 三個人三天喝三瓶水,九個人九天喝多少瓶?
三個人三天喝三瓶水,即一個人一天喝1/3瓶水,九個人九天即喝1/3*9*9=27瓶水。
8. 被減數、減數喝差三個值相加的總和為16,被減數的值為多少?
因為被減數-減數=差,即被減數=差+減數,被減數剛好是三個值之和(16)的一半,所以被減數=8。
9. 蒸1個包子3分鍾,蒸5個包子要多少分鍾?
通常包子是一起蒸的,蒸五個包子與蒸一個包子的時間是一樣的,都是三分鍾。
10. 7隻小羊捉迷藏,已經找到3隻,還有幾只沒找到?
在捉迷藏的游戲中,因為有一隻小羊負責尋找其他6隻小羊,已經找到了3隻,所以還有3隻沒找到。
⑻ 有哪些數學趣題要快!!!
有3個人去投宿,一晚30元.三個人每人掏了10元湊夠30元交給了老闆. 後來老闆說今天優惠只要25元就夠了,拿出5元命令服務生退還給他們, 服務生偷偷藏起了2元, 然後,把剩下的3元錢分給了那三個人,每人分到1元.這樣,一開始每人掏了10元,現在又退回1元,也就是10-1=9,每人只花了9元錢, 3個人每人9元,3 X 9 = 27 元 + 服務生藏起的2元=29元,還有一元錢去了哪裡?
這是典型的誤導題,三人住店的成本是27元,這27元包括25元住宿費(老闆手裡)+2元服務生貪污的,還有找會的3元,一共是30元。
小明和小強都是張老師的學生,張老師的生日是M月N日,2人都知道張老師的生日
是下列10組中的一天,張老師把M值告訴了小明,把N值告訴了小強,張老師問他們知道他的生日是那一天嗎?
3月4日 3月5日 3月8日
6月4日 6月7日
9月1日 9月5日
12月1日 12月2日 12月8日
小明說:如果我不知道的話,小強肯定也不知道
小強說:本來我也不知道,但是現在我知道了
小明說:哦,那我也知道了
請根據以上對話推斷出張老師的生日是哪一天
答案是:9月1日。
相關的推理:
1.小明說:「如果我不知道的話,小強肯定也不知道」。
這句話的潛台詞實際上是:「我應該猜對了,如果我猜錯的話,小強肯定不知道」。但小明還是不確定自己究竟猜對沒,需要小強來印證。M取什麼值能讓小明這么說呢?顯然6和12不可取,如果M為6或12,N就有可能是2或7——小強憑2或7一個數字就能得知張老師的生日。則M只可能是3或9,而N只能在1、4、5、8中取值。
如果M是3,N可以取三種值,結果成了「如果小明不知道,小強有可能知道(2-4,3-8),也有可能不知道(3-5)。」,在這種情況下,小明說「如果我不知道的話,小強肯定也不知道」是不符合事實的,小明不足以如此自信的這樣說。
如果M是9,則小明就知道N只能是1或者5。此時,小明的猜測正是N=1,而N究竟是不是1,小明也不確信,如果N不是1而是5,則就出現了小明說的「如果我不知道的話,小強肯定也不知道」。至此,實際上小明已經知道了,結果只有兩種情況,只等小強來確認N是不是5。
2.小強說:「本來我也不知道,但是現在我知道了」。
小強說「本來我也不知道」,驗證了N確實不是2或者7;同時,小強也知道了「M不是6或12,M只剩下3和9可取」。若N是5,則小強應該說「本來我也不知道,現在我還是不知道」。根據第一節的推斷,N=1,所以小強才能說「本來我也不知道,但是現在我知道了」。
3.小明說:「那我也知道了」
小明就等著小強的一句話了,不管小強怎麼回答,小明都會知道正確答案。如果小強說「我還是不知道」,那麼小明依然可以知道「只有N=5會讓小強茫然」,因此答案是9月5日;如果小強說「我知道了」,那麼就必然是9月1日。
其實,自始至終,小明都是明白的,他只需要小強說句話驗證他的猜測,對小明而言,是個非A即B的選擇題。因此,按照題目本身的故事發展線索,小明的第三句話是可以不用的,很多人推導的時候卻用上了這個條件——那樣就有點像做數學題了。
一天,一個顧客到老張的玩具店,看中了一隻玩具青蛙,零售價格是23元(成本是16元),便拿出一張100元的鈔票給老張,由於老張沒有零錢找贖,便到街坊處換了100元的零鈔,回來後找了77元給顧客。
後來,街坊說老張的100元是假鈔,老張只好再還回100元給街坊。
老張在這次交易中共損失了多少錢?
93
有12個球,有一個壞了,或輕或重。現在有一個天平,怎樣可以只稱三次而找出壞掉的球
將十二個球編號為1-12。
第一次,先將1-4號放在左邊,5-8號放在右邊。
1.如果右重則壞球在1-8號。
第二次將2-4號拿掉,將6-8號從右邊移到左邊,把9-11號放
在右邊。就是說,把1,6,7,8放在左邊,5,9,10,11放在右邊。
1.如果右重則壞球在沒有被觸動的1,5號。如果是1號,
則它比標准球輕;如果是5號,則它比標准球重。
第三次將1號放在左邊,2號放在右邊。
1.如果右重則1號是壞球且比標准球輕;
2.如果平衡則5號是壞球且比標准球重;
3.這次不可能左重。
2.如果平衡則壞球在被拿掉的2-4號,且比標准球輕。
第三次將2號放在左邊,3號放在右邊。
1.如果右重則2號是壞球且比標准球輕;
2.如果平衡則4號是壞球且比標准球輕;
3.如果左重則3號是壞球且比標准球輕。
3.如果左重則壞球在拿到左邊的6-8號,且比標准球重。
第三次將6號放在左邊,7號放在右邊。
1.如果右重則7號是壞球且比標准球重;
2.如果平衡則8號是壞球且比標准球重;
3.如果左重則6號是壞球且比標准球重。
2.如果天平平衡,則壞球在9-12號。
第二次將1-3號放在左邊,9-11號放在右邊。
1.如果右重則壞球在9-11號且壞球較重。
第三次將9號放在左邊,10號放在右邊。
1.如果右重則10號是壞球且比標准球重;
2.如果平衡則11號是壞球且比標准球重;
3.如果左重則9號是壞球且比標准球重。
2.如果平衡則壞球為12號。
第三次將1號放在左邊,12號放在右邊。
1.如果右重則12號是壞球且比標准球重;
2.這次不可能平衡;
3.如果左重則12號是壞球且比標准球輕。
3.如果左重則壞球在9-11號且壞球較輕。
第三次將9號放在左邊,10號放在右邊。
1.如果右重則9號是壞球且比標准球輕;
2.如果平衡則11號是壞球且比標准球輕;
3.如果左重則10號是壞球且比標准球輕。
3.如果左重則壞球在1-8號。
第二次將2-4號拿掉,將6-8號從右邊移到左邊,把9-11號放
在右邊。就是說,把1,6,7,8放在左邊,5,9,10,11放在右邊。
1.如果右重則壞球在拿到左邊的6-8號,且比標准球輕。
第三次將6號放在左邊,7號放在右邊。
1.如果右重則6號是壞球且比標准球輕;
2.如果平衡則8號是壞球且比標准球輕;
3.如果左重則7號是壞球且比標准球輕。
2.如果平衡則壞球在被拿掉的2-4號,且比標准球重。
第三次將2號放在左邊,3號放在右邊。
1.如果右重則3號是壞球且比標准球重;
2.如果平衡則4號是壞球且比標准球重;
3.如果左重則2號是壞球且比標准球重。
3.如果左重則壞球在沒有被觸動的1,5號。如果是1號,
則它比標准球重;如果是5號,則它比標准球輕。
第三次將1號放在左邊,2號放在右邊。
1.這次不可能右重。
2.如果平衡則5號是壞球且比標准球輕;
3.如果左重則1號是壞球且比標准球重;
夠麻煩的吧。其實裡面有許多情況是對稱的,比如第一次稱時的右重和右輕,只需考慮一種就可以了,另一種完全可以比照執行。我把整個過程寫下來,只是想嚇唬嚇唬大家。
稍微試一下,就可以知道只稱兩次是不可能保證找到壞球的。如果給的是十三個球,以上的解法也基本有效,只是要有個小小的改動,就是在這種情況下,在第一第二次都平衡的時候,第三次還是有可能平衡(就是上面的第2.2.2步),那麼我們可以肯定壞球是13號球,可是我們沒法知道它到底是比標准球輕,還是比標准球重。如果給的是十四個球,我們會發現無論如何也不可能只稱三次,就保證找出壞球。
一個自然而然的問題就是:對於給定的自然數N,我們怎麼來解有N個球的稱球問題?
在下面的討論中,給定任一自然數N,我們要解決以下問題:
⑴找出N球稱球問題所需的最小次數,並證明以上所給的最小次數的確是最小的;
⑵給出最小次數稱球的具體方法;
⑶如果只要求找出壞球而不要求知道壞球的輕重,對N球稱球問題解決以上兩個問題;
還有一個我們並不是那麼感興趣,但是作為副產品的問題是:
⑷如果除了所給的N個球外,另外還給一標准球,解決以上三個問題。
⑼ 數學趣題有哪些
這是一道極其經典的數學趣題《九方集》,放心,絕對不難,但要做出來也絕非易事(近乎不可能)。
九方集
⑽ 流傳已久的數學趣題
7(老頭)*7(手杖)*7(樹杈)*7(竹籃)*7(竹籠)*7(麻雀)=7^6=117649