Ⅰ 數學的來歷(100字)
「數學」的由來
古希臘人在數學中引進了名稱,概念和自我思考,他們很早就開始猜測數學是如何產生的。雖然他們的猜測僅是匆匆記下,但他們幾乎先佔有了猜想這一思考領域。古希臘人隨意記下的東西在19世紀變成了大堆文章,而在20世紀卻變成了令人討厭的陳辭濫調。 在現存的資料中,希羅多德(Herodotus,公元前484--425年)是第一個開始猜想的人。他只談論了幾何學,他對一般的數學概念也許不熟悉,但對土地測量的准確意思很敏感。作為一個人類學家和一個社會歷史學家,希羅多德指出,古希臘的幾何來自古埃及,在古埃及,由於一年一度的洪水淹沒土地,為了租稅的目的,人們經常需要重新丈量土地;他還說:希臘人從巴比倫人那裡學會了日晷儀的使用,以及將一天分成12個時辰。希羅多德的這一發現,受到了肯定和贊揚。認為普通幾何學有一個輝煌開端的推測是膚淺的。
柏拉圖關心數學的各個方面,在他那充滿奇妙幻想的神話故事《費德洛斯篇》中,他說:
故事發生在古埃及的洛克拉丁(區域),在那裡住著一位老神仙,他的名字叫賽斯(Theuth),對於賽斯來說,朱鷺是神鳥,他在朱鷺的幫助下發明了數,計算、幾何學和天文學,還有棋類游戲等。
柏拉圖常常充滿了奇怪的幻想,原因是他不知道自己是否正亞里士多德最後終於用完全概念化的語言談論數學了,即談論統一的、有著自己發展目的的數學。在他的《形而上學》(Meta-physics)第1卷第1章中,亞里士多德說:數學科學或數學藝術源於古埃及,因為在古埃及有一批祭司有空閑自覺地致力於數學研究。亞里士多德所說的是否是事實還值得懷疑,但這並不影響亞里士多德聰慧和敏銳的觀察力。在亞里士多德的書中,提到古埃及僅僅只是為了解決關於以下問題的爭論:1.存在為知識服務的知識,純數學就是一個最佳的例子:2.知識的發展不是由於消費者購物和奢華的需要而產生的。亞里士多德這種「天真」的觀點也許會遭到反對;但卻駁不倒它,因為沒有更令人信服的觀點.
就整體來說,古希臘人企圖創造兩種「科學」的方法論,一種是實體論,而另一種是他們的數學。亞里士多德的邏輯方法大約是介於二者之間的,而亞里士多德自己認為,在一般的意義上講他的方法無論如何只能是一種輔助方法。古希臘的實體論帶有明顯的巴門尼德的「存在」特徵,也受到赫拉克利特「理性」的輕微影響,實體論的特徵僅在以後的斯多葛派和其它希臘作品的翻譯中才表現出來。數學作為一種有效的方法論遠遠地超越了實體論,但不知什麼原因,數學的名字本身並不如「存在」和「理性」那樣響亮和受到肯定。然而,數學名稱的產生和出現,卻反映了古希臘人某些富於創造的特性。下面我們將說明數學這一名詞的來源。
「數學」一詞是來自希臘語,它意味著某種『已學會或被理解的東西』或「已獲得的知識」,甚至意味著「可獲的東西」, 「可學會的東西」,即「通過學習可獲得的知識」,數學名稱的這些意思似乎和梵文中的同根詞意思相同。甚至偉大的辭典編輯人利特雷(E.Littre 也是當時傑出的古典學者),在他編輯的法語字典(1877年)中也收入了「數學」一詞。牛津英語字典沒有參照梵文。公元10世紀的拜占庭希臘字典「Suidas」中,引出了「物理學」、「幾何學」和「算術」的詞條,但沒有直接列出「數學」—詞。
「數學」一詞從表示一般的知識到專門表示數學專業,經歷一個較長的過程,僅在亞里士多德時代,而不是在柏拉圖時代,這一過程才完成。數學名稱的專有化不僅在於其意義深遠,而在於當時古希臘只有「詩歌」一詞的專有化才能與數學名稱的專有化相媲美。「詩歌」原來的意思是「已經製造或完成的某些東西」,「詩歌」一詞的專有化在柏拉圖時代就完成了。而不知是什麼原因辭典編輯或涉及名詞專有化的知識問題從來沒有提到詩歌,也沒有提到詩歌與數學名稱專有化之間奇特的相似性。但數學名稱的專有化確實受到人們的注意。
首先,亞里士多德提出, 「數學」一詞的專門化使用是源於畢達哥拉斯的想法,但沒有任何資料表明對於起源於愛奧尼亞的自然哲學有類似的思考。其次在愛奧尼亞人中,只有泰勒斯(公元前640?--546年)在「純」數學方面的成就是可信的,因為除了第歐根尼·拉爾修(Diogenes Laertius)簡短提到外,這一可信性還有一個較遲的而直接的數學來源,即來源於普羅克洛斯(Proclus)對歐幾里得的評註:但這一可信性不是來源於亞里士多德,盡管他知道泰勒斯是一個「自然哲學家」;也不是來源於早期的希羅多德,盡管他知道塞利斯是一個政治、軍事戰術方面的「愛好者」,甚至還能預報日蝕。以上這些可能有助於解釋為什麼在柏拉圖的體系中,幾乎沒有愛奧尼亞的成份。赫拉克利特(公元前500--?年)有一段名言:「萬物都在運動中,物無常往」, 「人們不可能兩次落進同一條河裡」。這段名言使柏拉圖迷惑了,但赫拉克賴脫卻沒受到柏拉圖給予巴門尼德那樣的尊敬。巴門尼德的實體論,從方法論的角度講,比起赫拉克賴脫的變化論,更是畢達哥拉斯數學的強有力的競爭對手。
對於畢達哥拉斯學派來說,數學是一種「生活的方式」。事實上,從公元2世紀的拉丁作家格利烏斯(Gellius)和公元3世紀的希臘哲學家波菲利(Porphyry)以及公元4世紀的希臘哲學家揚布利科斯(Iamblichus)的某些證詞中看出,似乎畢達哥拉斯學派對於成年人有一個「一般的學位課程」,其中有正式登記者和臨時登記者。臨時成員稱為「旁聽者」,正式成員稱為「數學家」。
這里「數學家」僅僅表示一類成員,而並不是他們精通數學。畢達哥拉斯學派的精神經久不衰。對於那些被阿基米德神奇的發明所深深吸引的人來說,阿基米德是唯一的獨特的數學家,從理論的地位講,牛頓是一個數學家,盡管他也是半個物理學家,一般公眾和新聞記者寧願把愛因斯坦看作數學家,盡管他完全是物理學家。當羅吉爾·培根(Roger Bacon,1214--1292年)通過提倡接近科學的「實體論」,向他所在世紀提出挑戰時,他正將科學放進了一個數學的大框架,盡管他在數學上的造詣是有限的,當笛卡兒(Descartes,1596--1650年)還很年輕時就決心有所創新,於是他確定了「數學萬能論」的名稱和概念。然後萊布尼茨引用了非常類似的概念,並將其變成了以後產生的「符號」邏輯的基礎,而20世紀的「符號」邏輯變成了熱門的數理邏輯。
在18世紀,數學史的先驅作家蒙托克萊(Montucla)說,他已聽說了關於古希臘人首先稱數學為「一般知識」,這一事實有兩種解釋:一種解釋是,數學本身優於其它知識領域;而另一種解釋是,作為一般知識性的學科,數學在修辭學,辯證法,語法和倫理學等等之前就結構完整了。蒙托克萊接受了第二種解釋。他不同意第一種解釋,因為在普羅克洛斯關於歐幾里得的評注中,或在任何古代資料中,都沒有發現適合這種解釋的確證。然而19世紀的語源學家卻傾向於第一種解釋,而20世紀的古典學者卻又偏向第二種解釋。但我們發現這兩種解釋並不矛盾,即很早就有了數學且數學的優越性是無與倫比的。
查看全部6個回答
小學二年級語文輔導 提分輔導精品課程
關注數學的人也在看
小學二年級語文輔導 武漢尖鋒教育,總結歷年考試考綱...
m.whjf.com廣告
數學高中解題技巧 模考不如意..
數學高中解題技巧 ,高考如何快速提高100分,清北學霸的獨門絕技,千萬不要..
xkb.gywnzjy.cn廣告
相關問題全部
關於數學的來歷100字
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),其英語源自於古希臘語的μθημα(máthēma),有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。 還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦被用來指數學。 數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。 (1)數學史上人們稱18世紀為什麼擴展閱讀 基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。 在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」)。 直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分。 現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構、序結構、拓撲結構(鄰域,極限,連通性,維數……)。 參考資料來源:網路-數學
2 瀏覽1001 2019-09-03
數學的來歷100字
數學,其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。
在中國古代,數學叫作算術,又稱算學,最後才改為數學。中國古代的算術是六藝之一(六藝中稱為「數」)。
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明。但也要充分肯定他們對數學所做出的貢獻。
8 瀏覽129
數學的來歷。(100字到200字左右)
我國數學在世界數學發展史上,有它卓越的貢獻。早在遠古時代,人們就用繩結表示事物的多少,在彩陶中繪有大量的直線、三角、圓、方、菱形、五邊形、六邊形等對稱圖案,在房屋遺址的基地上,亦發現幾何圖形,表明遠古的人們在一定程度上已經具有數和形的概念。
在新石器時期的彩陶缽上,有多種刻畫符號,其中丨、、、?、 等,很可能是我國最早的記數符號。產生文字之後,在殷商的甲骨文中出現了記數的專用文字和十進制記數法,並且運用規和矩作為簡單的繪圖和測量工具。《前漢書?律歷志》記載了用竹棍表示數和計算的方法,稱為算籌和籌算。在春秋早期乘法口訣被稱為「九九」歌,已經成為很普通的知識。
春秋戰國時期,學術繁榮,產生了相當精彩和可貴的數學思想;公元前6世紀,已經有了關於簡單體積和比例分配問題的演算法,在《考工記》中記載了分數和角度的資料;到秦始皇時,統一了度量衡,並且基本上採用了十進制的度量單位,在《墨經》中提出了幾何名詞的定義和幾何命題等。《杜忠算術》和《許商算術》是最早的數學專著,但這兩部書都失傳了。至今仍保留的古代數學專著是《算數書》,全書共有60多個小標題、90多個題目,書中內容涉及了整數和分數的四則運算、比例問題、面積和體積問題等、並且含有「合分」、「少廣」等數學思想。
大約公元前1世紀完成了《周髀算經》(書中大部分內容於公元前7到6世紀完成),書中記述了矩的用途、勾股定理及其在測量上的應用,相似直角三角形對應邊成比例的定理、開平方問題、等差級數問題,應用古「四分歷」計算相當復雜的分數運算等,此書為重要的寶貴文獻。
古代數學的著名著作是《九章算術》,大約成書於公元1世紀東漢初年,全書列舉了246個數學問題及解決問題的方法。共有九章:第一章「方田」介紹土地面積的計算、含有正方形、矩形、三角形、梯形、圓、環等面積公式,弓形面積和球形表面積的近似公式,還有分數四則運演算法則、約分、通分、求最大公約數等方法;第二章「粟米」介紹了各種糧食折算的比例問題,及解比例的方法,稱為「今有術」;第三章「衰(Cuǐ)分」介紹了按等級分配物資或按一定標准攤派稅收的比例分配問題、等差數列和等比數列問題等;第四章「少廣」介紹了已知正方形面積或正方體體積,求邊長或棱長的開平方或開立方的方法,已知球的體積求直徑的問題等;第五章「商功」介紹了立體體積計算,包括長方體、稜柱、棱錐、稜台、圓柱、圓錐、圓台、楔形體等體積的計算公式;第六章「均輸」介紹了計算按人口多少、物價高低、路程遠近等條件,合理攤派稅收、民工的正比、反比、復比例、等差級數等問題;第七章「盈不足」介紹了盈虧類問題的演算法;第八章「方程」介紹了一次聯立方程問題,引入了負數的概念,及正負數的加減法則;第九章「勾股」介紹了勾股定理的應用和簡單的測量問題,其後,歷史上著名數學家劉徽、祖沖之、李淳風、賈憲等,都曾經深入研究和注釋過《九章算術》並且提出許多新的概念和新的方法。在諸如勾股定理的證明、重差術、割圓術、圓周率近似值、球的體積公式、二次和三次方程的解法。同餘式和不定方程的解法等方面做出了重要的新貢獻。
我國古代數學專著有《勾股圓方圖注》、《九章算術注》、《孫子算經》、《五經算術》、《綴術》等。特別應該指出的是,劉徽在《九章算術注》中對《九章算術》的大部分數學方法作了嚴密的論證,對於一些數學概念提出了明確的解釋,為中國數學發展奠定了堅實的理論基礎。祖沖之在《綴術》中得出了比劉徽所提出的值更精密的圓周率,成為舉世公認的重大成就。賈憲在《黃帝九章演算法細草》中提出的「開方作法本源」圖和增乘開方法,以及《孫子算經》中的「孫子問題」,《張邱建算經》中的「百雞問題」、珠算盤和珠算術等等,均在世界數學發展史上有深遠影響。
125 瀏覽5915 2017-10-14
數學符號的由來100字
「+」號是由拉丁文「et」(「和」的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文「plu」(「加」的意思)的第一個字母表示加,草為「μ」最後都變成了「+」號。「-」號是從拉丁文「minus」(「減」的意思)演變來的,一開始簡寫為m,再因快速書寫而簡化為「-」了。
也有人說,賣酒的商人用「-」表示酒桶里的酒賣了多少。以後,當把新酒灌入大桶的時候,就在「-」上加一豎,意思是把原線條勾銷,這樣就成了個「+」號。
到了十五世紀,德國數學家魏德美正式確定:「+」用作加號,「-」用作減號。
乘號曾經用過十幾種,現代數學通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:「×」號像拉丁字母「X」,可能引起混淆而加以反對,並贊成用「·」號(事實上點乘在某些情況下亦易與小數點相混淆)。後來他還提出用「∩「表示相乘。這個符號在現代已應用到集合論中了。
到了十八世紀,美國數學家歐德萊確定,把「×」作為乘號。他認為「×」是「+」的旋轉變形,是另一種表示增加的符號。
「÷」最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用「:」表示除或比,另外有人用「-」(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將「÷」作為除號。
平方根號曾經用拉丁文「Radix」(根)的首尾兩個字母合並起來表示,十七世紀初葉,法國數學家笛卡兒在他的《幾何學》中,第一次用「√」表示根號。「√」是由拉丁字線「r」的變形,「 ̄」是括線。
15 瀏覽296 2017-04-27
數學的來歷 50字
數學」一詞是來自希臘語,字面意思有學習、科學之意。它起源於人類早期的生產活動,其基本概念的精煉早在古埃及、美索不達米亞及古印度就已經出現。 人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。 基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。 代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支。 (1)數學史上人們稱18世紀為什麼擴展閱讀: 許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。 此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統。 把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。 代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法。 參考資料:網路——數學
89 瀏覽5984 2018-11-12
76條評論
求神不如拜我__
21
2014-02-16 20:33
我勒個去.......這也算是100字?
回復Ta
相愛的人走了
14
2014-02-09 16:16
我勒個去.......這也算是100字?
回復Ta
求神不如拜我__
9
2014-02-13 16:21
非常謝謝,但是不要太長了,100-150字就夠了。
回復Ta
熱心網友:給你來一萬字的
熱心網友:不用謝數數學的來歷(100字)
數學前面的話
我來答
j801126
LV.8 2017-11-25
「數學」的由來
古希臘人在數學中引進了名稱,概念和自我思考,他們很早就開始猜測數學是如何產生的。雖然他們的猜測僅是匆匆記下,但他們幾乎先佔有了猜想這一思考領域。古希臘人隨意記下的東西在19世紀變成了大堆文章,而在20世紀卻變成了令人討厭的陳辭濫調。 在現存的資料中,希羅多德(Herodotus,公元前484--425年)是第一個開始猜想的人。他只談論了幾何學,他對一般的數學概念也許不熟悉,但對土地測量的准確意思很敏感。作為一個人類學家和一個社會歷史學家,希羅多德指出,古希臘的幾何來自古埃及,在古埃及,由於一年一度的洪水淹沒土地,為了租稅的目的,人們經常需要重新丈量土地;他還說:希臘人從巴比倫人那裡學會了日晷儀的使用,以及將一天分成12個時辰。希羅多德的這一發現,受到了肯定和贊揚。認為普通幾何學有一個輝煌開端的推測是膚淺的。
柏拉圖關心數學的各個方面,在他那充滿奇妙幻想的神話故事《費德洛斯篇》中,他說:
故事發生在古埃及的洛克拉丁(區域),在那裡住著一位老神仙,他的名字叫賽斯(Theuth),對於賽斯來說,朱鷺是神鳥,他在朱鷺的幫助下發明了數,計算、幾何學和天文學,還有棋類游戲等。
柏拉圖常常充滿了奇怪的幻想,原因是他不知道自己是否正亞里士多德最後終於用完全概念化的語言談論數學了,即談論統一的、有著自己發展目的的數學。在他的《形而上學》(Meta-physics)第1卷第1章中,亞里士多德說:數學科學或數學藝術源於古埃及,因為在古埃及有一批祭司有空閑自覺地致力於數學研究。亞里士多德所說的是否是事實還值得懷疑,但這並不影響亞里士多德聰慧和敏銳的觀察力。在亞里士多德的書中,提到古埃及僅僅只是為了解決關於以下問題的爭論:1.存在為知識服務的知識,純數學就是一個最佳的例子:2.知識的發展不是由於消費者購物和奢華的需要而產生的。亞里士多德這種「天真」的觀點也許會遭到反對;但卻駁不倒它,因為沒有更令人信服的觀點.
就整體來說,古希臘人企圖創造兩種「科學」的方法論,一種是實體論,而另一種是他們的數學。亞里士多德的邏輯方法大約是介於二者之間的,而亞里士多德自己認為,在一般的意義上講他的方法無論如何只能是一種輔助方法。古希臘的實體論帶有明顯的巴門尼德的「存在」特徵,也受到赫拉克利特「理性」的輕微影響,實體論的特徵僅在以後的斯多葛派和其它希臘作品的翻譯中才表現出來。數學作為一種有效的方法論遠遠地超越了實體論,但不知什麼原因,數學的名字本身並不如「存在」和「理性」那樣響亮和受到肯定。然而,數學名稱的產生和出現,卻反映了古希臘人某些富於創造的特性。下面我們將說明數學這一名詞的來源。
「數學」一詞是來自希臘語,它意味著某種『已學會或被理解的東西』或「已獲得的知識」,甚至意味著「可獲的東西」, 「可學會的東西」,即「通過學習可獲得的知識」,數學名稱的這些意思似乎和梵文中的同根詞意思相同。甚至偉大的辭典編輯人利特雷(E.Littre 也是當時傑出的古典學者),在他編輯的法語字典(1877年)中也收入了「數學」一詞。牛津英語字典沒有參照梵文。公元10世紀的拜占庭希臘字典「Suidas」中,引出了「物理學」、「幾何學」和「算術」的詞條,但沒有直接列出「數學」—詞。
「數學」一詞從表示一般的知識到專門表示數學專業,經歷一個較長的過程,僅在亞里士多德時代,而不是在柏拉圖時代,這一過程才完成。數學名稱的專有化不僅在於其意義深遠,而在於當時古希臘只有「詩歌」一詞的專有化才能與數學名稱的專有化相媲美。「詩歌」原來的意思是「已經製造或完成的某些東西」,「詩歌」一詞的專有化在柏拉圖時代就完成了。而不知是什麼原因辭典編輯或涉及名詞專有化的知識問題從來沒有提到詩歌,也沒有提到詩歌與數學名稱專有化之間奇特的相似性。但數學名稱的專有化確實受到人們的注意。
首先,亞里士多德提出, 「數學」一詞的專門化使用是源於畢達哥拉斯的想法,但沒有任何資料表明對於起源於愛奧尼亞的自然哲學有類似的思考。其次在愛奧尼亞人中,只有泰勒斯(公元前640?--546年)在「純」數學方面的成就是可信的,因為除了第歐根尼·拉爾修(Diogenes Laertius)簡短提到外,這一可信性還有一個較遲的而直接的數學來源,即來源於普羅克洛斯(Proclus)對歐幾里得的評註:但這一可信性不是來源於亞里士多德,盡管他知道泰勒斯是一個「自然哲學家」;也不是來源於早期的希羅多德,盡管他知道塞利斯是一個政治、軍事戰術方面的「愛好者」,甚至還能預報日蝕。以上這些可能有助於解釋為什麼在柏拉圖的體系中,幾乎沒有愛奧尼亞的成份。赫拉克利特(公元前500--?年)有一段名言:「萬物都在運動中,物無常往」, 「人們不可能兩次落進同一條河裡」。這段名言使柏拉圖迷惑了,但赫拉克賴脫卻沒受到柏拉圖給予巴門尼德那樣的尊敬。巴門尼德的實體論,從方法論的角度講,比起赫拉克賴脫的變化論,更是畢達哥拉斯數學的強有力的競爭對手。
對於畢達哥拉斯學派來說,數學是一種「生活的方式」。事實上,從公元2世紀的拉丁作家格利烏斯(Gellius)和公元3世紀的希臘哲學家波菲利(Porphyry)以及公元4世紀的希臘哲學家揚布利科斯(Iamblichus)的某些證詞中看出,似乎畢達哥拉斯學派對於成年人有一個「一般的學位課程」,其中有正式登記者和臨時登記者。臨時成員稱為「旁聽者」,正式成員稱為「數學家」。
這里「數學家」僅僅表示一類成員,而並不是他們精通數學。畢達哥拉斯學派的精神經久不衰。對於那些被阿基米德神奇的發明所深深吸引的人來說,阿基米德是唯一的獨特的數學家,從理論的地位講,牛頓是一個數學家,盡管他也是半個物理學家,一般公眾和新聞記者寧願把愛因斯坦看作數學家,盡管他完全是物理學家。當羅吉爾·培根(Roger Bacon,1214--1292年)通過提倡接近科學的「實體論」,向他所在世紀提出挑戰時,他正將科學放進了一個數學的大框架,盡管他在數學上的造詣是有限的,當笛卡兒(Descartes,1596--1650年)還很年輕時就決心有所創新,於是他確定了「數學萬能論」的名稱和概念。然後萊布尼茨引用了非常類似的概念,並將其變成了以後產生的「符號」邏輯的基礎,而20世紀的「符號」邏輯變成了熱門的數理邏輯。
在18世紀,數學史的先驅作家蒙托克萊(Montucla)說,他已聽說了關於古希臘人首先稱數
Ⅱ 數學的歷史
數學的歷史
數學是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。
中國古代數學的萌芽
原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。
西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。
商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。
公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。
春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。
戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。
而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。
墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。
名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。
中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。
趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的「勾股圓方圖及注」和「日高圖及注」是十分重要的數學文獻。在「勾股圓方圖及注」中他提出用弦圖證明勾股定理和解勾股形的五個公式;在「日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。
劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行「析理」,才能使數學著作簡明嚴密,利於讀者。他的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率為 157/50和 3927/1250。
劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。
東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恆)原理;提出二次與三次方程的解法等。
據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久;
祖沖之之子祖(日恆)總結了劉徽的有關工作,提出「冪勢既同則積不容異」,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恆)公理。祖(日恆)應用這個公理,解決了劉徽尚未解決的球體積公式。
隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。
唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算學家創立了二次函數的內插法,豐富了中國古代數學的內容。
算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是「珠算」,它繼承了籌算五升十進與位值制的優點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。
唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運算,它既適用於籌算,也適用於珠算。
中國古代數學的繁榮
960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術突飛猛進,火葯、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第一次印刷出版了《算經十書》,1213年鮑擀之又進行翻刻。這些都為數學發展創造了良好的條件。
從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章演算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章演算法》《日用演算法》和《楊輝演算法》,朱世傑的《算學啟蒙》《四元玉鑒》等,很多領域都達到古代數學的高峰,其中一些成就也是當時世界數學的高峰。
從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。楊輝在《九章演算法纂類》中載有賈憲「增乘開平方法」、「增乘開立方法」;在《詳解九章演算法》中載有賈憲的「開方作法本源」圖、「增乘方法求廉草」和用增乘開方法開四次方的例子。根據這些記錄可以確定賈憲已發現二項系數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的帕斯卡三角形早提出600多年。
把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝演算法》中「田畝比類乘除捷法」卷,介紹了原書中22個二次方程和 1個四次方程,後者是用增乘開方法解三次以上的高次方程的最早例子。
秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次數為10)的問題。為了適應增乘開方法的計算程序,奏九韶把常數項規定為負數,把高次方程解法分成各種類型。當方程的根為非整數時,秦九韶採取繼續求根的小數,或用減根變換方程各次冪的系數之和為分母,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多年。
元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在「綴術推星」題、朱世傑在《四元玉鑒》「如象招數」題都提到內插法(他們稱為招差術),朱世傑得到一個四次函數的內插公式。
用天元(相當於x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號,並用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。
從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項傑出的創造。留傳至今,並對這一傑出創造進行系統論述的是朱世傑的《四元玉鑒》。
朱世傑的四元高次聯立方程組表示法是在天元術的基礎上發展起來的,他把常數放在中央,四元的各次冪放在上、下、左、右四個方向上,其他各項放在四個象限中。朱世傑的最大貢獻是提出四元消元法,其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然後應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最後用增乘開方法求解。這是線性方法組解法的重大發展,比西方同類方法早400多年。
勾股形解法在宋元時期有新的發展,朱世傑在《算學啟蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,補充了《九章算術》的不足。李冶在《測圓海鏡》對勾股容圓問題進行了詳細的研究,得到九個容圓公式,大大豐富了中國古代幾何學的內容。
已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解球面直角三角形的問題,傳統歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。
中國古代計算技術改革的高潮也是出現在宋元時期。宋元明的歷史文獻中載有大量這個時期的實用算術書目,其數量遠比唐代為多,改革的主要內容仍是乘除法。與演算法改革的同時,穿珠算盤在北宋可能已出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的演算法和口訣,那麼應該說它最後完成於元代。
宋元數學的繁榮,是社會經濟發展和科學技術發展的必然結果,是傳統數學發展的必然結果。此外,數學家們的科學思想與數學思想也是十分重要的。宋元數學家都在不同程度上反對理學家的象數神秘主義。秦九韶雖曾主張數學與道學同出一源,但他後來認識到,「通神明」的數學是不存在的,只有「經世務類萬物」的數學;莫若在《四元玉鑒》序文中提出的「用假象真,以虛問實」則代表了高度抽象思維的思想方法;楊輝對縱橫圖結構進行研究,揭示出洛書的本質,有力地批判了象數神秘主義。所有這些,無疑是促進數學發展的重要因素。
中西方數學的融合
中國從明代開始進入了封建社會的晚期,封建統治者實行極權統治,宣傳唯心主義哲學,施行八股考試制度。在這種情況下,除珠算外,數學發展逐漸衰落。
16世紀末以後,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰爭以後,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初,近代數學研究才真正開始。
從明初到明中葉,商品經濟有所發展,和這種商業發展相適應的是珠算的普及。明初《魁本對相四言雜字》和《魯班木經》的出現,說明珠算已十分流行。前者是兒童看圖識字的課本,後者把算盤作為家庭必需用品列入一般的木器傢具手冊中。
隨著珠算的普及,珠算演算法和口訣也逐漸趨於完善。例如王文素和程大位增加並改善撞歸、起一口訣;徐心魯和程大位增添加、減口訣並在除法中廣泛應用歸除,從而實現了珠算四則運算的全部口訣化;朱載墒和程大位把籌算開平方和開立方的方法應用到珠算,程大位用珠算解數字二次、三次方程等等。程大位的著作在國內外流傳很廣,影響很大。
1582年,義大利傳教士利瑪竇到中國,1607年以後,他先後與徐光啟翻譯了《幾何原本》前六卷、《測量法義》一卷,與李之藻編譯《圜容較義》和《同文算指》。1629年,徐光啟被禮部任命督修歷法,在他主持下,編譯《崇禎歷書》137卷。《崇禎歷書》主要是介紹歐洲天文學家第谷的地心學說。作為這一學說的數學基礎,希臘的幾何學,歐洲玉山若乾的三角學,以及納皮爾算籌、伽利略比例規等計算工具也同時介紹進來。
在傳入的數學中,影響最大的是《幾何原本》。《幾何原本》是中國第一部數學翻譯著作,絕大部分數學名詞都是首創,其中許多至今仍在沿用。徐光啟認為對它「不必疑」、「不必改」,「舉世無一人不當學」。《幾何原本》是明清兩代數學家必讀的數學書,對他們的研究工作頗有影響。
其次應用最廣的是三角學,介紹西方三角學的著作有《大測》《割圓八線表》和《測量全義》。《大測》主要說明三角八線(正弦、餘弦、正切、餘切、正割、餘割、正矢、余矢)的性質,造表方法和用表方法。《測量全義》除增加一些《大測》所缺的平面三角外,比較重要的是積化和差公式和球面三角。所有這些,在當時歷法工作中都是隨譯隨用的。
1646年,波蘭傳教士穆尼閣來華,跟隨他學習西方科學的有薛鳳柞、方中通等。穆尼閣去世後,薛鳳柞據其所學,編成《歷學會通》,想把中法西法融會貫通起來。《歷學會通》中的數學內容主要有比例對數表》《比例四線新表》和《三角演算法》。前兩書是介紹英國數學家納皮爾和布里格斯發明增修的對數。後一書除《崇禎歷書》介紹的球面三角外,尚有半形公式、半弧公式、德氏比例式、納氏比例式等。方中通所著《數度衍》對對數理論進行解釋。對數的傳入是十分重要,它在歷法計算中立即就得到應用。
清初學者研究中西數學有心得而著書傳世的很多,影響較大的有王錫闡《圖解》、梅文鼎《梅氏叢書輯要》(其中數學著作13種共40卷)、年希堯《視學》等。梅文鼎是集中西數學之大成者。他對傳統數學中的線性方程組解法、勾股形解法和高次冪求正根方法等方面進行整理和研究,使瀕於枯萎的明代數學出現了生機。年希堯的《視學》是中國第一部介紹西方透視學的著作。
清康熙皇帝十分重視西方科學,他除了親自學習天文數學外,還培養了一些人才和翻譯了一些著作。1712年康熙皇帝命梅彀成任蒙養齋匯編官,會同陳厚耀、何國宗、明安圖、楊道聲等編纂天文演算法書。1721年完成《律歷淵源》100卷,以康熙「御定」的名義於1723年出版。其中《數理精蘊》主要由梅彀成負責,分上下兩編,上編包括《幾何原本》、《演算法原本》,均譯自法文著作;下編包括算術、代數、平面幾何平面三角、立體幾何等初等數學,附有素數表、對數表和三角函數表。由於它是一部比較全面的初等數學網路全書,並有康熙「御定」的名義,因此對當時數學研究有一定影響。
綜上述可以看到,清代數學家對西方數學做了大量的會通工作,並取得許多獨創性的成果。這些成果,如和傳統數學比較,是有進步的,但和同時代的西方比較則明顯落後了。
雍正即位以後,對外閉關自守,導致西方科學停止輸入中國,對內實行高壓政策,致使一般學者既不能接觸西方數學,又不敢過問經世致用之學,因而埋頭於究治古籍。乾嘉年間逐漸形成一個以考據學為主的乾嘉學派。
隨著《算經十書》與宋元數學著作的收集與注釋,出現了一個研究傳統數學的高潮。其中能突破舊有框框並有發明創造的有焦循、汪萊、李銳、李善蘭等。他們的工作,和宋元時代的代數學比較是青出於藍而勝於藍的;和西方代數學比較,在時間上晚了一些,但這些成果是在沒有受到西方近代數學的影響下獨立得到的。
與傳統數學研究出現高潮的同時,阮元與李銳等編寫了一部天文數學家傳記—《疇人傳》,收集了從黃帝時期到嘉慶四年已故的天文學家和數學家270餘人(其中有數學著作傳世的不足50人),和明末以來介紹西方天文數學的傳教士41人。這部著作全由「掇拾史書,荃萃群籍,甄而錄之」而成,收集的完全是第一手的原始資料,在學術界頗有影響。
1840年鴉片戰爭以後,西方近代數學開始傳入中國。首先是英人在上海設立墨海書館,介紹西方數學。第二次鴉片戰爭後,曾國藩、李鴻章等官僚集團開展「洋務運動」,也主張介紹和學習西方數學,組織翻譯了一批近代數學著作。
其中較重要的有李善蘭與偉烈亞力翻譯的《代數學》《代微積拾級》;華蘅芳與英人傅蘭雅合譯的《代數術》《微積溯源》《決疑數學》;鄒立文與狄考文編譯的《形學備旨》《代數備旨》《筆算數學》;謝洪賚與潘慎文合譯的《代形合參》《八線備旨》等等。
《代微積拾級》是中國第一部微積分學譯本;《代數學》是英國數學家德·摩根所著的符號代數學譯本;《決疑數學》是第一部概率論譯本。在這些譯著中,創造了許多數學名詞和術語,至今還在應用,但所用數學符號一般已被淘汰了。戊戌變法以後,各地興辦新法學校,上述一些著作便成為主要教科書。
在翻譯西方數學著作的同時,中國學者也進行一些研究,寫出一些著作,較重要的有李善蘭的《《尖錐變法解》《考數根法》;夏彎翔的《洞方術圖解》《致曲術》《致曲圖解》等等,都是會通中西學術思想的研究成果。
由於輸入的近代數學需要一個消化吸收的過程,加上清末統治者十分腐敗,在太平天國運動的沖擊下,在帝國主義列強的掠奪下,焦頭爛額,無暇顧及數學研究。直到1919年五四運動以後,中國近代數學的研究才真正開始。
Ⅲ 人類社會發展史上,18世紀被稱為什麼
工業革命 - 資本主義工業化過渡階段
工業革命(The Instrial Revolution )開始於十八世紀六十年代,十八世紀後半期,在英國的進展已經很顯著了。通常認為它發源於英格蘭中部地區,是指資本主義工業化的早期歷程,即資本主義生產完成了從工場手工業向機器大工業過渡的階段。工業革命是以機器取代人力,以大規模工廠化生產取代個體工場手工生產的一場生產與科技革命。由於機器的發明及運用成為了這個時代的標志,因此歷史學家稱這個時代為"機器時代"(the Age of Machines)。18世紀中葉,英國人瓦特改良蒸汽機之後,由一系列技術革命引起了從手工勞動向動力機器生產轉變的重大飛躍。隨後向英國乃至整個歐洲大陸傳播,19世紀傳至北美。一般認為,蒸汽機、煤、鐵和鋼是促成工業革命技術加速發展的四項主要因素。英國最早開始工業革命也是最早結束工業革命的國家。
Ⅳ 歐拉是歷史上最多產的數學家,也是個領域最多著作的學者。在數學史上,人們稱18世紀「歐拉時代」對嗎
歐拉是科學史上最多產的一位傑出的數學家,稱為數學界的莎士比亞。據統計他那不倦
的一生,共寫下了886部書籍和論文,其中分析、代數、數論佔40%,幾何佔18%,物理和
力學佔28%,天文學佔11%,彈道學、航海學、建築學等佔3%。彼得堡科學院為了整理他
的著作,足足忙碌了47年!數學史上稱18世紀為「歐拉時代」。
你說的是對的:)
Ⅳ 試分析18世紀末數學家的主導意見:數學資源已經枯竭
在18世紀行將結束的時候,數學家們對自己從事的這門科學卻奇怪地存在著一種普遍的悲觀情緒,數學的資源已經枯竭。拉格朗日在 1781年寫給達朗貝爾的一封信中說:「在我看來似乎數學的礦井已經挖的很深了,除非發現新的礦脈,否則遲早勢必放棄它。」難道數學資源真的枯竭了嗎?枯竭的原因在哪裡。 數學的發展史如同一場華麗紛繁的冒險。它發現一切,解釋一切,包容一切。直到18世紀末,數學的尊貴與榮耀都是無與倫比的。如果說上帝創造了宇宙,那麼數學就是那張設計圖紙。從古希臘開始的探索之路此時彷彿已經走到了盡頭,海洋潮汐、日升月落、空氣的流動與光線的傳播,所有這些都已經得到了充分合理的解釋,這些解釋都歸於數學。再也不可能有比這更光輝的時刻了。難怪拉普拉斯要說,牛頓是最幸運的一個人,因為只有一個宇宙,而他成功地發現了它的定律。從這個角度來看,也許數學家們比教士更適合傳達上帝的旨意。 牛頓和萊布尼茨是公認的微積分的創立者。他們的主要功績是把當時的有關運動、切線、極值和求積分等各種問題的解法統一成微分法和積分法。由於在整個18世紀由數學家成功地運用微積分解決了許多實際問題,使有些人對基礎問題不感興趣,法國數學家達朗貝爾說,現在是「把房子蓋得更高些,而不是把基礎打得更牢固。」從而導致人們對無窮小、無窮大的概念不清楚,對導數、微分、積分等概念也不清楚,進而引起了數學的第二次危機,主要是微分學基礎不牢固所致。 18世紀被稱為數學史上的英雄時代,希臘人的數學大廈經過印度人和阿拉伯人的建構,早已不復牢固,歐洲的數學家們就在缺乏邏輯結構的情況下,探索和創建了一個又一個新的領域,其形其狀頗似麥哲倫的環球旅行,成就不可不謂非凡。
Ⅵ 世界數學史分為哪四個時期
學術界通常將數學發展劃分為以下四個時期:數學形成時期、初等數學時期、變數數學時期、近現代數學時期。
一、數學形成時期;萌芽時期是最初的數學知識積累時期,是數學發展過程中的漸變階段。這一時期的數學知識是零散的、初步的、非系統的,但是這是數學發展史的源頭,為數學後續的發展奠定了基礎。
這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
中國歷史悠久,發掘出來的大量石器、陶器、青銅器、龜甲以及獸骨上面的圖形和銘文表明: 幾何觀念遠在舊石器時代就已經在中國逐步形成。早在五六千年前,古中國就有了數學符號,到三千多年前的商朝,刻在甲骨或陶器上的數字已十分常見。
這時,自然數記數都採用了十進位制。甲骨文中就有從一到十再到百、千、萬的十三個記數單位。這說明古中國也形成了數學的基本概念。
二、初等數學時期(公元前600年至17世紀中葉);初等數學時期從公元前五世紀到公元十七世紀,延續了兩千多年、由於高等數學的建立而結束。
這個時期最明顯的結果就是系統地創立了初等數學,也就是現在中小學課程中的算術、初等代數、初等幾何(平面幾何和立體幾何)和平面三角等內容。
初等數學時期可以根據內容的不同分成兩部分,幾何發展的時期(到公元二世紀)和代數優先發展時期(從二世紀到十七進紀)。又可以按照歷史條件的不同把它分成「希臘時期」、「東方時期」和「歐洲文藝復興時期」。
希臘時期正好和希臘文化普遍繁榮的時代一致。希臘是一個文明古國,但是,和四大文明古國巴比倫、埃及、印度、中國相比,在文明史上,希臘文明要晚一段時間。
三、變數數學時期(17世紀中葉至19世紀20年代);變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。它是數學的一個基礎學科。
內容主要包括極限、微分學、積分學、方程及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。
積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
四、近現代數學時期(19世紀20年代);現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎。代數、幾何、分析中的深刻變化為特徵。近代數學是研究數量、結構、變化、空間以及信息等概念的一門學科。
17世紀,數學的發展突飛猛進,實現了從常量數學到變數數學的轉折。中國近代數學的研究是從1919年五四運動以後才真正開始的。
(6)數學史上人們稱18世紀為什麼擴展閱讀:
歷史介紹:
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。
史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。
當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。
Ⅶ 為什麼說18世紀是數學英雄時代
17世紀最偉大的數學成就是微積分,18世紀的大部分數學工作則是多方面利用微積分方法所進行的新的創造.產生了現在仍在研究的許多數學新領域:微分方程、微分幾何、變分法,等等.18世紀數學研究的特點是,取得的成果相當豐富,涉獵的領域十分廣泛,但其中有些內容卻經不起嚴格的推敲.
18世紀的卓越數學家主要有英倫三島的泰勒(B.Taylor,1685—1731)、馬克勞林(C.Maclaurin,1698—1746);歐洲大陸有瑞士的貝努利(Bernoulli)家族,以及18世紀數學界的中心人物、在數學史上與阿基米德(Archimedes)、牛頓(I.Newton)、高斯(F.Gauss,1777—1855)一起被稱為「四個最偉大的數學家」的瑞士數學家歐拉(L.Euler,1707—1783).隨著牛頓的去世,以及牛頓與萊布尼茨(G.W.Leibniz)關於微積分優先權之爭日趨激烈,英倫三島數學界固守牛頓的流數方法,拒不接受歐洲大陸的數學思想,英倫三島在牛頓尤其是在馬克勞林之後,數學發展相對比較緩慢.繼貝努利家族和歐拉之後,主宰18世紀的數學是法國數學家,他們中有棣莫弗(A.DeMoivre,1667—1754)、克萊羅(A.C.Clairaut,1713—1765)達朗貝爾(D』Alembert,1717—1783)、蘭伯特(J.H.La-mbert,1728—1777)著名的「三L」:拉格朗日(J.L.La-grange,1736—1813)、拉普拉斯(P.S.Laplace,1749—1827)、勒讓德(A.M.Legendre,1752—1833),以及蒙日(G.Monge,1746—1818)和卡諾(L.Carnot,1753—1823).法國一直到19世紀上半葉仍是世界數學中心.
18世紀數學工作的推動力是解決物理——自然科學的問題,工作的目標不是數學,而是解決物理問題.法國網路全書學派的狄德羅(D.Dideret,1713—1784)和達朗貝爾明確地把數學看作是自然科學的一個分支,這樣數學在歷史上第一次從屬於自然科學,而且這種觀點到今天仍有影響.這個世紀的數學家幾乎無一例外地都從事於科學、工業技術、軍事問題的研究,並且其認真程度絲毫不亞於研究數學.同時,數學家還逐漸拋棄了宇宙是上帝按照數學定律設計的信念,機械決定論開始占據人們的心靈,而這一切都得益於數學的巨大成就.18世紀可以說是數學史上的英雄時代.
Ⅷ 為什麼在世界數學史上把18世紀稱為「分析的時代」
因為在18世紀數學是得到了飛速的進步,很多人才都是通過分析得出了很多跨時代的數學定論,所以才稱之為分析的時代
Ⅸ 自然對數底e的來源
就和數字1一樣,存在就是存在,缺少任何一個數,數系就不完整。因而任何數都有存在的必要。
但進一步,e又是一個「特殊」的數,它是數學中無處不在的基本常數,是常用而且有用的數。
我們知道e是自然對數的底,可定義為(1 + 1/n)^n的極限,∑1/n!的極限,微分方程y' = y,y(0) = 1在點1處的解等等。以e為底的對數,即自然對數,有最好的性質(如導數為1/x);以e為底的指數,有最好的性質(如求導、積分不變)。e可以大大地簡化許多計算公式,可以作為聯系復數和三角的紐帶,也是大量數學公式的自然組成部分
螺線特別是對數螺線的美學意義可以用指數的形式來表達:
φkρ=αe
其中,α和k為常數,φ是極角,ρ是極徑,e是自然對數的底。為了討論方便,我們把e或由e經過一定變換和復合的形式定義為「自然律」。因此,「自然律」的核心是e,其值為2.71828……,是一個無限循環數。
數,美嗎?
1、數之美
人們很早就對數的美有深刻的認識。其中,公元前六世紀盛行於古希臘的畢達哥斯學派見解較為深刻。他們首先從數學和聲學的觀點去研究音樂節奏的和諧,發現聲音的質的差別(如長短、高低、輕重等)都是由發音體數量方面的差別決定的。例如發音體(如琴弦)長,聲音就長;振動速度快,聲音就高;振動速度慢,聲音就低。因此,音樂的基本原則在於數量關系。
畢達哥斯學派把音樂中的和諧原理推廣到建築、雕刻等其它藝術,探求什麼樣的比例才會產生美的效果,得出了一些經驗性的規范。例如,在歐洲有長久影響的「黃金律」據說是他們發現的(有人說,是蔡泌於一八五四年提出了所謂的「黃金分割律」。所謂黃金分割律「就是取一根線分為兩部分,使長的那部分的平方等於短的那部分乘全線段。」「如果某物的長與寬是按照這個比例所組成的,那麼它就比由其它比例所組成的長方形『要美』。」)。
這派學者還把數學與和諧的原則應用於天文學的研究,因而形成所謂「諸天音樂」或「宇宙和諧」的概念,認為天上諸星體在遵照一定的軌道運動中,也產生一種和諧的音樂。他們還認為,人體的機能也是和諧的,就象一個「小宇宙」。人體之所以美,是由於它各部分——頭、手、腳、五官等比例適當,動作協調;宇宙之所以美,是由於各個物質單位以及各個星體之間運行的速度、距離、周轉時間等等配合協調。這些都是數的和諧。
中國古代思想家們也有類似的觀點。道家的老子和周易《系辭傳》,都曾嘗試以數學解釋宇宙生成,後來又衍為周易象數派。《周易》中賁卦的表示樸素之美,離卦的表示華麗之美,以及所謂「極其數,遂定天下之象」,都是類似數學推理的結論。儒家的荀卿也說過:「萬物同宇宙而異體。無宜而有用為人,數也。」莊子把「小我」與「大我」一視同仁,「小年」與「大年」等量齊觀,也略同於畢達哥拉斯學派之把「小宇宙」和「大宇宙」互相印證。所謂「得之於手而應用於心,口不能言,有數存在焉與其間」。這種從數的和諧看出美的思想,深深地影響了後世的中國美學。
2、黃金律之美
黃金律歷來被染上瑰麗詭秘的色彩,被人們稱為「天然合理」的最美妙的形式比例。我們知道,黃金律不僅是構圖原則,也是自然事物的最佳狀態。中世紀義大利數學家費勃奈舍發現,許多植物葉片、花瓣以及松果殼瓣,從小到大的序列是以0.618:1的近似值排列的,這即是著名的「費勃奈舍數列」:1、2、3、5、8、13、21、34……動物身上的色彩圖案也大體符合黃金比。舞蹈教練、體操專家選擇人材制定的比列尺寸,例如肩寬和腰的比例、腰部以上與腰部以下的比列也都大體符合黃金比。
現代科學家還發現,當大腦呈現的「倍塔」腦電波的高頻與低頻之比是1:0.618的近似值(12.9赫茲與8赫茲之比)時,人的心身最具快感。甚至,當大自然的氣溫(23攝氏度)與人的體溫37攝氏度之比為0.618:1時,最適宜於人的身心健康,最使人感到舒適。另外,數學家們為工農業生產制度的優選法,所提出的配料最佳比例、組織結構的最佳比例等等,也都大體符合黃金律。
然而,這並不意味著黃金律比「自然律」更具有美學意義。我們可以證明,當對數螺線:
φkρ=αe
的等比取黃金律,即k=0.0765872,等比P1/P2=0.618時,則螺線中同一半徑線上相鄰極半徑之比都有黃金分割關系。事實上,當函數f(X)等於e的X次方時,取X為0.4812,那麼,f(X)=0.618……
因此,黃金律被「自然律」邏輯所蘊含。換言之,「自然律」囊括了黃金律。
黃金律表現了事物的相對靜止狀態,而「自然律」則表現了事物運動發展的普遍狀態。因此,從某種意義上說,黃金律是凝固的「自然律」,「自然律」是運動著的黃金律。
3、「自然律」之美
「自然律」是e及由e經過一定變換和復合的形式。e是「自然律」的精髓,在數學上它是函數:
1(1+——)
X的X次方,當X趨近無窮時的極限。
人們在研究一些實際問題,如物體的冷卻、細胞的繁殖、放射性元素的衰變時,都要研究
1(1+——)
X的X次方,當X趨近無窮時的極限。正是這種從無限變化中獲得的有限,從兩個相反方向發展(當X趨向正無窮大的時,上式的極限等於e=2.71828……,當X趨向負無窮大時候,上式的結果也等於e=2.71828……)得來的共同形式,充分體現了宇宙的形成、發展及衰亡的最本質的東西。
現代宇宙學表明,宇宙起源於「大爆炸」,而且目前還在膨脹,這種描述與十九世紀後半葉的兩個偉大發現之一的熵定律,即熱力學第二定律相吻合。熵定律指出,物質的演化總是朝著消滅信息、瓦解秩序的方向,逐漸由復雜到簡單、由高級到低級不斷退化的過程。退化的極限就是無序的平衡,即熵最大的狀態,一種無為的死寂狀態。這過程看起來像什麼?只要我們看看天體照相中的旋渦星系的照片即不難理解。如果我們一定要找到亞里士多德所說的那種動力因,那麼,可以把宇宙看成是由各個預先上緊的發條組織,或者乾脆把整個宇宙看成是一個巨大的發條,歷史不過是這種發條不斷爭取自由而放出能量的過程。
生命體的進化卻與之有相反的特點,它與熱力學第二定律描述的熵趨於極大不同,它使生命物質能避免趨向與環境衰退。任何生命都是耗散結構系統,它之所以能免於趨近最大的熵的死亡狀態,就是因為生命體能通過吃、喝、呼吸等新陳代謝的過程從環境中不斷吸取負熵。新陳代謝中本質的東西,乃是使有機體成功的消除了當它自身活著的時候不得不產生的全部熵。
「自然律」一方面體現了自然系統朝著一片混亂方向不斷瓦解的崩潰過程(如元素的衰變),另一方面又顯示了生命系統只有通過一種有序化過程才能維持自身穩定和促進自身的發展(如細胞繁殖)的本質。正是具有這種把有序和無序、生機與死寂寓於同一形式的特點,「自然律」才在美學上有重要價值。
如果荒僻不毛、浩瀚無際的大漠是「自然律」無序死寂的熵增狀態,那麼廣闊無垠、生機盎然的草原是「自然律」有序而欣欣向榮的動態穩定結構。因此,大漠使人感到肅穆、蒼茫,令人沉思,讓人回想起生命歷程的種種困頓和坎坷;而草原則使人興奮、雀躍,讓人感到生命的歡樂和幸福。
e=2.71828……是「自然律」的一種量的表達。「自然律」的形象表達是螺線。螺線的數學表達式通常有下面五種:(1)對數螺線;(2)阿基米德螺線;(3)連鎖螺線;(4)雙曲螺線;(5)迴旋螺線。對數螺線在自然界中最為普遍存在,其它螺線也與對數螺線有一定的關系,不過目前我們仍未找到螺線的通式。對數螺線是1638年經笛卡爾引進的,後來瑞士數學家雅各·伯努利曾詳細研究過它,發現對數螺線的漸屈線和漸伸線仍是對數螺線,極點在對數螺線各點的切線仍是對數螺線,等等。伯努利對這些有趣的性質驚嘆不止,竟留下遺囑要將對數螺線畫在自己的墓碑上。
英國著名畫家和藝術理論家荷迦茲深深感到:旋渦形或螺線形逐漸縮小到它們的中心,都是美的形狀。事實上,我們也很容易在古今的藝術大師的作品中找到螺線。為什麼我們的感覺、我們的「精神的」眼睛經常能夠本能地和直觀地從這樣一種螺線的形式中得到滿足呢?這難道不意味著我們的精神,我們的「內在」世界同外在世界之間有一種比歷史更原始的同構對應關系嗎?
我們知道,作為生命現象的基礎物質蛋白質,在生命物體內參與著生命過程的整個工作,它的功能所以這樣復雜高效和奧秘無窮,是同其結構緊密相關的。化學家們發現蛋白質的多鈦鏈主要是螺旋狀的,決定遺傳的物質——核酸結構也是螺螺狀的。
古希臘人有一種稱為風鳴琴的樂器,當它的琴弦在風中振動時,能產生優美悅耳的音調。這種音調就是所謂的「渦流尾跡效應」。讓人深思的是,人類經過漫長歲月進化而成的聽覺器官的內耳結構也具渦旋狀。這是為便於欣賞古希臘人的風鳴琴嗎?還有我們的指紋、發旋等等,這種審美主體的生理結構與外在世界的同構對應,也就是「內在」與「外在」和諧的自然基礎。
有人說數學美是「一」的光輝,它具有盡可能多的變換群作用下的不變性,也即是擁有自然普通規律的表現,是「多」與「一」的統一,那麼「自然律」也同樣閃爍著「一」的光輝。誰能說清e=2.71828……給數學家帶來多少方便和成功?人們贊揚直線的剛勁、明朗和坦率,欣賞曲線的優美、變化與含蓄,殊不知任何直線和曲線都可以從螺線中取出足夠的部分來組成。有人說美是主體和客體的同一,是內在精神世界同外在物質世界的統一,那麼「自然律」也同樣有這種統一。人類的認識是按否定之否定規律發展的,社會、自然的歷史也遵循著這種辯證發展規律,是什麼給予這種形式以生動形象的表達呢?螺線!
有人說美在於事物的節奏,「自然律」也具有這種節奏;有人說美是動態的平衡、變化中的永恆,那麼「自然律」也同樣是動態的平衡、變化中的永恆;有人說美在於事物的力動結構,那麼「自然律」也同樣具有這種結構——如表的游絲、機械中的彈簧等等。
「自然律」是形式因與動力因的統一,是事物的形象顯現,也是具象和抽象的共同表達。有限的生命植根於無限的自然之中,生命的脈搏無不按照宇宙的旋律自覺地調整著運動和節奏……有機的和無機的,內在的和外在的,社會的和自然的,一切都合而為一。這就是「自然律」揭示的全部美學奧秘嗎?不!「自然律」永遠具有不能窮盡的美學內涵,因為它象徵著廣袤深邃的大自然。正因為如此,它才吸引並且值的人們進行不懈的探索,從而顯示人類不斷進化的本質力量。
Ⅹ 數學的來歷~-~
數學」的由來
古希臘人在數學中引進了名稱,概念和自我思考,他們很早就開始猜測數學是如何產生的。雖然他們的猜測僅是匆匆記下,但他們幾乎先佔有了猜想這一思考領域。古希臘人隨意記下的東西在19世紀變成了大堆文章,而在20世紀卻變成了令人討厭的陳辭濫調。 在現存的資料中,希羅多德(Herodotus,公元前484--425年)是第一個開始猜想的人。他只談論了幾何學,他對一般的數學概念也許不熟悉,但對土地測量的准確意思很敏感。作為一個人類學家和一個社會歷史學家,希羅多德指出,古希臘的幾何來自古埃及,在古埃及,由於一年一度的洪水淹沒土地,為了租稅的目的,人們經常需要重新丈量土地;他還說:希臘人從巴比倫人那裡學會了日晷儀的使用,以及將一天分成12個時辰。希羅多德的這一發現,受到了肯定和贊揚。認為普通幾何學有一個輝煌開端的推測是膚淺的。
柏拉圖關心數學的各個方面,在他那充滿奇妙幻想的神話故事《費德洛斯篇》中,他說:
故事發生在古埃及的洛克拉丁(區域),在那裡住著一位老神仙,他的名字叫賽斯(Theuth),對於賽斯來說,朱鷺是神鳥,他在朱鷺的幫助下發明了數,計算、幾何學和天文學,還有棋類游戲等。
柏拉圖常常充滿了奇怪的幻想,原因是他不知道自己是否正亞里士多德最後終於用完全概念化的語言談論數學了,即談論統一的、有著自己發展目的的數學。在他的《形而上學》(Meta-physics)第1卷第1章中,亞里士多德說:數學科學或數學藝術源於古埃及,因為在古埃及有一批祭司有空閑自覺地致力於數學研究。亞里士多德所說的是否是事實還值得懷疑,但這並不影響亞里士多德聰慧和敏銳的觀察力。在亞里士多德的書中,提到古埃及僅僅只是為了解決關於以下問題的爭論:1.存在為知識服務的知識,純數學就是一個最佳的例子:2.知識的發展不是由於消費者購物和奢華的需要而產生的。亞里士多德這種「天真」的觀點也許會遭到反對;但卻駁不倒它,因為沒有更令人信服的觀點.
就整體來說,古希臘人企圖創造兩種「科學」的方法論,一種是實體論,而另一種是他們的數學。亞里士多德的邏輯方法大約是介於二者之間的,而亞里士多德自己認為,在一般的意義上講他的方法無論如何只能是一種輔助方法。古希臘的實體論帶有明顯的巴門尼德的「存在」特徵,也受到赫拉克利特「理性」的輕微影響,實體論的特徵僅在以後的斯多葛派和其它希臘作品的翻譯中才表現出來。數學作為一種有效的方法論遠遠地超越了實體論,但不知什麼原因,數學的名字本身並不如「存在」和「理性」那樣響亮和受到肯定。然而,數學名稱的產生和出現,卻反映了古希臘人某些富於創造的特性。下面我們將說明數學這一名詞的來源。
「數學」一詞是來自希臘語,它意味著某種『已學會或被理解的東西』或「已獲得的知識」,甚至意味著「可獲的東西」, 「可學會的東西」,即「通過學習可獲得的知識」,數學名稱的這些意思似乎和梵文中的同根詞意思相同。甚至偉大的辭典編輯人利特雷(E.Littre 也是當時傑出的古典學者),在他編輯的法語字典(1877年)中也收入了「數學」一詞。牛津英語字典沒有參照梵文。公元10世紀的拜占庭希臘字典「Suidas」中,引出了「物理學」、「幾何學」和「算術」的詞條,但沒有直接列出「數學」—詞。
「數學」一詞從表示一般的知識到專門表示數學專業,經歷一個較長的過程,僅在亞里士多德時代,而不是在柏拉圖時代,這一過程才完成。數學名稱的專有化不僅在於其意義深遠,而在於當時古希臘只有「詩歌」一詞的專有化才能與數學名稱的專有化相媲美。「詩歌」原來的意思是「已經製造或完成的某些東西」,「詩歌」一詞的專有化在柏拉圖時代就完成了。而不知是什麼原因辭典編輯或涉及名詞專有化的知識問題從來沒有提到詩歌,也沒有提到詩歌與數學名稱專有化之間奇特的相似性。但數學名稱的專有化確實受到人們的注意。
首先,亞里士多德提出, 「數學」一詞的專門化使用是源於畢達哥拉斯的想法,但沒有任何資料表明對於起源於愛奧尼亞的自然哲學有類似的思考。其次在愛奧尼亞人中,只有泰勒斯(公元前640?--546年)在「純」數學方面的成就是可信的,因為除了第歐根尼·拉爾修(Diogenes Laertius)簡短提到外,這一可信性還有一個較遲的而直接的數學來源,即來源於普羅克洛斯(Proclus)對歐幾里得的評註:但這一可信性不是來源於亞里士多德,盡管他知道泰勒斯是一個「自然哲學家」;也不是來源於早期的希羅多德,盡管他知道塞利斯是一個政治、軍事戰術方面的「愛好者」,甚至還能預報日蝕。以上這些可能有助於解釋為什麼在柏拉圖的體系中,幾乎沒有愛奧尼亞的成份。赫拉克利特(公元前500--?年)有一段名言:「萬物都在運動中,物無常往」, 「人們不可能兩次落進同一條河裡」。這段名言使柏拉圖迷惑了,但赫拉克賴脫卻沒受到柏拉圖給予巴門尼德那樣的尊敬。巴門尼德的實體論,從方法論的角度講,比起赫拉克賴脫的變化論,更是畢達哥拉斯數學的強有力的競爭對手。
對於畢達哥拉斯學派來說,數學是一種「生活的方式」。事實上,從公元2世紀的拉丁作家格利烏斯(Gellius)和公元3世紀的希臘哲學家波菲利(Porphyry)以及公元4世紀的希臘哲學家揚布利科斯(Iamblichus)的某些證詞中看出,似乎畢達哥拉斯學派對於成年人有一個「一般的學位課程」,其中有正式登記者和臨時登記者。臨時成員稱為「旁聽者」,正式成員稱為「數學家」。
這里「數學家」僅僅表示一類成員,而並不是他們精通數學。畢達哥拉斯學派的精神經久不衰。對於那些被阿基米德神奇的發明所深深吸引的人來說,阿基米德是唯一的獨特的數學家,從理論的地位講,牛頓是一個數學家,盡管他也是半個物理學家,一般公眾和新聞記者寧願把愛因斯坦看作數學家,盡管他完全是物理學家。當羅吉爾·培根(Roger Bacon,1214--1292年)通過提倡接近科學的「實體論」,向他所在世紀提出挑戰時,他正將科學放進了一個數學的大框架,盡管他在數學上的造詣是有限的,當笛卡兒(Descartes,1596--1650年)還很年輕時就決心有所創新,於是他確定了「數學萬能論」的名稱和概念。然後萊布尼茨引用了非常類似的概念,並將其變成了以後產生的「符號」邏輯的基礎,而20世紀的「符號」邏輯變成了熱門的數理邏輯。
在18世紀,數學史的先驅作家蒙托克萊(Montucla)說,他已聽說了關於古希臘人首先稱數學為「一般知識」,這一事實有兩種解釋:一種解釋是,數學本身優於其它知識領域;而另一種解釋是,作為一般知識性的學科,數學在修辭學,辯證法,語法和倫理學等等之前就結構完整了。蒙托克萊接受了第二種解釋。他不同意第一種解釋,因為在普羅克洛斯關於歐幾里得的評注中,或在任何古代資料中,都沒有發現適合這種解釋的確證。然而19世紀的語源學家卻傾向於第一種解釋,而20世紀的古典學者卻又偏向第二種解釋。但我們發現這兩種解釋並不矛盾,即很早就有了數學且數學的優越性是無與倫比的。