① 數學與生活
阿拉伯數字1、2、3、4、5、6、7、8、9、0是國際上通用的數碼。這種數字的創制並非阿拉伯人,但也不能抹掉阿拉伯人的功勞。阿拉伯數字最初出自印度人之手,也是他們的祖先在生產實踐中逐步創造出來的。 知道寶庫
公元前3世紀,印度出現了整套的數字,但各地的寫法不一,其中典型的是婆羅門式,它的獨到之處就是從1~9每個數都有專用符號,現代數字就是從它們中脫胎而來的。當時,「0」還沒有出現。到了笈多時代(300-500年)才有了「0」。這樣,一套完整的數字便產生了。這就是古代印度人民對世界文化的巨大貢獻。 知道一下
華羅庚生卒年(1910-1985):中國現代數學家。1910年11月12日生於江蘇金壇1985年6月12日,卒於日本東京。
華羅庚原來也是個調皮、貪玩的孩子,但他很有數學才能。有一次,數學老師出了一個中國古代有名的算題——有一樣東西,不知是多少。3個3個地數,還餘2;5個5個地數,還餘3;7個7個的數,還餘2。問這樣東西是多少?——題目出來後,同學們議論開了,誰也說不出得數。老師剛要張口,華羅庚舉手說:「我算出來了,是23。」他不但正確地說出了得數,而且演算法也很特別。這使老師大為驚詫。 快樂歪歪球
一元錢哪裡去了
三人住旅店,每人每天的價格是十元,每人付了十元錢,總共給了老闆三十元,後來老闆優惠了五元,讓服務員退給他們,結果服務員貪污了兩元,剩下三元每人退了一元錢,也就是說每人消費了9元錢。三個人總共花了27元,加上服務員貪污的2元總共29元。那一元錢到哪去了?
動腦大比拼
② 誰知道數學與生活有哪些聯系啊
有一次,媽媽烙餅,鍋里能放兩張餅。我就想,這不是一個數學問題嗎?烙一張餅用兩分鍾,烙正、反面各用一分鍾,鍋里最多同時放兩張餅,那麼烙三張餅最多用幾分鍾呢?我想了想,得出結論:要用3分鍾:先把第一、第二張餅同時放進鍋內,1分鍾後,取出第二張餅,放入第三張餅,把第一張餅翻面;再烙1分鍾,這樣第一張餅就好了,取出來。然後放第二張餅的反面,同時把第三張餅翻過來,這樣3分鍾就全部搞定。
我曾看見過這樣的一個報道:一個教授問一群外國學生:「12點到1點之間,分針和時針會重合幾次?」那些學生都從手腕上拿下手錶,開始撥表針;而這位教授在給中國學生講到同樣一個問題時,學生們就會套用數學公式來計算。
1、三角形很穩定,許多支架都是三角形的許多支架用三個腳支撐用了一個數學公理三點確定一個平面
2、一些人在木門上釘斜條,是為了克服四邊形的不穩定性。卷閘門也是一樣的道理。
3、河南登封觀星台、南京中山陵都是中心對稱圖形
4、蚊帳的孔是六邊形的~
5、筷子是圓錐型的。光碟是圓形的。
6、電線是線段冰箱是長方體門是長方形輪胎是圓形地球是圓形
數學是一門很有用的學科。自從人類出現在地球上那天起,人們便在認識世界、改造世界的同時對數學有了逐漸深刻的了解。早在遠古時代,就有原始人「涉獵計數」與「結繩記事」等種種傳說。可見,「在早期一些古代文明社會中已產生了數學的開端和萌芽」(引自《古今數學思想》第一冊P1——作者注)。「在BC3000年左右巴比倫和埃及數學出現以前,人類在數學上沒有取得更多的進展」,而「在BC600—BC300年間古希臘學者登場後」,數學便開始「作為一名有組織的、獨立的和理性的學科」(引自《古今數學思想》第一冊P1——作者注)登上了人類發展史的大舞台。
如今,數學知識和數學思想在工農業生產和人們日常生活中有極其廣泛的應用。譬如,人們購物後須記賬,以便年終統計查詢;去銀行辦理儲蓄業務;查收各住戶水電費用等,這些便利用了算術及統計學知識。此外,社區和機關大院門口的「推拉式自動伸縮門」;運動場跑道直道與彎道的平滑連接;底部不能靠近的建築物高度的計算;隧道雙向作業起點的確定;摺扇的設計以及黃金分割等,則是平面幾何中直線圖形的性質及解Rt三角形有關知識的應用。由於這些內容所涉及的高中數學知識不是很多,在此就不贅述了。
由此可見,古往今來,人類社會都是在不斷了解和探究數學的過程中得到發展進步的。數學對推動人類文明起了舉足輕重的作用。
下面,我就緊扣高中數學學習的實際,從函數、不等式、數列、立體幾何和解析幾何等五方面,簡明扼要地談一下數學知識在生產生活中的應用。
http://www.yrsx.com/Article_View.asp?id=20
第一部分 函數的應用
我們所學過的函數有:一元一次函數、一元二次函數、分式函數、無理函數、冪、指、對數函數及分段函數等八種。這些函數從不同角度反映了自然界中變數與變數間的依存關系,因此代數中的函數知識是與生產實踐及生活實際密切相關的。這里重點講前兩類函數的應用。
一元一次函數的應用
一元一次函數在我們的日常生活中應用十分廣泛。當人們在社會生活中從事買賣特別是消費活動時,若其中涉及到變數的線性依存關系,則可利用一元一次函數解決問題。
例如,當我們購物、租用車輛、入住旅館時,經營者為達到宣傳、促銷或其他目的,往往會為我們提供兩種或多種付款方案或優惠辦法。這時我們應三思而後行,深入發掘自己頭腦中的數學知識,做出明智的選擇。俗話說:「從南京到北京,買的沒有賣的精。」我們切不可盲從,以免上了商家設下的小圈套,吃了眼前虧。
下面,我就為大家講述我親身經歷的一件事。
隨著優惠形式的多樣化,「可選擇性優惠」逐漸被越來越多的經營者採用。一次,我去「物美」超市購物,一塊醒目的牌子吸引了我,上面說購買茶壺、茶杯可以優惠,這似乎很少見。更奇怪的是,居然有兩種優惠方法:(1)賣一送一(即買一隻茶壺送一隻茶杯);(2)打九折(即按購買總價的90% 付款)。其下還有前提條件是:購買茶壺3隻以上(茶壺20元/個,茶杯5元/個)。由此,我不禁想到:這兩種優惠辦法有區別嗎?到底哪種更便宜呢?我便很自然的聯想到了函數關系式,決心應用所學的函數知識,運用解析法將此問題解決。
我在紙上寫道:
設某顧客買茶杯x只,付款y元,(x>3且x∈N),則
用第一種方法付款y1=4×20+(x-4)×5=5x+60;
用第二種方法付款y2=(20×4+5x)×90%=4.5x+72.
接著比較y1y2的相對大小.
設d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然後便要進行討論:
當d>0時,0.5x-12>0,即x>24;
當d=0時,x=24;
當d<0時,x<24.
綜上所述,當所購茶杯多於24隻時,法(2)省錢;恰好購買24隻時,兩種方法價格相等;購買只數在4—23之間時,法(1)便宜.
可見,利用一元一次函數來指導購物,即鍛煉了數學頭腦、發散了思維,又節省了錢財、杜絕了浪費,真是一舉兩得啊!
http://www.yrsx.com/Article_View.asp?ID=20&page=1
二、一元二次函數的應用
在企業進行諸如建築、飼養、造林綠化、產品製造及其他大規模生產時,
其利潤隨投資的變化關系一般可用二次函數表示。企業經營者經常依據這方面的知識預計企業發展和項目開發的前景。他們可通過投資和利潤間的二次函數關系預測企業未來的效益,從而判斷企業經濟效益是否得到提高、企業是否有被兼並的危險、項目有無開發前景等問題。常用方法有:求函數最值、某單調區間上最值及某自變數對應的函數值。
三、三角函數的應用
三角函數的應用極其廣泛,這里僅講最簡的也是最常見的一類——銳角三角函數的應用:「山林綠化」問題。
在山林綠化中, 須在山坡上等距離植樹,且山坡上兩樹之間的距離投影到平地上須同平地樹木間距保持一致。(如左圖)因此,林業人員在植樹前,要計算出山坡上兩樹之間的距離。這便要用到銳角三角函數的知識。
如右圖,令C=90 ,B=α ,平地距為d,山坡距為r,則secα=secB =AB/CB=r/d. ∴r=secα×d這個問題至此便迎刃而解了。
http://www.yrsx.com/Article_View.asp?ID=20&page=2
第二部分 不等式的應用
日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前兩類不等式的應用與其對應函數及方程的應用如出一轍,而平均值不等式在生產生活中起到了不容忽視的作用。下面,我主要談一下均值不等式和均值定理的應用。
在生產和建設中,許多與最優化設計相關的實際問題通常可應用平均值不等式來解決。平均值不等式知識在日常生活中的應用,筆者雖未親身經歷,但從電視、報紙等新聞媒體及我們所做的應用題中不難發現,均值不等式和極值定理通常可有如下幾方面的極其重要的應用:(表後重點分析「包裝罐設計」問題)
實踐活動 已知條件 最優方案 解決辦法
設計花壇綠地 周長或斜邊 面積最大 極值定理一
經營成本 各項費用單價及銷售量 成本最低 函數、極值定理二
車船票價設計 航行里程、限載人數、 票價最低 用極值定理二求出
速度、各項費用及相應 最低成本,再由此
比例關系 計算出最低票價
(票價=最低票價+ +平均利潤)
包裝罐設計 (見表後) (見表後) (見表後)
包裝罐設計問題
1、「白貓」洗衣粉桶
「白貓」洗衣粉桶的形狀是等邊圓柱(如右圖所示),
若容積一定且底面與側面厚度一樣,問高與底面半徑是
什麼關系時用料最省(即表面積最小)?
分析:容積一定=>лr h=V(定值)
=>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)
≥2л3 (r h) /4 =3 2лV (當且僅當r =rh/2=>h=2r時取等號),
∴應設計為h=d的等邊圓柱體.
2、「易拉罐」問題
圓柱體上下第半徑為R,高為h,若體積為定值V,且上下底
厚度為側面厚度的二倍,問高與底面半徑是什麼關系時用料最
省(即表面積最小)?
分析:應用均值定理,同理可得h=2d(計算過程請讀者自己
寫出,本文從略)∴應設計為h=2d的圓柱體.
事實上,不等式特別是均值不等式在生產實踐中的應用遠不止這些,在這里就不一一列舉了。
http://www.yrsx.com/Article_View.asp?ID=20&page=3
第三部分 數列的應用
在實際生活和經濟活動中,很多問題都與數列密切相關。如分期付款、個人投資理財以及人口問題、資源問題等都可運用所學數列知識進行分析,從而予以解決。
本文重點分析等差數列、等比數列在實際生活和經濟活動中的應用。
(一)按揭貨款中的數列問題
隨著中央推行積極的財政政策,購置房地產按揭貨款(公積金貸款)制度的推出,極大地刺激了人們的消費慾望,擴大了內需,有效地拉動了經濟增長。
眾所周知,按揭貨款(公積金貸款)中都實行按月等額還本付息。這個等額數是如何得來的,此外若干月後,還應歸還銀行多少本金,這些人們往往很難做到心中有數。下面就來尋求這一問題的解決辦法。
若貸款數額a0元,貸款月利率為p,還款方式每月等額還本付息a元.設第n月還款後的本金為an,那麼有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
將(*)變形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可見,{an-a/p}是一個以a1-a/p為首項,1+p為公比的等比數列。日常生活中一切有關按揭貨款的問題,均可根據此式計算。
(二)有關數列的其他應用問題
數列知識除在個人投資理財方面有較為廣泛的應用外,在企業經營管理上也是不可或缺的。讀者朋友一定做過大量的應用題吧!雖然這些應用題是從實際生活中抽象出的略高於生活的問題,但他們是數學習題中最能反映數學知識與實際生活密切關系的一類問題。因此,解答應用問題有助於我們對數學在日常生活中廣泛應用的理解和認識。下面請看北京市西城區2003年抽樣測試-高二數學試卷中的一道應用問題。
http://www.yrsx.com/Article_View.asp?ID=20&page=4
http://www.yrsx.com/Article_View.asp?ID=20&page=5
③ 數學在實際生活中的意義與用途
數學是一門很有用的學科。自從人類出現在地球上那天起,人們便在認識世界、改造世界的同時對數學有了逐漸深刻的了解。早在遠古時代,就有原始人「涉獵計數」與「結繩記事」等種種傳說。可見,「在早期一些古代文明社會中已產生了數學的開端和萌芽」(引自《古今數學思想》第一冊P1——作者注)。「在BC3000年左右巴比倫和埃及數學出現以前,人類在數學上沒有取得更多的進展」,而「在BC600—BC300年間古希臘學者登場後」,數學便開始「作為一名有組織的、獨立的和理性的學科」(引自《古今數學思想》第一冊P1——作者注)登上了人類發展史的大舞台。
如今,數學知識和數學思想在工農業生產和人們日常生活中有極其廣泛的應用。譬如,人們購物後須記賬,以便年終統計查詢;去銀行辦理儲蓄業務;查收各住戶水電費用等,這些便利用了算術及統計學知識。此外,社區和機關大院門口的「推拉式自動伸縮門」;運動場跑道直道與彎道的平滑連接;底部不能靠近的建築物高度的計算;隧道雙向作業起點的確定;摺扇的設計以及黃金分割等,則是平面幾何中直線圖形的性質及解Rt三角形有關知識的應用。由於這些內容所涉及的高中數學知識不是很多,在此就不贅述了。
由此可見,古往今來,人類社會都是在不斷了解和探究數學的過程中得到發展進步的。數學對推動人類文明起了舉足輕重的作用。
下面,我就緊扣高中數學學習的實際,從函數、不等式、數列、立體幾何和解析幾何等五方面,簡明扼要地談一下數學知識在生產生活中的應用。
http://www.yrsx.com/Article_View.asp?id=20
第一部分 函數的應用
我們所學過的函數有:一元一次函數、一元二次函數、分式函數、無理函數、冪、指、對數函數及分段函數等八種。這些函數從不同角度反映了自然界中變數與變數間的依存關系,因此代數中的函數知識是與生產實踐及生活實際密切相關的。這里重點講前兩類函數的應用。
一元一次函數的應用
一元一次函數在我們的日常生活中應用十分廣泛。當人們在社會生活中從事買賣特別是消費活動時,若其中涉及到變數的線性依存關系,則可利用一元一次函數解決問題。
例如,當我們購物、租用車輛、入住旅館時,經營者為達到宣傳、促銷或其他目的,往往會為我們提供兩種或多種付款方案或優惠辦法。這時我們應三思而後行,深入發掘自己頭腦中的數學知識,做出明智的選擇。俗話說:「從南京到北京,買的沒有賣的精。」我們切不可盲從,以免上了商家設下的小圈套,吃了眼前虧。
下面,我就為大家講述我親身經歷的一件事。
隨著優惠形式的多樣化,「可選擇性優惠」逐漸被越來越多的經營者採用。一次,我去「物美」超市購物,一塊醒目的牌子吸引了我,上面說購買茶壺、茶杯可以優惠,這似乎很少見。更奇怪的是,居然有兩種優惠方法:(1)賣一送一(即買一隻茶壺送一隻茶杯);(2)打九折(即按購買總價的90% 付款)。其下還有前提條件是:購買茶壺3隻以上(茶壺20元/個,茶杯5元/個)。由此,我不禁想到:這兩種優惠辦法有區別嗎?到底哪種更便宜呢?我便很自然的聯想到了函數關系式,決心應用所學的函數知識,運用解析法將此問題解決。
我在紙上寫道:
設某顧客買茶杯x只,付款y元,(x>3且x∈N),則
用第一種方法付款y1=4×20+(x-4)×5=5x+60;
用第二種方法付款y2=(20×4+5x)×90%=4.5x+72.
接著比較y1y2的相對大小.
設d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然後便要進行討論:
當d>0時,0.5x-12>0,即x>24;
當d=0時,x=24;
當d<0時,x<24.
綜上所述,當所購茶杯多於24隻時,法(2)省錢;恰好購買24隻時,兩種方法價格相等;購買只數在4—23之間時,法(1)便宜.
可見,利用一元一次函數來指導購物,即鍛煉了數學頭腦、發散了思維,又節省了錢財、杜絕了浪費,真是一舉兩得啊!
http://www.yrsx.com/Article_View.asp?ID=20&page=1
二、一元二次函數的應用
在企業進行諸如建築、飼養、造林綠化、產品製造及其他大規模生產時,
其利潤隨投資的變化關系一般可用二次函數表示。企業經營者經常依據這方面的知識預計企業發展和項目開發的前景。他們可通過投資和利潤間的二次函數關系預測企業未來的效益,從而判斷企業經濟效益是否得到提高、企業是否有被兼並的危險、項目有無開發前景等問題。常用方法有:求函數最值、某單調區間上最值及某自變數對應的函數值。
三、三角函數的應用
三角函數的應用極其廣泛,這里僅講最簡的也是最常見的一類——銳角三角函數的應用:「山林綠化」問題。
在山林綠化中, 須在山坡上等距離植樹,且山坡上兩樹之間的距離投影到平地上須同平地樹木間距保持一致。(如左圖)因此,林業人員在植樹前,要計算出山坡上兩樹之間的距離。這便要用到銳角三角函數的知識。
如右圖,令C=90 ,B=α ,平地距為d,山坡距為r,則secα=secB =AB/CB=r/d. ∴r=secα×d這個問題至此便迎刃而解了。
http://www.yrsx.com/Article_View.asp?ID=20&page=2
第二部分 不等式的應用
日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前兩類不等式的應用與其對應函數及方程的應用如出一轍,而平均值不等式在生產生活中起到了不容忽視的作用。下面,我主要談一下均值不等式和均值定理的應用。
在生產和建設中,許多與最優化設計相關的實際問題通常可應用平均值不等式來解決。平均值不等式知識在日常生活中的應用,筆者雖未親身經歷,但從電視、報紙等新聞媒體及我們所做的應用題中不難發現,均值不等式和極值定理通常可有如下幾方面的極其重要的應用:(表後重點分析「包裝罐設計」問題)
實踐活動 已知條件 最優方案 解決辦法
設計花壇綠地 周長或斜邊 面積最大 極值定理一
經營成本 各項費用單價及銷售量 成本最低 函數、極值定理二
車船票價設計 航行里程、限載人數、 票價最低 用極值定理二求出
速度、各項費用及相應 最低成本,再由此
比例關系 計算出最低票價
(票價=最低票價+ +平均利潤)
包裝罐設計 (見表後) (見表後) (見表後)
包裝罐設計問題
1、「白貓」洗衣粉桶
「白貓」洗衣粉桶的形狀是等邊圓柱(如右圖所示),
若容積一定且底面與側面厚度一樣,問高與底面半徑是
什麼關系時用料最省(即表面積最小)?
分析:容積一定=>лr h=V(定值)
=>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)
≥2л3 (r h) /4 =3 2лV (當且僅當r =rh/2=>h=2r時取等號),
∴應設計為h=d的等邊圓柱體.
2、「易拉罐」問題
圓柱體上下第半徑為R,高為h,若體積為定值V,且上下底
厚度為側面厚度的二倍,問高與底面半徑是什麼關系時用料最
省(即表面積最小)?
分析:應用均值定理,同理可得h=2d(計算過程請讀者自己
寫出,本文從略)∴應設計為h=2d的圓柱體.
事實上,不等式特別是均值不等式在生產實踐中的應用遠不止這些,在這里就不一一列舉了。
http://www.yrsx.com/Article_View.asp?ID=20&page=3
第三部分 數列的應用
在實際生活和經濟活動中,很多問題都與數列密切相關。如分期付款、個人投資理財以及人口問題、資源問題等都可運用所學數列知識進行分析,從而予以解決。
本文重點分析等差數列、等比數列在實際生活和經濟活動中的應用。
(一)按揭貨款中的數列問題
隨著中央推行積極的財政政策,購置房地產按揭貨款(公積金貸款)制度的推出,極大地刺激了人們的消費慾望,擴大了內需,有效地拉動了經濟增長。
眾所周知,按揭貨款(公積金貸款)中都實行按月等額還本付息。這個等額數是如何得來的,此外若干月後,還應歸還銀行多少本金,這些人們往往很難做到心中有數。下面就來尋求這一問題的解決辦法。
若貸款數額a0元,貸款月利率為p,還款方式每月等額還本付息a元.設第n月還款後的本金為an,那麼有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
將(*)變形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可見,{an-a/p}是一個以a1-a/p為首項,1+p為公比的等比數列。日常生活中一切有關按揭貨款的問題,均可根據此式計算。
(二)有關數列的其他應用問題
數列知識除在個人投資理財方面有較為廣泛的應用外,在企業經營管理上也是不可或缺的。讀者朋友一定做過大量的應用題吧!雖然這些應用題是從實際生活中抽象出的略高於生活的問題,但他們是數學習題中最能反映數學知識與實際生活密切關系的一類問題。因此,解答應用問題有助於我們對數學在日常生活中廣泛應用的理解和認識。下面請看北京市西城區2003年抽樣測試-高二數學試卷中的一道應用問題。
http://www.yrsx.com/Article_View.asp?ID=20&page=4
http://www.yrsx.com/Article_View.asp?ID=20&page=5
④ 一篇生活中的數學小論文
生活中的數學「對我來說什麼都可以變成數學。」數學家笛卡兒曾這樣說過。「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,日用之繁,無處不用數學。」我國家喻戶曉的數學家華羅庚也曾下過這樣的結論。的確,正如兩位前輩所說,數學與我們的生活息息相關,數學的腳步無處不在。 2006年已經接近尾聲了,迎面而來的是新的一年——2007年。行走在繁華的大街上,隨處可見商家打出的「滿400送400」,「滿300送300」的促銷招牌。「這真實惠!」消費者們蜂擁而至,商場里人山人海,搶購成風。此情此景,真讓人以為回到了物資短缺的年代。實際上商家心裡早打好了如意算盤。俗話說:只有買虧,沒有賣虧,「滿400送400元券」只是商家的一種促銷手段,其中暗藏著數學問題,暗藏著商業機密,暗藏著許多玄機。 去年,我們一家三口,也在新年之際在商場里「血拚」,當時是滿400送400元券。我們先用980元買了一件蘋果牌的皮夾克給爸爸,送來了800元購物券。我們並沒有過分浪費,花了300元券買了一件298元藏青色的李寧牌棉襖,又用剩下的500元券中的488買了一件太子龍男裝(由於是購物券,不設找零)。到底便宜了多少?298+488+980=1766(元)——這是原來不打折時需要花的錢。980/1776,所打的折扣大約是五五折。 我的姑姑和姑夫從前也做過服裝生意,我對服裝的進貨成本與銷售價的關系也有些了解。服裝的進價一般只佔建議零售價的20%~30%。隨著競爭的加劇和商場促銷力度越來越大,為了保持利潤,商家或廠家還不斷地把衣服的建議零售價標高。就如前幾天在電視中看見的一位消費者所說,某一品牌同一款式的一條尼料的褲子,三年前建議零售價還只是299元,今年標價變成了999元。這么一算,進價大概只有商場里售價的10%~20%。就算打了五五折,商家還穩賺三至五成的毛利。 廣告,廣告,便是廣而告之。許多人一窩蜂似的趕來搶購、血拚,商場的人流量多了,商品銷售量也快速增長。就按人流量是平時的三倍算,這里又出現了一個數學問題。假設平時人流量少時,一件商品按8折銷售。8折減去進價2折,標價部分的6成就成了毛利。雖然現在「滿400送400元券」時同一件商品可能只賺三至五成,但銷量起碼是平時的三倍以上。就按三成毛利和三倍銷量來計算,3×3=9,與平時的6成毛利相比,一天能多賺50%。雖說這樣賣每件單位毛利率有所下降,毛利額卻因銷售量的增加而增長,更因大量銷售而加快了資金周轉,帶來額外的收益。 商品標價和促銷中有數學,購物消費中有數學,裝修房子有數學,織毛衣中有數學……總而言之,數學在現實生活中無處不在!
⑤ 數學的作用有哪些
數學的作用有以下幾種:
1、滿足人們日常生活、工作中計數、計算以及推理需要。在人們的日常生活和工作做缺不了對事物的計數、各種數量之間的計算以及比較相關的量,這里都需要用到數學的知識和思想方法。
2、鍛煉人的思維水平以及思維品質,如計算能力、邏輯思維能力、空間想像能力。數學科學是一種嚴謹、縝密的科學,所以在學習數學科學知識的同時也在鍛煉人的思維。
3、數學學習可以為進一步學習自然科學和社會科學提供必要的技術支持。數學作為認識世界的基礎性學科,它可以如同計算機的系統,可以在思想上可技術上支持不同應用科學的深入發展。
4、學習數學可以體會和學習數學工作者身上體現出來的科學、嚴謹的科學態度和作風,提高自身科學素養。尤其是歷史上無數為數學發展作出巨大貢獻的數學家,通過學習他們所創造的知識可以深刻體會他們所創造出來知識的巨大力量和人格力量,使自己的精神得到震撼和熏陶。
⑥ 數學小論文
生活中的數學
黃哲超 金華市紅湖路小學六(2)班
指導老師 盛小蘭
摘要:本文通過對生活中商品促銷的實例分析,得出數學其實與我們的生活息息相關,數學在現實生活中無處不在的結論。
關鍵詞:數學;生活;促銷
「對我來說什麼都可以變成數學。」數學家笛卡兒曾這樣說過。「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,日用之繁,無處不用數學。」我國家喻戶曉的數學家華羅庚也曾下過這樣的結論。的確,正如兩位前輩所說,數學與我們的生活息息相關,數學的腳步無處不在。
2006年已經接近尾聲了,迎面而來的是新的一年——2007年。行走在繁華的大街上,隨處可見商家打出的「滿400送400」,「滿300送300」的促銷招牌。「這真實惠!」消費者們蜂擁而至,商場里人山人海,搶購成風。此情此景,真讓人以為回到了物資短缺的年代。實際上商家心裡早打好了如意算盤。俗話說:只有買虧,沒有賣虧,「滿400送400元券」只是商家的一種促銷手段,其中暗藏著數學問題,暗藏著商業機密,暗藏著許多玄機。
去年,我們一家三口,也在新年之際在商場里「血拚」,當時是滿400送400元券。我們先用980元買了一件蘋果牌的皮夾克給爸爸,送來了800元購物券。我們並沒有過分浪費,花了298元券買了一件藏青色的李寧牌棉襖,又用剩下的500元券中的488買了一件太子龍男裝(由於是購物券,不設找零)。到底便宜了多少?298+488+980=1766(元)——這是原來不打折時需要花的錢。980/1776,所打的折扣大約是五五折。
我的姑姑和姑夫從前也做過服裝生意,我對服裝的進貨成本與銷售價的關系也有些了解。服裝的進價一般只佔建議零售價的20%~30%。隨著競爭的加劇和商場促銷力度越來越大,為了保持利潤,商家或廠家還不斷地把衣服的建議零售價標高。就如前幾天在電視中看見的一位消費者所說,某一品牌同一款式的一條尼料的褲子,三年前建議零售價還只是299元,今年標價變成了999元。這么一算,進價大概只有商場里售價的10%~20%。就算打了五五折,商家還穩賺三至五成的毛利。
廣告,廣告,便是廣而告之。許多人一窩蜂似的趕來搶購、血拚,商場的人流量多了,商品銷售量也快速增長。就按人流量是平時的三倍算,這里又出現了一個數學問題。假設平時人流量少時,一件商品按8折銷售。8折減去進價2折,標價部分的6成就成了毛利。雖然現在「滿400送400元券」時同一件商品可能只賺三至五成,但銷量起碼是平時的三倍以上。就按三成毛利和三倍銷量來計算,3×3=9,與平時的6成毛利相比,一天能多賺50%。雖說這樣賣每件單位毛利率有所下降,毛利額卻因銷售量的增加而增長,更因大量銷售而加快了資金周轉,帶來額外的收益。
商品標價和促銷中有數學,購物消費中有數學,裝修房子有數學,織毛衣中有數學……總而言之,數學在現實生活中無處不在!
上文利用了什麼數學知識
⑦ 數學跟經濟有什麼關系
數學跟經濟有直接的關系。
數學也有很多的分支學科,有三高,數學分析、高等代數、解析幾何。任何一門學科都會應用到現代技術和生活中,應用到網路里,應用到社會活動中,范圍如此之大,哪一方面不是直接跟經濟相關聯。
就拿生活中最簡單最日常的事情來說,小學生數學中的算術加減乘除,你如果購物賣東西,不會使用行嗎?