『壹』 小學數學簡易方程知識點
一、簡易方程
1.方程:含有未知數的等式叫做方程。
注意:(1)方程是等式,又含有未知數,兩者缺一不可。
(2)方 程 和 算 術 式 不 同 。 算 術 式 是 一 個 式 子 ,它 由 運 算 符 號 和 已 知 數 組 成 ,它 表 示 未 知 數。方程是一個等式,在方程里的未知數可以參加運算,並且只有當未知數為特定的數值時, 方程才成立。
2.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。
二、解方程
1.解方程:求方程的解的過程叫做解方程。
2.解方程的步驟:
(1)去分母;
(2)去括弧;
(3)移項;
(4)合並同類項;
(5)系數化為「1」;
(6)檢驗根。
三、列方程解應用題
1.列方程解應用題的意義
用方程式去解答應用題,求得應用題的未知量的方法,可以更清楚題意,從而解決問題。
2.列方程解答應用題的步驟
(1)弄清題意,確定未知數並用 x表示;
(2)找出題中的數量之間的相等關系;
(3)列方程,解方程;
(4)檢查或驗算,寫出答案。
3.列方程解應用題的方法
(1)綜合法:先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,再找出它
們之間的等量關系,進而列出方程。這是從部分到整體的一種思維過程,其思考方向是從已 知到未知。
(2)分析法:先找出等量關系,再根據具體建立等量關系的需要,把應用題中已知數(量) 和所設的未知數(量)列成有關的代數式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
『貳』 五年級上冊數學簡易方程是什麼
五年級上冊數學簡易方程是2x表示,兩個x相加,或者是2乘x。
方程是指含有未知數的等式,是表示兩個數學式,如兩個數、函數、量、運算之間相等關系的一種等式,使等式成立的未知數的值稱為解或根,求方程的解的過程稱為解方程。
發展歷史
人們對方程的研究可以追溯到遠古時期,大約3600多年前,古埃及人寫在紙草書上的數學問題中就涉及了含有未知數的等式,公元825年左右,中亞細亞的數學家阿爾—花拉子米曾寫過一本《對消與還原》的書,重點討論方程的解法,這本書對後來數學的發展產生了很大的影響。
中國對方程的研究也有著悠久的歷史,中國古代數學著作九章算術大約成書於公元前200到50年,其中有專門以方程命名的一章,這一章中所說的方程實際上就是現在人們所說的一次方程組,方程組由幾個方程共同組合而成,它的解是這幾個方程的公共解。
『叄』 什麼是簡易方程
簡易方程
第八部分
簡易方程第九部
數學術語
1.定義:方程ax±(×÷)b=c(a,b,c是常數)叫做簡易方程。
2.解簡易方程的基本方法是:將方程兩邊同時加上(或減去)同一個適當的數;將方程兩邊同時乘以(或除以)同一個適當的數。最終求出問題的解。
判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個數是否「適當」,關鍵是看運算的第一步能否使方程的一邊只含有帶有未知數的那個數,第二步能否使方程的一邊只剩下未知數,即求出結果。
列簡易方程解應用題是以列代數式為基礎的,關鍵是在弄清楚題目語句中各種數量的意義及相互關系的基礎上,選取適當的未知數,然後把與數量有關的語句用代數式表示出來,最後利用題中的相等關系列出方程並求解。
方程:含有未知數的等式。
使方程左右兩邊相等的未知數的值,叫做方程的「解」。例如:x=150就是方程100+x=250的解。求方程的解的過程叫做解方程。
如果兩個方程的解相同,那麼這兩個方程叫做同解方程。
方程的同解原理:
⒈方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
⒉方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
做一元一次方程應用題的重要方法:
⒈認真審題
⒉分析已知和未知的量
⒊找一個等量關系
⒋設未知數
⒌列方程
⒍解方程
⒎檢驗
⒏寫出答
『肆』 小學數學階段主要的數學思想
數學基本邏輯,就是規定的一些數學定理,小學加法,十進制,乘法口訣,除法運算。
觀察法,通過觀察了解圖形。
面積公式,體積公式。
畫圖法(路程問題)。分組法。(雞兔同籠)
轉換思想:例:單位「1」,簡易方程。
『伍』 初中數學思想和方法有哪些
所謂數學思想方法是對數學知識的本質認識,是從某些具體的數學內容和對數學的認識過程中提煉上升的數學觀點,他在認識活動中被反復運用,帶有普遍的指導意義,是建立數學和用數學解決問題的指導思想;是在數學地提出問題、解決問題(包括數學內部問題和實際問題)過程中,所採用的各種方式、手段、途徑等。初中數學中常用的數學思想方法有:化歸思想方法、分類思想方法、數形結合的思想方法、函數思想方法、方程思想方法、模型思想方法、統計思想方法、用字母代替數的思想方法、運動變換的思想方法等。
『陸』 初中數學學習方法:「方程」的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
『柒』 簡易方程的性質是什麼
1.會解簡易方程,並能用簡易方程解簡單的應用題; 2.通過代數法解簡易方程進一步培養學生的運算能力,發展學生的應用意識; 3.通過解決問題的實踐,激發學生的 學習 興趣,培養學生的鑽研精神。 教學建議 一、 教學重點 、難點 重點:簡易方程的解法; 難點:根據實際問題中的數量關系正確地列出方程並求解。 二、重點、難點分析 解簡易方程的基本方法是:將方程兩邊同時加上(或減去)同一個適當的數;將方程兩邊同時乘以(或除以)同一個適當的數。最終求出問題的解。 判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個數是否「適當」,關鍵是看運算的第一步能否使方程的一邊只含有帶有未知數的那個數,第二步能否使方程的一邊只剩下未知數,即求出結果。 列簡易方程解應用題是以列代數式為基礎的,關鍵是在弄清楚題目語句中各種數量的意義……
『捌』 解簡易方程的基本方法
根據四則運算中各部分之間的關系,看未知數屬於哪部分,然後根據相應的運算關系,求出該部分,即「X」。
『玖』 簡易方程是什麼
方程ax±(×÷b)=c(a,b,c是常數)叫做簡易方程。
方程(equation)是指含有未知數的等式。是表示兩個數學式(如兩個數、函數、量、運算)之間相等關系的一種等式,使等式成立的未知數的值稱為「解」或「根」。求方程的解的過程稱為「解方程」。
方程與等式的關系
方程一定是等式,但等式不一定是方程。
例子:a+b=13符合等式,有未知數。這個是等式,也是方程。
1+1=2,100×100=10000。這兩個式子符合等式,但沒有未知數,所以都不是方程。
在定義中,方程一定是等式,但是等式可以有其他的,比如上面舉的1+1=2,100×100=10000,都是等式,顯然等式的范圍大一點。
『拾』 簡易方程的學習要點及知識點.
方程是指含有未知數的等式。是表示兩個數學式(如兩個數、函數、量、運算)之間相等關系的一種等式,使等式成立的未知數的值稱為「解」或「根」。求方程的解的過程稱為「解方程」。
通過方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多種形式,如一元一次方程、二元一次方程、一元二次方程等等,還可組成方程組求解多個未知數。
在數學中,一個方程是一個包含一個或多個變數的等式的語句。 求解等式包括確定變數的哪些值使得等式成立。 變數也稱為未知數,並且滿足相等性的未知數的值稱為等式的解。
方程中文一詞出自古代數學專著《九章算術》,其第八卷即名「方程」。「方」意為並列,「程」意為用算籌表示豎式。
方程一定是等式,但等式不一定是方程。
例子:a+b=13 符合等式,有未知數。這個是等式,也是方程。
1+1=2 ,100×100=10000。這兩個式子符合等式,但沒有未知數,所以都不是方程。
在定義中,方程一定是等式,但是等式可以有其他的,比如上面舉的1+1=2,100×100=10000,都是等式,顯然等式的范圍大一點。