導航:首頁 > 數字科學 > 數學還有哪些定理

數學還有哪些定理

發布時間:2022-07-16 01:31:49

1. 數學世界前五大公理是什麼數學的所有定理

歐幾里德的《幾何原本》,一開始歐幾里德就劈頭蓋臉地給出了23個定義,5個公設,5個公理。其實他說的公社就是我們後來所說的公理,他的公理是一些計算和證明用到的方法(如公理1:等於同一個量的量相等,公理5:整體大於局部等)他給出的5個公設倒是和幾何學非常緊密的,也就是後來我們教科書中的公理。分別是:
公設1:任意一點到另外任意一點可以畫直線
公設2:一條有限線段可以繼續延長
公設3:以任意點為心及任意的距離可以畫圓
公設4:凡直角都彼此相等
公設5:同平面內一條直線和另外兩條直線相交,若在某一側的兩個內角和小於二直角的和,則這二直線經無限延長後在這一側相交。
在這五個公設理里,歐幾里德並沒有幼稚地假定定義的存在和彼此相容。亞里士多德就指出,頭三個公設說的是可以構造線和圓,所以他是對兩件東西頓在性的聲明。事實上歐幾里德用這種構造法證明很多命題。第五個公設非常羅嗦,沒有前四個簡潔好懂。聲明的也不是存在的東西,而是歐幾里德自己想的東西。這就足以說明他的天才。從歐幾里德提出這個公理到1800年這大約2100年的時間里雖然人們沒有懷疑整個體系的正確性,但是對這個第五公設卻一直耿耿於懷。很多數學家想把這個公設從這個體系中去掉,但是幾經努力而無果,無法從其他公設中推到處第五公設。
同時數學家們也注意到了這個公設既是對平行概念的論述(故稱之為平行公理)也是對三角形內角和的論述(即內角和公理)。高斯對這一點是非常明白的,他認為歐幾里德幾何式物質空間的幾何,1799年他說給他的朋友的一封信中表現了他相信平行公里不能從其他的公設中推導出來,他開始認真從事開發一個新的能夠應用的幾何。1813年,發展了他幾何,最初稱為反歐氏幾何,後稱星空幾何,最後稱非歐幾何。在他的幾何中三角形內角可以大於180度。當然得到這樣的幾何不是高斯一人,歷史上有三個人。一個是他的搭檔,另一個是高斯的朋友的兒子獨立發現的。其中一個有趣的問題是,非歐氏幾何中過直線外一點的平行線可以無窮。

2. 初中數學有幾個定理

這可就多了,簡單說幾個,垂直平分線定理,角分線定理,平行線定理,三角形全等定理,三角形相似定理,還有就是四邊形裡面的定理,平行四邊形定理,矩形,菱形,正方形,還有圓形裡面有一大堆,太多太多,自己回去翻書吧。

3. 給人印象極深的數學定理有哪些

給人印象極深的數學定理有哪些?
面對嚴謹的數學,很多時候我們可以對一些現象進行合理的解釋,但反過來,如果有的時候我們從抽象深刻的數學定理出發可以得出一些或許,難以想像的結論,比如下面這個數學定理。
也就是毛球定理,毛球定理說的是對於一個表面垂直布滿毛發的圓球,無法把所有的毛發撫平。當然,這是非常形象的描述,並不太嚴格,用嚴格的數學語言來說,應該是二維歐式球面上不存在處處非零的光滑向量場,也就是說球面上的非零向量場必定有零點,而在這個零點處,「毛發」就無法被捋平,因為被「捋平」就意味著沒有零點。
這是一個很難想像的結論,但也是一個很好的例子,充分說明直觀的想像在數學中是非常靠不住的。由這個定理,我們可以立即得到很多有意思的結論,比如在地球上,每時每刻必定有某處的水平風速為零,因為宏觀上水平風正好可以看作向量場,那麼它必定在某一點為零。
這樣的解釋實際上並不是非常嚴格的,但內在的數學原理確實相通的。

4. 告訴我一些數學有名定律,如牛頓定律。名字就行,解說更好,謝謝

高斯定理

:矢量分析的重要定理之一。電場方面的例子:穿過一封閉曲面的電通量與封閉曲面所包圍的電荷量成正比。

費馬大定理
:當整數n
>
2時,關於x,
y,
z的不定方程

x^n
+
y^n
=
z^n.


(x
,
y)
=
(x
,
z)
=
(y
,
z)
=
1[n是一個奇素數]x>0,y>0,z>0,且xyz≠0)無整數解。

這個你可以看看高等數學,裡面很多,還有也可以看看關於數論方面的,裡面有很多很著名的定理呢

5. 著名的高中數學定理有哪些

買那本華東師范大學出版社的《高中數學競賽多功能題典》,後面有重要的競賽的定理,概念
。1.平面幾何
幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的幾個特殊點:旁心、費馬點,歐拉線。
幾何不等式。
幾何極值問題。
幾何中的變換:對稱、平移、旋轉。
圓的冪和根軸。
面積方法,復數方法,向量方法,解析幾何方法。
2.代數周期函數,帶絕對值的函數。
三角公式,三角恆等式,三角方程,三角不等式,反三角函數。
遞歸,遞歸數列及其性質,一階、二階線性常系數遞歸數列的通項公式。
第二數學歸納法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函數。
復數及其指數形式、三角形式,歐拉公式,棣莫弗定理,單位根。
多項式的除法定理、因式分解定理,多項式的相等,整系數多項式的有理根*,多項式的插值公式*。
n次多項式根的個數,根與系數的關系,實系數多項式虛根成對定理。
函數迭代,簡單的函數方程*
3.
初等數論
同餘,歐幾里得除法,裴蜀定理,完全剩餘類,二次剩餘,不定方程和方程組,高斯函數[x],費馬小定理,格點及其性質,無窮遞降法,歐拉定理*,孫子定理*。
4.組合問題圓排列,有重復元素的排列與組合,組合恆等式。
組合計數,組合幾何。
抽屜原理。
容斥原理。
極端原理。
圖論問題。
集合的劃分。
平面凸集、凸包及應用*。

6. 定理有哪些

共3個含義
定理(英語:Theorem)是經過受邏輯限制的證明為真的陳述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。一個定理陳述一個給定類的所有(全稱)元素一種不變的關系,這些元素可以是無窮多,它們在任何時刻都無區別地成立,而沒有一個例外。(例如:某些是,某些是,就不能算是定理)。猜想是相信為真但未被證明的數學敘述,或者叫做命題,當它經過證明後便是定理。猜想是定理的來源,但並非唯一來源。一個從其他定理引伸出來的數學敘述可以不經過成為猜想的過程,成為定理。 如上所述,定理需要某些邏輯框架,繼而形成一套公理(公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。 在命題邏輯,所有已證明的敘述都稱為定理。

各種數學敘述(按重要性來排列)
引理(又稱輔助定理,補理)-某個定理的證明的一部分的敘述。它並非主要的結果。引理的證明有時還比定理長,例如舒爾引理。

推論-一個從定理隨之而即時出現的敘述。若命題B可以很快、簡單地推導出命題A,命題A為命題B的推論。

命題

定理

數學原理

結構
定理一般都有許多條件。然後有結論——一個在條件下成立的數學敘述。通常寫作「若條件,則結論」。用符號邏輯來寫就是條件→結論。而當中的證明不視為定理的成分。

逆定理
若存在某敘述為,其逆敘述就是。逆敘述成立的情況是,否則通常都是倒果為因,不合常理。若果敘述是定理,其成立的逆敘述就是逆定理。

若某敘述和其逆敘述都為真,條件必要且充足。

若某敘述為真,其逆敘述為假,條件充足。

若某敘述為假,其逆敘述為真,條件必要。

邏輯中的定理
邏輯語言中的定理表示的是一個公式集合,並且該公式集合中的每一個公式都代表著知識的一個片段,由此我們可以給定理一個更准確的表達(這里所說的定理

7. 數學必備的定理有哪些

是初中的還是小學的?
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊

閱讀全文

與數學還有哪些定理相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:893
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1401
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070