① 數學常用的數學思想方法有哪些
數學常用的數學思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類思想,類比思想,函數的思想,方程的思想,無逼近思想等等。
1.用字母表示數的思想:這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。
2.數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
3.轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
4.分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
5.類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發思考,不僅是解決日常生活中大量問題的基礎,而且是進行科學研究和發明創造的有力工具.
6.函數的思想 :辯證唯物主義認為,世界上一切事物都是處在運動、變化和發展的過程中,這就要求我們教學中重視函數的思想方法的教學。
7.方程:是初中代數的主要內容.初中階段主要學習了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關系,通過設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用。
② 小學數學基本基本思想
小學數學「基本思想」主要是指演繹和歸納,這應當是整個數學教學的主線,是最上位的思想。 演繹和歸納不是矛盾的,其教學也不是矛盾的,通過歸納來預測結果,然後通過演繹來驗證結果。在具體的問題中,會涉及到數學抽象、數學模型、等量替換、數形結合等數學思想, 但最上位的思想還是演繹和歸納。之所以用「基本思想」而不用基本思想方法,就是要與換元法、遞歸法、配方法等具體的數學方法區別。每一個具體的方法可能是重要的,但它們是個案,不具有一般性。作為一種思想來掌握是不必要的,經過一段時間,學生很可能就忘卻了。這里所說的思想,是大的思想,是希望學生領會之後能夠終生受益的那種思想方法。
③ 數學的基本思想具體有哪些
所謂數學思想,是指現實世界的空間形式和數量關系反映到人們的意識之中,經過思維活動而產生的結果。數學思想是對數學事實與理論經過概括後產生的本質認識;基本數學思想則是體現或應該體現於基礎數學中的具有奠基性、總結性和最廣泛的數學思想,它們含有傳統數學思想的精華和現代數學思想的基本特徵,並且是歷史地發展著的。通過數學思想的培養,數學的能力才會有一個大幅度的提高。掌握數學思想,就是掌握數學的精髓。 函數與方程思想 函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。 笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。 函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題,經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系,構造出函數原型。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。 函數知識涉及的知識點多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點。我們應用函數思想的幾種常見題型是:遇到變數,構造函數關系解題;有關的不等式、方程、最小值和最大值之類的問題,利用函數觀點加以分析;含有多個變數的數學問題中,選定合適的主變數,從而揭示其中的函數關系;實際應用問題,翻譯成數學語言,建立數學模型和函數關系式,應用函數性質或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問題也可以用函數方法解決。 數形結合思想 「數無形,少直觀,形無數,難入微」,利用「數形結合」可使所要研究的問題化難為易,化繁為簡。把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何里最常用。例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。 分類討論思想 當一個問題因為某種量的情況不同而有可能引起問題的結果不同時,需要對這個量的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要討論a的取值情況。 方程思想 當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。 整體思想 從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用,整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。 轉化思想 在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。三角函數,幾何變換,因式分解,解析幾何,微積分,乃至古代數學的尺規作等數學理論無不滲透著轉化的思想。常見的轉化方式有:一般 特殊轉化,等價轉化,復雜 簡單轉化,數形轉化,構造轉化,聯想轉化,類比轉化等。 隱含條件思想 沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。 類比思想 把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。 建模思想 為了描述一個實際現象更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。 化歸思想 化歸思想就是化未知為已知,化繁為簡,化難為易.如將分式方程化為整式方程,將代數問題化為幾何問題,將四邊形問題轉化為三角形問題等.實現這種轉化的方法有:待定系數法,配方法,整體代入法以及化動為靜,由抽象到具體等轉化思想 歸納推理思想 由某類事物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者由個別事實概括出一般結論的推理稱為歸納推理(簡稱歸納),簡言之,歸納推理是由部分到整體,由個別到一般的推理 另外,還有概率統計思想等數學思想,例如概率統計思想是指通過概率統計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。
祝開心!希望能幫到你~~
④ 數學思想方法有哪些
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師要善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。
⑤ 七大數學思想
第一:函數與方程思想
(1)函數思想是對函數內容在更高層次上的抽象,概括與提煉,在研究方程、不等式、數列、解析幾何等其他內容時,起著重要作用
(2)方程思想是解決各類計算問題的基本思想,是運算能力的基礎
高考把函數與方程思想作為七種重要思想方法重點來考查
第二:數形結合思想:
(1)數學研究的對象是數量關系和空間形式,即數與形兩個方面
(2)在一維空間,實數與數軸上的點建立一一對應關系
在二維空間,實數對與坐標平面上的點建立一一對應關系
數形結合中,選擇、填空側重突出考查數到形的轉化,在解答題中,考慮推理論證嚴密性,突出形到數的轉化
第三:分類與整合思想
(1)分類是自然科學乃至社會科學研究中的基本邏輯方法
(2)從具體出發,選取適當的分類標准
(3)劃分只是手段,分類研究才是目的
(4)有分有合,先分後合,是分類整合思想的本質屬性
(5)含字母參數數學問題進行分類與整合的研究,重點考查學生思維嚴謹性與周密性
第四:化歸與轉化思想
(1)將復雜問題化歸為簡單問題,將較難問題化為較易問題,將未解決問題化歸為已解決問題
(2)靈活性、多樣性,無統一模式,利用動態思維,去尋找有利於問題解決的變換途徑與方法
(3)高考重視常用變換方法:一般與特殊的轉化、繁與簡的轉化、構造轉化、命題的等價轉化
第五: 特殊與一般思想
(1)通過對個例認識與研究,形成對事物的認識
(2)由淺入深,由現象到本質、由局部到整體、由實踐到理論
(3)由特殊到一般,再由一般到特殊的反復認識過程
(4) 構造特殊函數、特殊數列,尋找特殊點、確立特殊位置,利用特殊值、特殊方程
(5) 高考以新增內容為素材,突出考查特殊與一般思想必成為命題改革方向
第六:有限與無限的思想:
(1)把對無限的研究轉化為對有限的研究,是解決無限問題的必經之路
(2)積累的解決無限問題的經驗,將有限問題轉化為無限問題來解決是解決的方向
(3)立體幾何中求球的表面積與體積,採用分割的方法來解決,實際上是先進行有限次分割,再求和求極限,是典型的有限與無限數學思想的應用
(4)隨著高中課程改革,對新增內容考查深入,必將加強對有限與無限的考查
第七:或然與必然的思想:
(1)隨機現象兩個最基本的特徵,一是結果的隨機性,二是頻率的穩定性
(2)偶然中找必然,再用必然規律解決偶然
(3)等可能性事件的概率、互斥事件有一個發生的概率、相互獨立事件同時發生的概率、獨立重復試驗、隨機事件的分布列、數學期望是考查的重點
⑥ 請問大家,什麼是數學思想,或者說數學思想包含哪些內容
所謂數學思想,是指現實世界的空間形式和數量關系反映到人們的意識之中,經過思維活動而產生的結果。數學思想是對數學事實與理論經過概括後產生的本質認識;基本數學思想則是體現或應該體現於基礎數學中的具有奠基性、總結性和最廣泛的數學思想,它們含有傳統數學思想的精華和現代數學思想的基本特徵,並且是歷史地發展著的。
⑦ 高中數學的幾大思想
1、函數方程思想
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型,然後通過解方程(組)或不等式(組)來使問題獲解。有時,還需要函數與方程的互相轉化、接軌,達到解決問題的目的。
笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的等等;不等式問題也與方程是近親,密切相關。
2、數形結合思想
「數無形,少直觀,形無數,難入微」,利用「數形結合」可使所要研究的問題化難為易,化繁為簡。把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何里最常用。
例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。
3、分類討論思想
當一個問題因為某種量或圖形的情況不同而有可能引起問題的結果不同時,需要對這個量或圖形的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要分類討論a的取值情況。
4、方程思想
當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。
5、整體思想
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。
6、分類與整合思想
(1)分類是自然科學乃至社會科學研究中的基本邏輯方法
(2)從具體出發,選取適當的分類標准
(3)劃分只是手段,分類研究才是目的
(4)有分有合,先分後合,是分類整合思想的本質屬性
(5)含字母參數數學問題進行分類與整合的研究,重點考查學生思維嚴謹性與周密性
7、化歸與轉化思想
(1)將復雜問題化歸為簡單問題,將較難問題化為較易問題,將未解決問題化歸為已解決問題
(2)靈活性、多樣性,無統一模式,利用動態思維,去尋找有利於問題解決的變換途徑與方法
(3)高考重視常用變換方法:一般與特殊的轉化、繁與簡的轉化、構造轉化、命題的等價轉化
8、特殊與一般思想
(1)通過對個例認識與研究,形成對事物的認識
(2)由淺入深,由現象到本質、由局部到整體、由實踐到理論
(3)由特殊到一般,再由一般到特殊的反復認識過程
(4)構造特殊函數、特殊數列,尋找特殊點、確立特殊位置,利用特殊值、特殊方程
(5)高考以新增內容為素材,突出考查特殊與一般思想必成為命題改革方向
9、有限與無限的思想:
(1)把對無限的研究轉化為對有限的研究,是解決無限問題的必經之路
(2)積累的解決無限問題的經驗,將有限問題轉化為無限問題來解決是解決的方向
(3)立體幾何中求球的表面積與體積,採用分割的方法來解決,實際上是先進行有限次分割,再求和求極限,是典型的有限與無限數學思想的應用
(4)隨著高中課程改革,對新增內容考查深入,必將加強對有限與無限的考查
10、或然與必然的思想:
(1)隨機現象兩個最基本的特徵,一是結果的隨機性,二是頻率的穩定性
(2)偶然中找必然,再用必然規律解決偶然
(3)等可能性事件的概率、互斥事件有一個發生的概率、相互獨立事件同時發生的概率、獨立重復試驗、隨機事件的分布列、數學期望是考查的重點
11、極限思想
極限思想是微積分的基本思想,數學分析中的一系列重要概念,如函數的連續性、導數以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?」那麼可以概括地說:「數學分析就是用極限思想來研究函數的一門學科」。
⑧ 高中數學中都有哪些數學思想
第一:函數與方程思想
(1)函數思想是對函數內容在更高層次上的抽象,概括與提煉,在研究方程、不等式、數列、解析幾何等其他內容時,起著重要作用
(2)方程思想是解決各類計算問題的基本思想,是運算能力的基礎
高考把函數與方程思想作為七種重要思想方法重點來考查
第二:數形結合思想:
(1)數學研究的對象是數量關系和空間形式,即數與形兩個方面
(2)在一維空間,實數與數軸上的點建立一一對應關系
在二維空間,實數對與坐標平面上的點建立一一對應關系
數形結合中,選擇、填空側重突出考查數到形的轉化,在解答題中,考慮推理論證嚴密性,突出形到數的轉化
第三:分類與整合思想
(1)分類是自然科學乃至社會科學研究中的基本邏輯方法
(2)從具體出發,選取適當的分類標准
(3)劃分只是手段,分類研究才是目的
(4)有分有合,先分後合,是分類整合思想的本質屬性
(5)含字母參數數學問題進行分類與整合的研究,重點考查學生思維嚴謹性與周密性
第四:化歸與轉化思想
(1)將復雜問題化歸為簡單問題,將較難問題化為較易問題,將未解決問題化歸為已解決問題
(2)靈活性、多樣性,無統一模式,利用動態思維,去尋找有利於問題解決的變換途徑與方法
(3)高考重視常用變換方法:一般與特殊的轉化、繁與簡的轉化、構造轉化、命題的等價轉化
第五: 特殊與一般思想
(1)通過對個例認識與研究,形成對事物的認識
(2)由淺入深,由現象到本質、由局部到整體、由實踐到理論
(3)由特殊到一般,再由一般到特殊的反復認識過程
(4)構造特殊函數、特殊數列,尋找特殊點、確立特殊位置,利用特殊值、特殊方程
(5)高考以新增內容為素材,突出考查特殊與一般思想必成為命題改革方向
第六:有限與無限的思想:
(1)把對無限的研究轉化為對有限的研究,是解決無限問題的必經之路
(2)積累的解決無限問題的經驗,將有限問題轉化為無限問題來解決是解決的方向
(3)立體幾何中求球的表面積與體積,採用分割的方法來解決,實際上是先進行有限次分割,再求和求極限,是典型的有限與無限數學思想的應用
(4)隨著高中課程改革,對新增內容考查深入,必將加強對有限與無限的考查
第七:或然與必然的思想:
(1)隨機現象兩個最基本的特徵,一是結果的隨機性,二是頻率的穩定性
(2)偶然中找必然,再用必然規律解決偶然
(3)等可能性事件的概率、互斥事件有一個發生的概率、相互獨立事件同時發生的概率、獨立重復試驗、隨機事件的分布列、數學期望是考查的重點
以上就是高中數學教學中的數學思想,在我們的教學過程中,要注意引導學生多向這些思想上靠,靈活運用,在教與學的過程中得以體現和實踐。
希望對您有幫助,謝謝!
⑨ 四大數學思想是什麼
1、數形結合思想
數形結合思想,其「數」與「形」結合,相互滲透,把代數式的精確刻畫與幾何圖形的直觀描述相結合,使代數問題、幾何問題相互轉化,使抽象思維和形象思維有機結合. 應用數形結合思想,就是充分考查數學問題的條件和結論之間的內在聯系,既分析其代數意義又揭示其幾何意義,將數量關系和空間形式巧妙結合,來尋找解題思路,使問題得到解決. 運用這一數學思想,要熟練掌握一 些概念和運算的幾何意義及常見曲線的代數特徵.
應用數形結合的思想,應注意以下數與形的轉化:(1)集合的運算及韋恩圖;(2)函數及其圖像;(3)數列通項及求和公式的函數特徵及函數圖像;(4)方程(多指二元方程)及方程的曲線。
以形助數常用的有:藉助數軸;藉助函數圖像;藉助單位圓;藉助數式的結構特徵;藉助於解析幾何方法. 以數助形常用的有:藉助於幾何軌跡所遵循的數量關系;藉助於運算結果與幾何定理的結合.
2、分類討論思想
分類討論思想就是根據所研究對象的性質差異,分各種不同的情況予以分析解決. 分類討論題覆蓋知識點較多,利於考查學生的知識面、分類思想和技巧;同時方式多樣,具有較高的邏輯性及很強的綜 合性,樹立分類討論思想,應注重理解和掌握分類的原則、方法與技巧、做到「確定對象的全體,明確分類的 標准,分層別類不重復、不遺漏的分析討論」.
應用分類討論思想方法解決數學問題的關鍵是如何正確分類,即正確選擇一個分類標准,確保分類的科學,既不重復,又不遺漏. 如何實施正確分類,解題時需要我們首先明確討論對象和需要分類的全體,然後確定分 類標准與分類方法,再逐項進行討論,最後進行歸納小結.
常見的分類情形有:按數分類;按字母的取值范圍分類;按事件的可能情況分類;按圖形的位置特徵分類等. 分類討論思想方法依據一定的標准,對問題分類、求解,要特別注意 分類必須滿足互斥、無漏、最簡的原則.
3、函數與方程思想
函數與方程思想是最重要的一種數學思想,綜合知識多、題型多、應 用技巧多. 函數思想簡單,即將所研究的問題藉助建立函數關系式亦或構造中間函數,結合初等函數的圖像與性質,加以分析、轉化、解決有關求值、解(證)不等式、解方程以及討論參數的取值范圍等問題;方程思想即將問題中的數量關系運用數學語言轉化為方程模型加以解決. 運用函數與方程的思想時,要注意函數,方程與不等式之間的相互聯系和轉化,應做到:(1)深刻理解函數 f(x)的性質(單調性、奇偶性、周期性、最值和圖像變換),熟練掌握基本初等函數的 性質,這是應用函數思想解題的基礎.(2)掌握二次函數基本性質,二次方程實根分布條件,二次不等式的轉化。
4、轉化與化歸思想
化歸與轉化的思想,就是在研究和解決數學問題時採用某種方式,藉助某種函數性質、圖像、公式或已知條件將,問題通過變換加以轉化,進而達到解決問題的思想.
轉化是將數學命題由一種形式向另一種形式的變換過程,化歸是把待解決的問題通過某種轉化過程歸結為一類已經解決或比較容易解決的問題. 轉化與化歸思想是中學數學最基本的思想方法,堪稱數學思想的精髓,它滲透到了數學教學內容的各個領域和解 題過程的各個環節中. 轉化有等價轉化與不等價轉化. 等價轉化後的新問題與原問題實質是一樣的. 不等價轉 化則部分地改變了原對象的實質,需對所得結論進行必要的修正. 應用轉化與化歸思想解題的原則應是化難為易、化生為熟、化繁為簡,盡量是等價轉化.
常見的轉化有: 正與反的轉化、數與形的轉化、相等與不等的轉化、整體與局部的轉化、空間與平面相互轉化、復數與實數相互轉化、常量與變數的轉化、數學語言的轉化.