㈠ 數學文化是什麼意思
狹義:數學的思想、精神、方法、觀點、語言,以及它們的形成和發展。
廣義:除上述內涵以外,還包含數學家,數學史,數學美,數學教育。數學發展中的人文成分、數學與社會的聯系、數學與各種文化的關系,等等。
㈡ 數學中那個∫是什麼意思有什麼作用有什麼忌諱生活中一般用在哪裡舉例說明一下是怎麼運算的。
這個符號讀作:積分
積分通俗點講是導數的逆運算,就像乘法與除法的關系。
積分一般用來求坐標系中曲邊不規則圖形的面積,因為是高等運算,日常生活中用的頻率較少。
運算中需要注意的是積分的范圍,具體的可以拿題來舉例子。
㈢ 外招生學的數學文化與數學思維是什麼
從數學文化研究的層面分析,不同民族的數學思維方式的形成及其數學思維在民族文化中的作用是有很大差異的。這種數學思維的差異,甚至影響了不同民族理性精神的形成。
中國古代的數學是以竹棍作為工具(籌算)形成了古代先民的數學模式,這種竹棍運演方式在春秋戰國時期逐漸分化為兩個分支。
在人類地原始思維發展中,數學思維是人類最早地思維訓練,是最早的思維發展,思維模式定型的最重要,最基本的推動了。中國的《周易》作為一種民族文化的解釋方式,作為一種理性思維的模式,它只具有竹棍運演最初的64個形式,並由此形成了相互關聯的64卦的運演。又由於中國古代的哲人,都把思辨的范疇確立在社會內部的人際關系之中,於是就形成了中國文化中的實用理性。中國的實用理性沒有走向閑暇從容的抽象思辨之路(如古希臘),也沒有沉入厭棄人生的追求解脫之路(如古印度),而是執著人間世道的實用探求。這種實用理性的追求,使中國的哲學和文化一般缺乏嚴格的推理形式和抽象的理論探索。這其中的原因之一,是中國文化在《周易》思維方式的影響下,沒有形成數學的邏輯思維方式,也沒有辦法吸收數學中演繹的,形式化的邏輯思維方式。有學者指出,中國文化更欣賞和滿足於模糊籠統的整體思維和直觀思維,中國文化追求活動某種非邏輯形式分析所獲得的真理和領悟。中國古代的辯證思維非常豐富,但它是處理人生的辯證法而不是精確概念的辯證法,它是一種互補的辯證法,而不是否定的辯證法。
可以認為中國文化中的數學思維和民族思維,是與中國古代數學發生發展的歷史同時發展形成的,是具有中國文化特徵的思維方式,這樣的民族思維方式支持從古至今的華夏文明的進程。
從思維模式的層面分析,中國民族思維方式,數學思維方式的發展,可以看作是由古代數學分裂發展的兩個分支。
㈣ 數學上,∀是什麼意思∃是什麼意思
數理邏輯中的量詞:
∀:全稱量詞。表示任意的、所有的等
∃:存在量詞。表示存在的、其中某個等
㈤ 數學中「∀」和「∃」是什麼意思
∀ :全稱量詞,即存在任意的意思
∃: 存在量詞,即存在的意思
全稱量詞定義: 在數學語句中含有短語"所有"、"每一個"、"任何一個"、"任意一個""一切"等都是在指定范圍內,表示整體或全部的含義,這樣的詞叫作全稱量詞。 含有全稱量詞的命題叫作全稱命題。全稱量詞的否定是存在量詞。
注意
在某些全稱命題中,有時全稱量詞可以省略。例如稜柱是多面體,它指的是「所有稜柱都是多面體」。
1、「對所有的」、「對任意一個」等詞在邏輯中被稱為全稱量詞,記作「∀」,含有全稱量詞的命題叫做全稱命題。
對M中任意的x,有p(x)成立,記作"∀"x∈M,p(x)。
讀作:每一個x屬於M,使p(x)成立。
2、「存在一個」、「至少有一個」等詞在邏輯中被稱為存在量詞,記作「∃」,含有存在量詞的命題叫做特稱命題。
M中至少存在一個x,使p(x)成立,記作"∃"x∈M,p(x)。
讀作:讀作:存在一個x屬於M,使p(x)成立。
否定:
1、對於含有一個量詞的全稱命題p:"∀"x∈M,p(x)的否定┐p是:"∃"x∈M,┐p(x)。
2、對於含有一個量詞的特稱命題p:"∃"x∈M,p(x)的否定┐p是:"∀"x∈M,┐p(x)。
全稱命題
全稱命題:其公式為「所有S是P」。全稱命題,可以用全稱量詞,也可以用「都」等副詞、「人人」等主語重復的形式來表達,甚至有時可以沒有任何的量詞標志,如「人類是有智慧的。」由於代數定理使用的是全稱量詞,因此每個代數定理都是一個特強的條件。也正是全稱量詞使得使用帶入規則進行恆等變換是代數推理的核心。
存在量詞
定義:短語「有些」、「至少有一個」、「有一個」、「存在」等都有表示個別或一部分的含義,這樣的詞叫作存在量詞。含有存在量詞的命題叫作特稱命題。特稱命題 :其公式為「有的S是P」。特稱命題使用存在量詞,如「有些」、「很少」等,也可以用「基本上」、「一般」、「只是有些」等。含有存在性量詞的命題也稱存在性命題。短語「存在一個」、「至少一個」在邏輯中通常叫做存在量詞,用符號「∃」表示。含有存在量詞的命題,叫做特稱命題(存在性命題)。
含有存在量詞的命題,叫做特稱命題(存在性命題)。
例如:
⑴有一個素數不是奇數;
⑵有的平行四邊形是菱形。
常見的存在量詞還有「有些」、「有一個」、「對某個」、「有的」等。
特稱命題「存在M中的一個x,使p(x)成立」。簡記為:∃x ∈ M,p(x)
讀作:存在一個x屬於M,使p(x)成立。
㈥ 數學是什麼意思
數學(mathematics或maths),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
數學分支
1:數學史
2:數理邏輯與數學基礎
X軸Y軸(4張)
a:演繹邏輯學(亦稱符號邏輯學)b:證明論 (亦稱元數學) c:遞歸論 d:模型論 e:公理集合論 f:數學基礎 g:數理邏輯與數學基礎其他學科
3:數論
a:初等數論 b:解析數論 c:代數數論 d:超越數論 e:丟番圖逼近 f:數的幾何 g:概率數論 h:計算數論 i:數論其他學科
4:代數學
a:線性代數 b:群論 c:域論 d:李群 e:李代數 f:Kac-Moody代數 g:環論 (包括交換環與交換代數,結合環與結合代數,非結合環與非結 合代數等) h:模論 i:格論 j:泛代數理論 k:范疇論 l:同調代數 m:代數K理論 n:微分代數 o:代數編碼理論 p:代數學其他學科
5:代數幾何學
6:幾何學
a:幾何學基礎 b:歐氏幾何學 c:非歐幾何學 (包括黎曼幾何學等) d:球面幾何學 e:向量和張量分析 f:仿射幾何學 g:射影幾何學 h:微分幾何學 i:分數維幾何 j:計算幾何學 k:幾何學其他學科
7:拓撲學
a:點集拓撲學 b:代數拓撲學 c:同倫論 d:低維拓撲學 e:同調論 f:維數論 g:格上拓撲學 h:纖維叢論 i:幾何拓撲學 j:奇點理論 k:微分拓撲學 l:拓撲學其他學科
8:數學分析
a:微分學 b:積分學 c:級數論 d:數學分析其他學科
9:非標准分析
10:函數論
a:實變函數論 b:單復變函數論 c:多復變函數論 d:函數逼近論 e:調和分析 f:復流形 g:特殊函數論 h:函數論其他學科
11:常微分方程
a:定性理論 b:穩定性理論 c:解析理論 d:常微分方程其他學科
12:偏微分方程
a:橢圓型偏微分方程 b:雙曲型偏微分方程 c:拋物型偏微分方程 d:非線性偏微分方程 e:偏微分方程其他學科
13:動力系統
a:微分動力系統 b:拓撲動力系統 c:復動力系統 d:動力系統其他學科
14:積分方程
15:泛函分析
a:線性運算元理論 b:變分法 c:拓撲線性空間 d:希爾伯特空間 e:函數空間 f:巴拿赫空間 g:運算元代數 h:測度與積分 i:廣義函數論 j:非線性泛函分析 k:泛函分析其他學科
16:計算數學
a:插值法與逼近論b:常微分方程數值解 c:偏微分方程數值解 d:積分方程數值解 e:數值代數 f:連續問題離散化方法 g:隨機數值實驗 h:誤差分析 i:計算數學其他學科
17:概率論
a:幾何概率 b:概率分布 c:極限理論 d:隨機過程 (包括正態過程與平穩過程、點過程等) e:馬爾可夫過程 f:隨機分析 g:鞅論 h:應用概率論 (具體應用入有關學科) i:概率論其他學科
18:數理統計學
a:抽樣理論 (包括抽樣分布、抽樣調查等 )b:假設檢驗 c:非參數統計 d:方差分析 e:相關回歸分析 f:統計推斷 g:貝葉斯統計 (包括參數估計等) h:試驗設計 i:多元分析 j:統計判決理論 k:時間序列分析 l:數理統計學其他學科
19:應用統計數學
a:統計質量控制 b:可靠性數學 c:保險數學 d:統計模擬
20:應用統計數學其他學科
21:運籌學
a:線性規劃b:非線性規劃 c:動態規劃 d:組合最優化 e:參數規劃 f:整數規劃 g:隨機規劃 h:排隊論 i:對策論 亦稱博弈論 j:庫存論 k:決策論 l:搜索論 m:圖論 n:統籌論 o:最優化 p:運籌學其他學科
22:組合數學
23:模糊數學
24:量子數學
25:應用數學 (具體應用入有關學科)
26:數學其他學科
發展歷史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意.古希臘學者視其為哲學之起點,「學問的基礎」.另外,還有個較狹隘且技術性的意義——「數學研究」.即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的.
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……).[1]
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用.
具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學).
就縱度而言,在數學各自領域上的探索亦越發深入.
圖中數字為國家二級學科編號.
結構
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示.此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統.把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅理論解決了,它涉及到域論和群論.代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法.
空間
空間的研究源自於歐式幾何.三角學則結合了空間及數,且包含有非常著名的勾股定理、三角函數等。現今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學.數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色.在微分幾何中有著纖維叢及流形上的計算等概念.在代數幾何中有著如多項式方程的解集等幾何對象的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間.李群被用來研究空間、結構及變化.
基礎
旋轉曲面(8張)
主條目:數學基礎
為了弄清楚數學基礎,數學邏輯和集合論等領域被發展了出來.德國數學家康托爾(1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的思想,為以後的數學發展作出了不可估量的貢獻.
集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具.20世紀初,數學家希爾伯特在德國傳播了康托爾的思想,把集合論稱為「數學家的樂園」和「數學思想最驚人的產物」.英國哲學家羅素把康托的工作譽為「這個時代所能誇耀的最巨大的工作」
邏輯
主條目:數理邏輯
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果.就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果.現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關聯性.
符號
主條目:數學符號
也許我國古代的算籌是世界上最早使用的符號之一,起源於商代的占卜.
我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的.在此之前,數學是用文字書寫出來,這是個會限制住數學發展的刻苦程序.現今的符號使得數學對於人們而言更便於操作,但初學者卻常對此感到怯步.它被極度的壓縮:少量的符號包含著大量的訊息.如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼.
嚴謹性
數學語言亦對初學者而言感到困難.如何使這些字有著比日常用語更精確的意思,亦困惱著初學者,如開放和域等字在數學里有著特別的意思.數學術語亦包括如同胚及可積性等專有名詞.但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性.數學家將此對語言及邏輯精確性的要求稱為「嚴謹」.
嚴謹是數學證明中很重要且基本的一部分.數學家希望他們的定理以系統化的推理依著公理被推論下去.這是為了避免依著不可靠的直觀,從而得出錯誤的「定理」或"證明",而這情形在歷史上曾出現過許多的例子.在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹.牛頓為了解決問題所作的定義,到了十九世紀才讓數學家用嚴謹的分析及正式的證明妥善處理.今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度.當大量的計算難以被驗證時,其證明亦很難說是有效地嚴謹.
數量
數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的有理和無理數.
另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較.
簡史
西方數學簡史
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術.第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破.除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年.算術(加減乘除)也自然而然地產生了.
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普.歷史上曾有過許多各異的記數系統.
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究.
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備.但尚未出現極限的概念.
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換.在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明.隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展.
中國數學簡史
主條目:中國數學史
數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合.
㈦ 小學數學和是什麼意思
就是加法的意思
兩數的和,就是指這兩個數相加。