A. 高中數學選修1-1和2-1有什麼不一樣
1、學習對象不一樣
高中數學教材的整個選修1系列是文科生選修,而選修2系列是理科生學習的。
2、內容有些不一樣
高中數學選修1-1是常用邏輯用語、圓錐曲線與方程、導數及其應用。
高中數學選修2-2常用邏輯用語、圓錐曲線與方程、空間中的向量與立體幾何。
(1)怎麼學高中數學選修21擴展閱讀:
選修1-1的學習意義:
《普通高中課程標准實驗教科書.選修1-1》
正確地使用邏輯用語是現代社會公民應該具備的基本素質。無論是進行思考、交流,還是從事各項工作,都需要正確地運用邏輯用語表達自己的思想。在本模塊中,學生將在義務教育階段的基礎上,學習常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語准確地表達數學內容,更好地進行交流。
在必修課程學習平面解析幾何初步的基礎上,在本模塊中,學生將學習圓錐曲線與方程,了解圓錐曲線與二次方程的關系,掌握圓錐曲線的基本幾何性質,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用,進一步體會數形結合的思想。
微積分的創立是數學發展的里程碑,它的發展及廣泛應用,開創了向近代數學過渡的新時期,它為研究變數與函數提供了重要的方法和手段。
B. 怎樣學好高中數學
如何學好高中數學
高中數學的學習,最好能夠從基礎學起,在課堂上仔細做筆記,把老師講的重要知識點都記一下,課後的時候,多看看,做題鞏固,高中數學的知識點,不是我們學一下就能夠會的,是需要我們重復的去學習,重復的去做題,才能把基礎知識學好,高中課程很緊張,老師講課的速度也是很快的,有些時候,同學們可能會跟不上老師講課的速度,這個時候就需要同學們在課下的時候,多問老師了。
做題的時候要多思考,知道這道題涉及哪方面的內容,做題的過程中就間接復習了知識內容,這樣對自己記憶數學知識,幫助是很大的。
主動的去復習我們今天所要學習的內容,進行章節的總結是非常重要的,我們在初中的時候,可能都是老師給我們進行總結的,但是到了高中,是需要我們自己總結的,高中生一定要盡快適應,這樣數學成績才能快速提高。
學好高中數學成績的竅門
要經常的去積累一些經典的題型做,整理一些錯題的資料,每隔一段時間反復看一下,整理一下思路,這樣再遇到相似的題型的時候,才能做出來,考試的時候,出同樣的題型,才能更好的解答出來,一定要好好選擇課外題,不要什麼題都做,這樣對你數學成績的提高幫助並不大。
如果你能夠主動的去幫助老師學習,你的成績會更好,高中生學習的主動性一定要強,也要把數學公式都掌握,數學題中,所有的題都是需要用到公式的。在平時做題的時候,一定要不斷的去提高自己做題的速度,而且也要分配好做題時間,在一道題上不要浪費太多時間,這樣對自己數學成績的提高沒有幫助,在平時的時候,鍛煉一下自己數學的思維能力。
(2)怎麼學高中數學選修21擴展閱讀
高中數學知識概括
高中數學知識總結歸納(列印版)
引言
1.課程內容:
必修課程由5個模塊組成:
必修1:集合、函數概念與基本初等函數(指、對、冪函數)
必修2:立體幾何初步、平面解析幾何初步。
必修3:演算法初步、統計、概率。
必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上是每一個高中學生所必須學習的。
上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。
此外,基礎內容還增加了向量、演算法、概率、統計等內容。
選修課程有4個系列:
系列1:由2個模塊組成。
選修1—1:常用邏輯用語、圓錐曲線與方程、導數及其應用。
選修1—2:統計案例、推理與證明、數系的擴充與復數、框圖
系列2:由3個模塊組成。
選修2—1:常用邏輯用語、圓錐曲線與方程、
空間向量與立體幾何。
選修2—2:導數及其應用,推理與證明、數系的擴充與復數
選修2—3:計數原理、隨機變數及其分布列,統計案例。
系列3:由6個專題組成。
選修3—1:數學史選講。
選修3—2:信息安全與密碼。
選修3—3:球面上的幾何。
選修3—4:對稱與群。
選修3—5:歐拉公式與閉曲面分類。
選修3—6:三等分角與數域擴充。
系列4:由10個專題組成。
選修4—1:幾何證明選講。
選修4—2:矩陣與變換。
選修4—3:數列與差分。
選修4—4:坐標系與參數方程。
選修4—5:不等式選講。
選修4—6:初等數論初步。
選修4—7:優選法與試驗設計初步。
選修4—8:統籌法與圖論初步。
選修4—9:風險與決策。
選修4—10:開關電路與布爾代數。
2.重難點及考點:
重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數
難點:函數、圓錐曲線
高考相關考點:
⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件
1/100
⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用
⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用
⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用
⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用
⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用
⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量
⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用
⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布
⑿導數:導數的概念、求導、導數的應用
⒀復數:復數的概念與運算
C. 如何學好高中數學
要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。
事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學 眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態 度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自 主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不 認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行 為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。
一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理 數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心, 從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「 馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。
二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重 不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如, 看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和 加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。
三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一 些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。
四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補 充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的 哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。
D. 高中數學選修2-1知識總結
給個郵箱 我給你發一份 這樣有些圖和公式不顯示。
高二數學選修2-1知識點
第一章 常用邏輯用語
1、命題:用語言、符號或式子表達的,可以判斷真假的陳述句.
真命題:判斷為真的語句.
假命題:判斷為假的語句.
2、「若 ,則 」形式的命題中的 稱為命題的條件, 稱為命題的結論.
3、對於兩個命題,如果一個命題的條件和結論分別是另一個命題的結論和條件,則這兩個命題稱為互逆命題.其中一個命題稱為原命題,另一個稱為原命題的逆命題.
若原命題為「若 ,則 」,它的逆命題為「若 ,則 」.
4、對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的條件的否定和結論的否定,則這兩個命題稱為互否命題.中一個命題稱為原命題,另一個稱為原命題的否命題.
若原命題為「若 ,則 」,則它的否命題為「若 ,則 」.
5、對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的結論的否定和條件的否定,則這兩個命題稱為互為逆否命題.其中一個命題稱為原命題,另一個稱為原命題的逆否命題.
若原命題為「若 ,則 」,則它的否命題為「若 ,則 」.
6、四種命題的真假性:
原命題
逆命題
否命題
逆否命題
真
真
真
真
真
假
假
真
假
真
真
真
假
假
假
假
四種命題的真假性之間的關系:
兩個命題互為逆否命題,它們有相同的真假性;
兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
7、若 ,則 是 的充分條件, 是 的必要條件.
若 ,則 是 的充要條件(充分必要條件).
8、用聯結詞「且」把命題 和命題 聯結起來,得到一個新命題,記作 .
當 、 都是真命題時, 是真命題;當 、 兩個命題中有一個命題是假命題時, 是假命題.
用聯結詞「或」把命題 和命題 聯結起來,得到一個新命題,記作 .
當 、 兩個命題中有一個命題是真命題時, 是真命題;當 、 兩個命題都是假命題時, 是假命題.
對一個命題 全盤否定,得到一個新命題,記作 .
若 是真命題,則 必是假命題;若 是假命題,則 必是真命題.
9、短語「對所有的」、「對任意一個」在邏輯中通常稱為全稱量詞,用「 」表示.
含有全稱量詞的命題稱為全稱命題.
全稱命題「對 中任意一個 ,有 成立」,記作「 , 」.
短語「存在一個」、「至少有一個」在邏輯中通常稱為存在量詞,用「 」表示.
含有存在量詞的命題稱為特稱命題.
特稱命題「存在 中的一個 ,使 成立」,記作「 , 」.
10、全稱命題 : , ,它的否定 : , .全稱命題的否定是特稱命題.
第二章 圓錐曲線與方程
11、平面內與兩個定點 , 的距離之和等於常數(大於 )的點的軌跡稱為橢圓.這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.
12、橢圓的幾何性質:
焦點的位置
焦點在 軸上
焦點在 軸上
圖形
標准方程
范圍
且
且
頂點
、
、
、
、
軸長
短軸的長 長軸的長
焦點
、
、
焦距
對稱性
關於 軸、 軸、原點對稱
離心率
准線方程
13、設 是橢圓上任一點,點 到 對應准線的距離為 ,點 到 對應准線的距離為 ,則 .
14、平面內與兩個定點 , 的距離之差的絕對值等於常數(小於 )的點的軌跡稱為雙曲線.這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距.
15、雙曲線的幾何性質:
焦點的位置
焦點在 軸上
焦點在 軸上
圖形
標准方程
范圍
或 ,
或 ,
頂點
、
、
軸長
虛軸的長 實軸的長
焦點
、
、
焦距
對稱性
關於 軸、 軸對稱,關於原點中心對稱
離心率
准線方程
漸近線方程
16、實軸和虛軸等長的雙曲線稱為等軸雙曲線.
17、設 是雙曲線上任一點,點 到 對應准線的距離為 ,點 到 對應准線的距離為 ,則 .
18、平面內與一個定點 和一條定直線 的距離相等的點的軌跡稱為拋物線.定點 稱為拋物線的焦點,定直線 稱為拋物線的准線.
19、過拋物線的焦點作垂直於對稱軸且交拋物線於 、 兩點的線段 ,稱為拋物線的「通徑」,即 .
20、焦半徑公式:
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 .
21、拋物線的幾何性質:
標准方程
圖形
頂點
對稱軸
軸
軸
焦點
准線方程
離心率
范圍
第三章 空間向量與立體幾何
22、空間向量的概念:
在空間,具有大小和方向的量稱為空間向量.
向量可用一條有向線段來表示.有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.
向量 的大小稱為向量的模(或長度),記作 .
模(或長度)為 的向量稱為零向量;模為 的向量稱為單位向量.
與向量 長度相等且方向相反的向量稱為 的相反向量,記作 .
方向相同且模相等的向量稱為相等向量.
23、空間向量的加法和減法:
求兩個向量和的運算稱為向量的加法,它遵循平行四邊形法則.即:在空間以同一點 為起點的兩個已知向量 、 為鄰邊作平行四邊形 ,則以 起點的對角線 就是 與 的和,這種求向量和的方法,稱為向量加法的平行四邊形法則.
求兩個向量差的運算稱為向量的減法,它遵循三角形法則.即:在空間任取一點 ,作 , ,則 .
24、實數 與空間向量 的乘積 是一個向量,稱為向量的數乘運算.當 時, 與 方向相同;當 時, 與 方向相反;當 時, 為零向量,記為 . 的長度是 的長度的 倍.
25、設 , 為實數, , 是空間任意兩個向量,則數乘運算滿足分配律及結合律.
分配律: ;結合律: .
26、如果表示空間的有向線段所在的直線互相平行或重合,則這些向量稱為共線向量或平行向量,並規定零向量與任何向量都共線.
27、向量共線的充要條件:對於空間任意兩個向量 , , 的充要條件是存在實數 ,使 .
28、平行於同一個平面的向量稱為共面向量.
29、向量共面定理:空間一點 位於平面 內的充要條件是存在有序實數對 , ,使 ;或對空間任一定點 ,有 ;或若四點 , , , 共面,則 .
30、已知兩個非零向量 和 ,在空間任取一點 ,作 , ,則 稱為向量 , 的夾角,記作 .兩個向量夾角的取值范圍是: .
31、對於兩個非零向量 和 ,若 ,則向量 , 互相垂直,記作 .
32、已知兩個非零向量 和 ,則 稱為 , 的數量積,記作 .即 .零向量與任何向量的數量積為 .
33、 等於 的長度 與 在 的方向上的投影 的乘積.
34、若 , 為非零向量, 為單位向量,則有 ;
; , , ;
; .
35、向量數乘積的運算律: ; ;
.
36、若 , , 是空間三個兩兩垂直的向量,則對空間任一向量 ,存在有序實數組 ,使得 ,稱 , , 為向量 在 , , 上的分量.
37、空間向量基本定理:若三個向量 , , 不共面,則對空間任一向量 ,存在實數組 ,使得 .
38、若三個向量 , , 不共面,則所有空間向量組成的集合是
.這個集合可看作是由向量 , , 生成的,
稱為空間的一個基底, , , 稱為基向量.空間任意三個不共面的向量都可以構成空間的一個基底.
39、設 , , 為有公共起點 的三個兩兩垂直的單位向量(稱它們為單位正交基底),以 , , 的公共起點 為原點,分別以 , , 的方向為 軸, 軸, 軸的正方向建立空間直角坐標系 .則對於空間任意一個向量 ,一定可以把它平移,使它的起點與原點 重合,得到向量 .存在有序實數組 ,使得 .把 , , 稱作向量 在單位正交基底 , , 下的坐標,記作 .此時,向量 的坐標是點 在空間直角坐標系 中的坐標 .
40、設 , ,則 .
.
.
.
若 、 為非零向量,則 .
若 ,則 .
.
.
, ,則 .
41、在空間中,取一定點 作為基點,那麼空間中任意一點 的位置可以用向量 來表示.向量 稱為點 的位置向量.
42、空間中任意一條直線 的位置可以由 上一個定點 以及一個定方向確定.點 是直線 上一點,向量 表示直線 的方向向量,則對於直線 上的任意一點 ,有 ,這樣點 和向量 不僅可以確定直線 的位置,還可以具體表示出直線 上的任意一點.
43、空間中平面 的位置可以由 內的兩條相交直線來確定.設這兩條相交直線相交於點 ,它們的方向向量分別為 , . 為平面 上任意一點,存在有序實數對 ,使得 ,這樣點 與向量 , 就確定了平面 的位置.
44、直線 垂直 ,取直線 的方向向量 ,則向量 稱為平面 的法向量.
45、若空間不重合兩條直線 , 的方向向量分別為 , ,則
, .
46、若直線 的方向向量為 ,平面 的法向量為 ,且 ,則
, .
47、若空間不重合的兩個平面 , 的法向量分別為 , ,則
, .
48、設異面直線 , 的夾角為 ,方向向量為 , ,其夾角為 ,則有
.
49、設直線 的方向向量為 ,平面 的法向量為 , 與 所成的角為 , 與 的夾角為 ,則有 .
50、設 , 是二面角 的兩個面 , 的法向量,則向量 , 的夾角(或其補角)就是二面角的平面角的大小.若二面角 的平面角為 ,則 .
51、點 與點 之間的距離可以轉化為兩點對應向量 的模 計算.
52、在直線 上找一點 ,過定點 且垂直於直線 的向量為 ,則定點 到直線 的距離為 .
53、點 是平面 外一點, 是平面 內的一定點, 為平面 的一個法向量,則點 到平面 的距離為 .
n
E. 怎麼學好高中數學2_1命題的這一單元,給個最佳方法,規律也行,還有英語,怎麼樣能更長久記住單詞,並
單詞好像是死的東西,但你要靈活的記它,記單詞是有方法的。可以按照記憶曲線去背,在遺忘點上去記,還有就是要給自己一個語言環境,每天多交流,我就在Abc 360,這邊有外國老師每天陪我交流,這樣學起來很有意思的。
F. 高中數學選修知識點
高中數學 選修2-3知識點
第一章 計數原理
1、分類加法計數原理:做一件事情,完成它有N類辦法,在第一類辦法中有M1種不同的方法,在第二類辦法中有M2種不同的方法,……,在第N類辦法中有MN種不同的方法,那麼完成這件事情共有M1+M2+……+MN種不同的方法。
2、分步乘法計數原理:做一件事,完成它需要分成N個步驟,做第一 步有m1種不同的方法,做第二步有M2不同的方法,……,做第N步有MN不同的方法.那麼完成這件事共有 N=M1M2...MN 種不同的方法。
3、排列:從n個不同的元素中任取m(m≤n)個元素,按照一定順序......排成一列,叫做從n個不同元素中取出m個元素的一個排列
4、排列數:從n個不同元素中取出m(m≤n)個元素排成一列,稱為從n個不同元素中取出m個元素的一
個排列. 從n個不同元素中取出m個元素的一個排列數,用符號mnA表示。
),,()!
(!
)1()1(NmnnmmnnmnnnAm
5、公式:
,
11mnm
n
nA
A
6、組合:從n個不同的元素中任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合。
7、公式:)!(!!!)1()1(mnmnCmmnnnAACmn
mm
mnmn
)!(!!!)1()1(mnmnCmmnnnAACmnmmmnmn ;
m
nnmnCC
mnmnmnCCC1
1
8、二項式定理:
()
011222„„ 9、二項式通項公式展開式的通項公式:,„„TCabrnrn
rnrr
101() 10、二項式系數Cn
r
為二項式系數(區別於該項的系數) 11、楊輝三角:
()對稱性:,,,„„,1012CCrnnrnnr
()系數和:„2CCCnnn
nn
012
閱讀會員限時特惠 7大會員特權立即嘗鮮
(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第
nCnnn
n
2
112
項,二項式系數為;為奇數時,為偶數,中間兩項的二項式() 系數最大即第項及第項,其二項式系數為nnCCnnn
n1212
1121
2
第二章 隨機變數及其分布
1、隨機變數:如果隨機試驗可能出現的結果可以用一個變數X來表示,並且X是隨著試驗的結果的不同而變化,那麼這樣的變數叫做隨機變數. 隨機變數常用大寫字母X、Y等或希臘字母 ξ、η等表示。 2、離散型隨機變數:在上面的射擊、產品檢驗等例子中,對於隨機變數X可能取的值,我們可以按一定次序一一列出,這樣的隨機變數叫做離散型隨機變數.
3、離散型隨機變數的分布列:一般的,設離散型隨機變數X可能取的值為x1,x2,..... ,xi ,......,xn
X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變數X 的概率分布,簡稱分布列
4、分布列性質① pi≥0, i =1,2, „ ;② p1 + p2 +„+pn= 1. 5、二項分布:如果隨機變數X的分布列為:
其中0<p<1,q=1-p,則稱離散型隨機變數X服從參數p的二點分布
6、超幾何分布:一般地, 設總數為N件的兩類物品,其中一類有M件,從所有物品中任取n(n≤N)件,這n件中所含這類物品件數X是一個離散型隨機變數,
則它取值為k時的概率為()(0,1,2,,)knkMNM
n
N
CCPXkkmC, 其中min
,mMn,且*,,,,nNMNnMNN≤≤
7、條件概率:對任意事件A和事件B,在已知事件A發生的條件下事件B發生的概率,叫做條件概率.記作P(B|A),讀作A發生的條件下B的概率 8、公式:
.
0)(,)()
()|(APAPABPABP 9、相互獨立事件:事件A(或B)是否發生對事件B(或A)發生的概率沒有影響,這樣的兩個事件叫做相互
獨立事件。)()()(BPAPBAP
10、n次獨立重復事件:在同等條件下進行的,各次之間相互獨立的一種試驗
11、概率:
12、二項分布: 設在n次獨立重復試驗中某個事件A發生的次數,A發生次數ξ是一個隨機變數.如果在一次試驗中某事件發生的概率是p,事件A不發生的概率為q=1-p,那麼在n次獨立重復試驗中
)(kPk
nkknqpC(其中 k=0,1, „„,n,q=1-p )
於是可得隨機變數ξ的概率分布如下:
這樣的隨機變數ξ服從二項分布,記作ξ~B(n,p) ,其中n,p為參數 13、數學期望:一般地,若離散型隨機變數ξ的概率分布為
則稱 Eξ=x1p1+x2p2+„+xnpn+„ 為ξ的數學期望或平均數、均值,數學期望又簡稱為期望.是離散型隨機變數。
14、兩點分布數學期望:E(X)=np
15、超幾何分布數學期望:E(X)=MnN
.
16、方差:D(ξ)=(x1-Eξ)2·P1+(x2-Eξ)2·P2 +......+(xn-Eξ)2·Pn 叫隨機變數ξ的均方差,簡稱方差。 17、集中分布的期望與方差一覽:
期望 方差
兩點分布 Eξ=p
Dξ=pq,q=1-p
超幾何分布
的超幾何分布服從參數為n,M,N
N
MnE
D(X)=np(1-p)* (N-n)/(N-1)
(不要求) 二項分布,ξ ~ B(n,p)
Eξ=np
Dξ=qEξ=npq,(q=1-p)
幾何分布,p(ξ=k)=g(k,p)
1
p
2p
qD
knkkn
nppCkP)1()(
17.正態分布:
若概率密度曲線就是或近似地是函數
)
,(,21
)(2
22)(
xexfx
的圖像,其中解析式中的實數0)
、(是參數,分別表示總體的平均數與標准差. 則其分布叫正態分布(,)N記作:,f( x )的圖象稱為正態曲線。 18.基本性質:
①曲線在x軸的上方,與x軸不相交. ②曲線關於直線x=對稱,且在x=
時位於最高點.
③當時x,曲線上升;當時x,曲線下降.並且當曲線向左、右兩邊無限延伸時,以x軸為漸近線,向它無限靠近.
④當一定時,曲線的形狀由確定.越大,曲線越「矮胖」,表示總體的分布越分散;越小,曲線越「瘦高」,表示總體的分布越集中.
⑤當σ相同時,正態分布曲線的位置由期望值μ來決定. ⑥正態曲線下的總面積等於1.
19. 3原則:
),(
)2,2(
)3,3(
從上表看到,正態總體在 )2,2( 以外取值的概率 只有4.6%,在 )3,3(以外取值的概率只有0.3% 由於這些概率很小,通常稱這些情況發生為小概率事件.也就是說,通常認為這些情況在一次試驗中幾乎是不可能發生的.
第三章 統計案例
1、獨立性檢驗
假設有兩個分類變數X和Y,它們的值域分另為{x1, x2}和{y1, y2},其樣本頻數列聯表為: y1 y2 總計 x1 a b a+b x2 c d c+d 總計
a+c
b+d
a+b+c+d
若要推斷的論述為H1:「X與Y有關系」,可以利用獨立性檢驗來考察兩個變數是否有關系,並且能較精確地給出這種判斷的可靠程度。具體的做法是,由表中的數據算出隨機變數K^2的值(即K的平方) K2 = n (ad - bc) 2 / [(a+b)(c+d)(a+c)(b+d)],其中n=a+b+c+d為樣本容量,K2的值越大,說明「X與Y有關系」成立的可能性越大。
K2≤3.841時,X與Y無關; K2>3.841時,X與Y有95%可能性有關;K2>6.635時X與Y有99%可能性有關
2、回歸分析
回歸直線方程bxay
ˆ 其中x
SSSPxxyyxxxnxyxnxyb
2
22)
())(()
(1
1
,
xbya