㈠ 數學中的C幾幾和P幾幾是什麼意思
C是組合
P是排列
㈡ 數學概率里的C與P
C-Combination 組合
P-Permutation排列
公式P是指排列,從N個元素取R個進行排列(即排序)。
公式C是指組合,從N個元素取R個,不進行排列(即不排序)。
具體的用法,版面不太好設計,你看一下網路罷!
http://ke..com/view/902560.htm
http://ke..com/view/67312.htm
㈢ 數學排列組合中C和P的意思 說詳細點讓我聽懂,網上那些我看不懂.答得好,還有積分獎勵.
C是組合 比如ABC中選2個組合 那麼AB BA算一種組合 一共有AB AC BC 三種組合
P是排列(人教版把P寫成A) 比如從ABC中選兩個排列 那麼AB BA算兩種組合 一共有AB BA AC CA BC CB六種排列
㈣ 高中數學《排列與組合》中C和P的定義
公式C是組合公式,從N個元素取R個,不進行排列(即不排序)。
公式P是排列公式,從N個元素取M個進行排列(即排序)。
比如:1,3,1,2和1,1,2,3,他倆是同一個組合,但不是同一個排列。
㈤ 數學中,排列組合A C P分別代表什麼求詳細。
排列組合中P是舊版教材的寫法,後來新版教材將P改成A,所以A和P是一樣的,都是排列數。而C是排列組合中的組合數。
1、排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示,舊版教材中用P(n,m)表示。
計算公式:
C(n,m)=C(n,n-m)。(n≥m)
排列組合中的基本計數原理
1、加法原理和分類計數法
(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。
(2)第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。
(3)分類的要求 :每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法
(1)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法。
(2)合理分步的要求
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。
㈥ 數學概率中的P和C各指什麼啊
P是指事件的概率,C是指幾者選幾個可能情況,比如C21(2在下,1在上)就是兩者中選一個的可能是2種情況
㈦ 概率中P和C怎麼算的這兩個的區別是什麼
一、排列組合計算方法如下:排列也可以表示成P
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
二、概率中的C和P區別:
1、表示不同
C表示組合方法,比如有3個人甲乙丙,抽出2個人去參加活動的方法有C(3,2)=3種,分別是甲乙、甲丙、乙丙,這個不具有順序性,只有組合的方法。
P表示排列方法,表示一些物體按順序排列起來,總共的方法是多少。
2、性質不同
公式P是指排列,從N個元素取R個進行排列(即排序)。
公式C是指組合,從N個元素取R個,不進行排列(即不排序)。
(7)數學中的p和c表示什麼擴展閱讀
在概率論發展的早期,人們就注意到古典概型僅考慮試驗結果只有有限個的情況是不夠的,還必須考慮試驗結果是無限個的情況。為此可把無限個試驗結果用歐式空間的某一區域S表示,其試驗結果具有所謂「均勻分布」的性質,關於「均勻分布」的精確定義類似於古典概型中「等可能」只一概念。
假設區域S以及其中任何可能出現的小區域A都是可以度量的,其度量的大小分別用μ(S)和μ(A)表示。如一維空間的長度,二維空間的面積,三維空間的體積等。並且假定這種度量具有如長度一樣的各種性質,如度量的非負性、可加性等。
㈧ 概率中的C和P有什麼區別
概率中的C和P區別:
1、表示不同
C表示組合方法,比如有3個人甲乙丙,抽出2個人去參加活動的方法有C(3,2)=3種,分別是甲乙、甲丙、乙丙,這個不具有順序性,只有組合的方法。
P表示排列方法,表示一些物體按順序排列起來,總共的方法是多少。
2、性質不同
公式P是指排列,從N個元素取R個進行排列(即排序)。
公式C是指組合,從N個元素取R個,不進行排列(即不排序)。
概率事件
在一個特定的隨機試驗中,稱每一可能出現的結果為一個基本事件,全體基本事件的集合稱為基本空間。隨機事件(簡稱事件)是由某些基本事件組成的。
例如,在連續擲兩次骰子的隨機試驗中,用Z,Y分別表示第一次和第二次出現的點數,Z和Y可以取值1、2、3、4、5、6,每一點(Z,Y)表示一個基本事件,因而基本空間包含36個元素。
「點數之和為2」是一事件,它是由一個基本事件(1,1)組成,可用集合{(1,1)}表示,「點數之和為4」也是一事件,它由(1,3),(2,2),(3,1)3個基本事件組成,可用集合{(1,3),(3,1),(2,2)}表示。
如果把「點數之和為1」也看成事件,則它是一個不包含任何基本事件的事件,稱為不可能事件。P(不可能事件)=0。在試驗中此事件不可能發生。
如果把「點數之和小於40」看成一事件,它包含所有基本事件,在試驗中此事件一定發生,稱為必然事件。P(必然事件)=1。實際生活中需要對各種各樣的事件及其相互關系、基本空間中元素所組成的各種子集及其相互關系等進行研究。