導航:首頁 > 數字科學 > 初一下冊數學什麼叫不等式的解

初一下冊數學什麼叫不等式的解

發布時間:2022-07-18 10:32:53

㈠ 初一數學下冊知識點

由幾個含有同一個未知數的一元一次不等式組成的不等式組,叫做一元一次不等式組
不等式組中所有不等式的解集的公共部分叫做這個不等式組的解集。求不等式組的解集的過程叫做解不等式組。
解不解不等式的訣竅
大於大於取大的(大大大);
例如:X>-1
X>2
不等式組的解集是X>2
小於小於取小的(小小小);
例如:X<-4
X<-6
不等式組的解集是X<-6 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

大於小於交叉取中間;
無公共部分分開無解了

㈡ 人教版七年級下冊數學第七章知識點總結,具體點,謝

版本可能變了,不過你自己找找看吧
七年級下學期數學知識梳理
第五章 相交線與平行線
一、知識結構圖
相交線
相交線 垂線
同位角、內錯角、同旁內角
平行線
平行線及其判定
平行線的判定
平行線的性質
平行線的性質
命題、定理
平移
二、知識定義
鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角.
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角.
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線.
平行線:在同一平面內,不相交的兩條直線叫做平行線.
同位角、內錯角、同旁內角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角.
內錯角:∠2與∠6像這樣的一對角叫做內錯角.
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角.
命題:判斷一件事情的語句叫命題.
平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移.
對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點.

三、定理與性質
對頂角的性質:對頂角相等.
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直.
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短.
平行公理:經過直線外一點有且只有一條直線與已知直線平行.
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行.
平行線的性質:
性質1:兩直線平行,同位角相等.
性質2:兩直線平行,內錯角相等.
性質3:兩直線平行,同旁內角互補.
平行線的判定:
判定1:同位角相等,兩直線平行.
判定2:內錯角相等,兩直線平行.
判定3:同旁內角相等,兩直線平行.

四、經典例題
例1 如圖,直線AB,CD,EF相交於點O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度數.

例2 如圖AD平分∠CAE,∠B = 350,∠DAE=600,那麼∠ACB等於多少?

例3 三角形的一個外角等於與它相鄰的內角的4倍,等於與它不
相鄰的一個內角的2倍,則這個三角形各角的度數為( ).
A.450、450、900 B.300、600、900
C.250、250、1300 D.360、720、720

例4 已知如圖,求∠A+∠B+∠C+∠D+∠E+∠F的度數.

例5 如圖,AB∥CD,EF分別與AB、CD交於G、H,MN⊥AB於G,∠CHG=1240,則∠EGM等於多少度?

第六章 平面直角坐標系
一、知識結構圖
有序數對
平面直角坐標系
平面直角坐標系

用坐標表示地理位置
坐標方法的簡單應用
用坐標表示平移
二、知識定義
有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)
平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系.
橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點.
坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標.
象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限.坐標軸上的點不在任何一個象限內.

三、經典例題
例1 一個機器人從O點出發,向正東方向走3米到達A1點,再向正北方向走6米到達A2點,再向正西方向走9米到達A3點,再向正南方向走12米到達A4點,再向正東方向走15米到達A5點,如果A1求坐標為(3,0),求點 A5的坐標.

例2 如圖是在方格紙上畫出的小旗圖案,若用(0,0)表示A點,(0,4)表示B點,那麼C點的位置可表示為( )
A、(0,3) B、(2,3) C、(3,2) D、(3,0)

例3 如圖2,根據坐標平面內點的位置,寫出以下各點的坐標:
A( ),B( ),C( ).

例4 如圖,面積為300px2的△ABC向x軸正方向平移至△DEF的位置,相應的坐標如圖所示(a,b為常數),
(1)、求點D、E的坐標
(2)、求四邊形ACED的面積.

例5 過兩點A(3,4),B(-2,4)作直線AB,則直線AB( )
A、經過原點 B、平行於y軸
C、平行於x軸 D、以上說法都不對

第七章 三角形
一、知識結構圖

與三角形有關的線段 高
中線
角平分線
三角形的內角和 多邊形的內角和
三角形的外角和 多邊形的外角和

二、知識定義
三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊.
高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高.
中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線.
角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.
三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性.
多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形.
多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角.
多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線.
正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形.
平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面.

三、公式與性質
三角形的內角和:三角形的內角和為180°
三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和.
性質2:三角形的一個外角大於任何一個和它不相鄰的內角.
多邊形內角和公式:n邊形的內角和等於(n-2)·180°
多邊形的外角和:多邊形的內角和為360°.
多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形.
(2)n邊形共有條對角線.

四、經典例題
例1 如圖,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB於R,PS⊥AC於S,有以下三個結論:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中( ).
(A)全部正確 (B)僅①正確 (C)僅①、②正確 (D)僅①、③正確

例2 如圖,結合圖形作出了如下判斷或推理:
①如圖甲,CD⊥AB,D為垂足,那麼點C到AB的距離等於C、D兩點間的距離;
②如圖乙,如果AB∥CD,那麼∠B=∠D;
③如圖丙,如果∠ACD=∠CAB,那麼AD∥BC;
④如圖丁,如果∠1=∠2,∠D=120°,那麼∠BCD=60°.其中正確的個數是( )個.
(A)1 (B)2 (C)3 (D)4

例3 在如圖所示的方格紙中,畫出,△DEF和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能說明它們為什麼全等嗎?

例4 測量小玻璃管口徑的量具CDE上,CD=l0mm,DE=80mm.如果小管口徑AB正對著量具上的50mm刻度,那麼小管口徑AB的長是多少?

例5 在直角坐標系中,已知A(-4,0)、B(1,0)、C(0,-2)三點.請按以下要求設計兩種方案:作一條與軸不重合,與△ABC的兩邊相交的直線,使截得的三角形與△ABC相似,並且面積是△AOC面積的.分別在下面的兩個坐標中系畫出設計圖形,並寫出截得的三角形三個頂點的坐標.

第八章 二元一次方程組

一、知識結構圖
設未知數,列方程

解 代入法
方 加減法
程 (消元)

檢驗

二、知識定義
二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次方程,一般形式是 ax+by=c(a≠0,b≠0).
二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組.
二元一次方程的一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解.
二元一次方程組的一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組.
消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想.
代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法.
加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法.

三、經典例題
例1 用加減消元法解方程組,由①×2—②得.

例2 如果是同類項,則、的值是( )
A、=-3,=2 B、=2,=-3
C、=-2,=3 D、=3,=-2

例3 計算:

例4 王大伯承包了25畝土地,今年春季改種茄子和西紅柿兩種大棚蔬菜,用去了44000元.其中種茄子每畝用了1700元,獲純利2400元;種西紅柿每畝用了1800元,獲純利2600元.問王大伯一共獲純利多少元?

例5 已知關於x、y的二元一次方程組的解滿足二元一次方程,求的值.

第九章 不等式與不等式組
一、知識結構圖

實際問題

(包含不等關系)

數學問題

(一元一次不等式(組))

設未知數,列不等式(組)







數學問題的解

(不等式(組)的解決)

實際問題的答案

檢驗

二、知識定義
不等式:一般地,用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式.
不等式的使不等式成立的未知數的值,叫做不等式的解.
不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集.
一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式.
一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組.
一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集.

三、定理與性質
不等式的性質:
不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變.
不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.
不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變

四、經典例題
例1 當x 時,代數代2-3x的值是正數.

例2 一元一次不等式組的解集是 ( )

A.-2<x<3 B.-3<x<2 C.x<-3 D.x<2

例3 已知方程組的解為負數,求k的取值范圍.

例4 某種植物適宜生長在溫度為18℃~20℃的山區,已知山區海拔每升高100米,氣溫下降0.5℃,現在測出山腳下的平均氣溫為22℃,問該植物種在山的哪一部分為宜?(假設山腳海拔為0米)

例5 某園林的門票每張10元,一次使用,考慮到人們的不同需求,也為了吸引更多的遊客,該園林除保留原來的售票方法外,還推出了一種「購買個人年票」的售票方法(個人年票從購買日起,可供持票者使用一年).年票分A、B、C三類:A類年票每張120元,持票者進入園林時,無需再用門票;B類年票每張60元,持票者進入該園林時,需再購買門票,每次2元;C類年票每張40元,持票者進入該園林時,需再購買門票,每次3元.

(1)如果你只選擇一種購買門票的方式,並且你計劃在一年中用80元花在該園林的門票上,試通過計算,找出可進入該園林的次數最多的購票方式.

(2)求一年中進入該園林至少超過多少次時,購買A類年票比較合算.

第十章 數據的收集、整理與描述

一、知識結構圖

製表 繪圖

二、知識定義
全面調查:考察全體對象的調查方式叫做全面調查.
抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查.
總體:要考察的全體對象稱為總體.
個體:組成總體的每一個考察對象稱為個體.
樣本:被抽取的所有個體組成一個樣本.
樣本容量:樣本中個體的數目稱為樣本容量.
頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數.
頻率:頻數與數據總數的比為頻率.
組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距.

三、經典例題
例1 某班有50人,其中三好學生10人,優秀學生幹部5人,在扇形統計圖上表示三好學生和優秀學生幹部人數的圓心角分別是( )
A.720,360 B.1000,500 C.1200,600 D.800,400

例2 某音樂行出售三種音樂CD ,即古典音樂、流行音樂、民族音樂,為了表示這三種音樂唱片的銷售量的百分比,應該用( )
A.扇形統計圖 B.折線統計圖 C.條形統計圖 D.以上都可以

例3 在一次抽樣調查中收集了一些數據,對數據進行分組,繪制了下面的頻數分布表:

⑴已知最後一組(89.5-99.5)出現的頻率為15 %,則這一次抽樣調查的容量是________ .
⑵第三小組(69.5~79.5)的頻數是_______,頻率是________.

例4 如圖,是一位護士統計一位病人的體溫變化圖:根據統計圖回答下列問題:
⑴病人的最高體溫是達多少?
⑵什麼時間體溫升得最快?

例5 在一次抽樣調查中收集了一些數據,對數據進行分組,繪制了下面的頻數分布表:

⑴已知最後一組(89.5~99.5)出現的頻率為15 %,則這一次抽樣調查的容量是________ .
⑵第三小組(69.5~79.5)的頻數是_______,頻率是________.

㈢ 初一下冊數學一元一次不等式

一、等式及不等式
1、等式的概念:
一般的,用符號「=」連接的式子叫做等式。 注意:等式的左右兩邊是代數式。

2、不等式的概念:

一般的,用符號「<」(或「≤」),「>」(或「≥」),「≠」連接的式子叫做不等式。 不等式中可以含有未知數,也可以不含)
3、 不等式的性質:
(1)不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
(4)不等式的兩邊都乘以0,不等號變等號。
數字語言簡潔表達不等式的性質——
【1.性質1:如果a>b,那麼a±c>b±c】
【2.性質2:如果a>b,c>0,那麼ac>bc(或a/c>b/c)】
【3.性質3:如果a>b,c<0,那麼ac<bc(或a/c<b/c)】
二、一元一次不等式
1、定義:
用不等號連接的,含有一個未知數,並且未知數的次數都是1,系數不為0,左右兩邊為整式的式子叫做一元一次不等式(linear ineqality with one unknown)。
2、解一元一次不等式的一般順序:
(1)去分母 (運用不等式性質2、3) (2)去括弧 (3)移項 (運用不等式性質1) (4)合並同類項。 (5)將未知數的系數化為1 (運用不等式性質2、3) 【(6)有些時候需要在數軸上表示不等式的解集】
3.不等式的解集:
一個有未知數的不等式的所有解,組成這個不等式的解集。例如,不等式x-5≤-1的解集為x≤4;不等式x﹥0的解集是所有非零實數。求不等式解集的過程叫做不等式的解。 2.一元一次不等式的解集 將不等式化為ax>b的形式 (1)若a>0,則解集為x>b/a (2)若a<0,則解集為x<b/a
4.數軸:
規定原點,方向,單位刻度的直線叫做數軸。
5.一元一次不等式組:
(1) 一般的,關於同一個未知數的幾個一元一次不等式合在一起,就組成一個一元一次不等式組。 (2)一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。求不等式組解集的過程,叫做解不等式組。 1. 代數式大小的比較: (1) 利用數軸法; (2) 直接比較法; (3) 差值比較法; (4) 商值比較法; (5) 利用特殊比較法。(在涉及代數式的比較時,還要適當的使用分類討論法)
6. 不等式解集的表示方法:
(1) 用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3。 (2) 用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
7. 一元一次不等式與一次函數的綜合運用:
一般先求出函數表達式,再化簡不等式求解。
8. 解一元一次不等式組的步驟:
(1) 求出每個不等式的解集; (2) 求出每個不等式的解集的公共部分;(一般利用數軸) (3) 用代數符號語言來表示公共部分。(也可以說成是下結論)
9. 幾種常見的不等式組的解集:
(1) 關於x不等式組{x>a} {x>b}的解集是:x>b (2) 關於x不等式組{x<a} {x<b}的解集是:x>a (3) 關於x不等式組{x>a} {x<b}的解集是:a<x<b (4) 關於x不等式組{x<a} {x>b}的解集是空集。
10. 幾種特殊的不等式組的解集:
(1) 關於x不等式(組):{x≥a} { x≤a}的解集為:x=a (2) 關於x不等式(組):{x>a} {x<a}的解集是空集。
編輯本段一元一次不等式教案
例3 解下列不等式,: 2x-1<4x+13; 2(5x+3)≤x-3(1-2x). 解 (1)2x-1<4x+13, 2x-4x<13+1, -2x<14, x>-7. (2)2(5x+3)≤x-3(1-2x), 10x+6≤x-3+6x, 3x≤-9, x≤-3. 例4 當x取何值時,代數式的值比的值大1? 解 根據題意,得->1, 2(x+4)-3(3x-1)>6, 2x+8-9x+3>6, -7x+11>6, -7x>-5, 得 x<7分之5 所以,當x取小於7分之5的任何數時,代數式的值比的值大1 練習 1.下列不等式中,是一元一次不等式的有[ ] A.3x(x+5)>3x2+7; B.x2≥0; C.xy-2<3; D.x+y>5. 2.不等式6x+8>3x+8的解是[ ] 3.3x-7≥4x-4的解是[ ] A.x≥3; B.x≤3; C.x≥-3; D.x≤-3. 4.若|m-5|=5-m,則m的取值范圍是[ ] A.m>5; B.m≥5; C.m<5; D.m≤5. [ ] A.x>15; B.x≥15; C.x<15; D.x≤15. 6.若關於x的方程3x+3k=2的解是正數,則k的值為[ ] C.k為任何實數; D.以上答案都不對. 7.下列說法正確的是[ ] A.x=2是不等式3x>5的一個解; B.x=2是不等式3x>5的解; C.x=2是不等式3x>5的唯一解; D.x=2不是不等式3x>5的解. [ ] A.y>0; B.y<0; C.y=0; D.以上都不對. 9.下列說法錯誤的是[ ] D.x<3的正數解有有限個. [ ] A.x≤4; B.x≥4; [ ] A.x<-2; B.x>-2; D.x<2; D.x>2, [ ] A.大於2的整數; B.不小於2的整數; D.2; D.x≥3. [ ] A.無數個; B.0和1; C.1; D.以上都不對. [ ] A.x>1; B.x≤1; C.x≥1; D.x.>1. [ ] A.2x-3x-3<6,-x<9,x>-9; B.2x-3x+3<6,-x<3,x>-3; C.2x-3x+1<6,-x<5,x<-5; D.2x-3x+3<1,-x<-2,x<2. (二)解一元一次不等式 16.31. 26.3x-2(9-x)>3(7+2x)6x). 27.2(3x-3(4x+5)≤x-4(x-7) 28.2(x-1)>3(x-1)-x-5. 29.3[-2(y-7)]≤4y. 31.15-(7+5x)≤+(5-3x). 對於任意兩個實數a,b,關系式是a>b,a=b,a<b中有且只有一個成立. 並且規定: 當a-b>0時,有a>b, 當a-b=0時,有a=b: 當a-b<0時,有a<b.
編輯本段一元一次不等式應用題:
1、一本英語書98頁,張力讀了7天(一周)還沒讀完,而小明不到一周就讀完了.李永平均每天比張力多讀3頁,小明每天讀多少頁? 解:設張力每天讀x頁,則小明讀(x+3)頁,由題意,得: {98/x>7 {98/(x+3)<7 解得:11<x<14 ∴張力每天讀12或13頁 2、把一些書分給幾個學生,如果每人分3本,那麼餘8本;如果前面的每個學生分5本,那麼最後一人就分不到3本。問這些書有多少本?學生有多少人? 解:設學生有x人 ,由題意,得: {3x+8-5(x-1)≥0 {3x+8-5(x-1)<3 解得:5<x≤6 ∵x只能取整數 ∴x=6 ∴書本有:3×6+8=26(本) 3、用每分鍾抽1.1噸水的A型抽水機來抽池水,半小時可以抽完;如果改用B型抽水機,估計20分鍾到22分可以抽完。B型抽水機比A型抽水機每分鍾約多抽多少噸水? 解:設B型每分鍾抽x噸,由題意,得: {20x≤1.1*30 {22x≥1.1*30 解得:1.5≤x≤1.65 ∴1.5-1.1≤x-1.1≤1.65-1.1 4、一個長方形足球場的長為X米,寬為70米,如果它的周長大於350米,面積小於7650平方米,求X的取值范圍,並判斷這個球場是否可以作為國際足球比賽(註:用於國際比賽的足球場的長在100至110米之間,寬在64至75米之間。) 5、在容器里有18攝示度的水6立方米,現在要把8立方米的水注入裡面,使容器里混合的水的溫度不低於30攝示度,且不高於36攝示度,求注入的8立方米的水的溫度應該在什麼范圍? 6、有紅、白顏色的球若干個,已知白球的個數比紅球少,但白球的兩倍比紅球多,若把每一個白球都記作數2,每一個紅球都記作數3,則總數為60,求白球和紅球各幾個? 7、一次考試共有25道選擇題,做對一題得4分,做錯一題減2分,不做得0分,若小明想確保考試成績在60分以上,那麼,他至少做對X題,應滿足的不等式是什麼? 8、某公司需刻錄一批光碟(總數不超過100張),若請專業公司刻錄,每張需10元(包括空白光碟費);若公司自刻,除設備租用費200元以外,每張還需成本5元(空白光碟費)。問刻錄這批光碟,是請專家公司刻錄費用省,還是自刻費用省? 9、某校辦廠生產了一批新產品,現有兩種銷售方案,方案一:在這學期開學時售出該批產品,可獲利30000元,然後將該批產品的投入資金和已獲利30000元進行再投資,到這學期結束時再投資又可獲利4.8%;方案二:在這學期結結束時售出該批產品,可獲利35940元,但要付投入資金的0.2%作保管費,問: (1)當該批產品投入資金是多少元時,方案一和方案二的獲利是一樣的? (2)按所需投入資金的多少討論方案一和方案二哪個獲利多。 10、一艘輪船從某江上游的A地勻速駛到下游的B地用了10小時,從B地勻速返回A地用了不到12個小時,這段江水流速為3千米/時,輪船往返的靜水速度V不變,V滿足什麼條件?

㈣ 七年級下冊數學

第五章 相交線與平行線
5.1 相交線
對頂角(vertical angles)相等。
過一點有且只有一條直線與已知直線垂直(perpendicular)。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。

5.2 平行線
經過直線外一點,有且只有一條直線與這條直線平行(parallel)。
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。

5.3 平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
判斷一件事情的語句,叫做命題(proposition)。

第六章 平面直角坐標系
6.1 平面直角坐標系
含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對(ordered pair)。

第七章 三角形
7.1 與三角形有關的線段
三角形(triangle)具有穩定性。

7.2 與三角形有關的角
三角形的內角和等於180度。
三角形的一個外角等於與它不相鄰的兩個內角的和。
三角形的一個外角大於與它不相鄰的任何一個內角

7.3 多邊形及其內角和
n邊形內角和等於:(n-2)•180度
多邊形(polygon)的外角和等於360度。

第八章 二元一次方程組
8.1 二元一次方程組
方程中含有兩個未知數(x和y),並且未知數的指數都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。

8.2 消元
將未知數的個數由多化少、逐一解決的想法,叫做消元思想。

第九章 不等式與不等式組
9.1 不等式
用小於號或大於號表示大小關系的式子,叫做不等式(inequality)。
使不等式成立的未知數的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質:
不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數,不等號的方向不變。
不等式兩邊乘(或除以)同一個負數,不等號的方向改變。
三角形中任意兩邊之差小於第三邊。
三角形中任意兩邊之和大於第三邊。

9.3 一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。

第十章 實數
10.1 平方根
如果一個正數x的平方等於a,那麼這個正數x叫做a的算術平方根(arithmetic square root),2是根指數。
a的算術平方根讀作「根號a」,a叫做被開方數(radicand)。
0的算術平方根是0。
如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根(square root) 。
求一個數a的平方根的運算,叫做開平方(extraction of square root)。

10.2 立方根
如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根(cube root)。
求一個數的立方根的運算,叫做開立方(extraction of cube root)。

10.3 實數
無限不循環小數又叫做無理數(irrational number)。
有理數和無理數統稱實數(real number)。

㈤ 初一下冊數學知識點(人教版)

初一數學(下)應知應會的知識點
二元一次方程組
1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.
2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有唯一解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵.
※5.一次方程組的應用:
(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則「難列易解」;
(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.
一元一次不等式(組)
1.不等式:用不等號「>」「<」「≤」「≥」「≠」,把兩個代數式連接起來的式子叫不等式.
2.不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.
4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b>0或ax+b<0 ,(a≠0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.
6.一元一次不等式組:含有相同未知數的幾個一元一次不等式所組成的不等式組,叫做一元一次不等式組;注意:ab>0   或 ;
ab<0   或 ; ab=0  a=0或b=0;  a=m .
7.一元一次不等式組的解集與解法:所有這些一元一次不等式解集的公共部分,叫做這個一元一次不等式組的解集;解一元一次不等式時,應分別求出這個不等式組中各個不等式的解集,再利用數軸確定這個不等式組的解集.
8.一元一次不等式組的解集的四種類型:設 a>b

9.幾個重要的判斷: , ,

整式的乘除
1.同底數冪的乘法:am•an=am+n ,底數不變,指數相加.
2.冪的乘方與積的乘方:(am)n=amn ,底數不變,指數相乘; (ab)n=anbn ,積的乘方等於各因式乘方的積.
3.單項式的乘法:系數相乘,相同字母相乘,只在一個因式中含有的字母,連同指數寫在積里.
4.單項式與多項式的乘法:m(a+b+c)=ma+mb+mc ,用單項式去乘多項式的每一項,再把所得的積相加.
5.多項式的乘法:(a+b)•(c+d)=ac+ad+bc+bd ,先用多項式的每一項去乘另一個多項式的每一項,再把所得的積相加.
6.乘法公式:
(1)平方差公式:(a+b)(a-b)= a2-b2,兩個數的和與這兩個數的差的積等於這兩個數的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 兩個數和的平方,等於它們的平方和,加上它們的積的2倍;
② (a-b)2=a2-2ab+b2 , 兩個數差的平方,等於它們的平方和,減去它們的積的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.
7.配方:
(1)若二次三項式x2+px+q是完全平方式,則有關系式: ;
※ (2)二次三項式ax2+bx+c經過配方,總可以變為a(x-h)2+k的形式,利用a(x-h)2+k
①可以判斷ax2+bx+c值的符號; ②當x=h時,可求出ax2+bx+c的最大(或最小)值k.
※(3)注意: .
8.同底數冪的除法:am÷an=am-n ,底數不變,指數相減.
9.零指數與負指數公式:
(1)a0=1 (a≠0); a-n= ,(a≠0). 注意:00,0-2無意義;
(2)有了負指數,可用科學記數法記錄小於1的數,例如:0.0000201=2.01×10-5 .

10.單項式除以單項式: 系數相除,相同字母相除,只在被除式中含有的字母,連同它的指數作為商的一個因式.
11.多項式除以單項式:先用多項式的每一項除以單項式,再把所得的商相加.
※12.多項式除以多項式:先因式分解後約分或豎式相除;注意:被除式-余式=除式•商式.
13.整式混合運算:先乘方,後乘除,最後加減,有括弧先算括弧內.
線段、角、相交線與平行線

幾何A級概念:(要求深刻理解、熟練運用、主要用於幾何證明)
1. 角平分線的定義:
一條射線把一個角分成兩個相等的部分,這條射線叫角的平分線.(如圖)
幾何表達式舉例:
(1) ∵OC平分∠AOB
∴∠AOC=∠BOC
(2) ∵∠AOC=∠BOC
∴OC是∠AOB的平分線
2.線段中點的定義:
點C把線段AB分成兩條相等的線段,點C叫線段中點.(如圖)

幾何表達式舉例:
(1) ∵C是AB中點
∴ AC = BC
(2) ∵AC = BC
∴C是AB中點
3.等量公理:(如圖)
(1)等量加等量和相等;(2)等量減等量差相等;
(3)等量的等倍量相等;(4)等量的等分量相等.
(1) (2)
(3)

(4) 幾何表達式舉例:
(1) ∵AC=DB
∴AC+CD=DB+CD
即AD=BC
(2) ∵∠AOC=∠DOB
∴∠AOC-∠BOC=∠DOB-∠BOC
即∠AOB=∠DOC
(3) ∵∠BOC=∠GFM
又∵∠AOB=2∠BOC
∠EFG=2∠GFM
∴∠AOB=∠EFG
(4) ∵AC= AB ,EG= EF
又∵AB=EF
∴AC=EG
4.等量代換: 幾何表達式舉例:
∵a=c
b=c
∴a=b 幾何表達式舉例:
∵a=c b=d
又∵c=d
∴a=b 幾何表達式舉例:
∵a=c+d
b=c+d
∴a=b
5.補角重要性質:
同角或等角的補角相等.(如圖)

幾何表達式舉例:
∵∠1+∠3=180°
∠2+∠4=180°
又∵∠3=∠4
∴∠1=∠2
6.餘角重要性質:
同角或等角的餘角相等.(如圖)

幾何表達式舉例:
∵∠1+∠3=90°
∠2+∠4=90°
又∵∠3=∠4
∴∠1=∠2

7.對頂角性質定理:
對頂角相等.(如圖)
幾何表達式舉例:
∵∠AOC=∠DOB
∴ ……………

8.兩條直線垂直的定義:
兩條直線相交成四個角,有一個角是直角,這兩條直線互相垂直.(如圖)

幾何表達式舉例:
(1) ∵AB、CD互相垂直
∴∠COB=90°
(2) ∵∠COB=90°
∴AB、CD互相垂直

9.三直線平行定理:
兩條直線都和第三條直線平行,那麼,這兩條直線也平行.(如圖)

幾何表達式舉例:
∵AB∥EF
又∵CD∥EF
∴AB∥CD

10.平行線判定定理:
兩條直線被第三條直線所截:
(1)若同位角相等,兩條直線平行;(如圖)
(2)若內錯角相等,兩條直線平行;(如圖)
(3)若同旁內角互補,兩條直線平行.(如圖)

幾何表達式舉例:
(1) ∵∠GEB=∠EFD
∴ AB∥CD
(2) ∵∠AEF=∠DFE
∴ AB∥CD
(3) ∵∠BEF+∠DFE=180°
∴ AB∥CD
11.平行線性質定理:
(1)兩條平行線被第三條直線所截,同位角相等;(如圖)
(2)兩條平行線被第三條直線所截,內錯角相等;(如圖)
(3)兩條平行線被第三條直線所截,同旁內角互補.(如圖)

幾何表達式舉例:
(1) ∵AB∥CD
∴∠GEB=∠EFD
(2) ∵AB∥CD
∴∠AEF=∠DFE
(3) ∵AB∥CD
∴∠BEF+∠DFE=180°
幾何B級概念:(要求理解、會講、會用,主要用於填空和選擇題)
一 基本概念:
直線、射線、線段、角、直角、平角、周角、銳角、鈍角、互為補角、互為餘角、鄰補角、兩點間的距離、相交線、平行線、垂線段、垂足、對頂角、延長線與反向延長線、同位角、內錯角、同旁內角、點到直線的距離、平行線間的距離、命題、真命題、假命題、定義、公理、定理、推論、證明.
二 定理:
1.直線公理:過兩點有且只有一條直線.
2.線段公理:兩點之間線段最短.

3.有關垂線的定理:
(1)過一點有且只有一條直線與已知直線垂直;
(2)直線外一點與直線上各點連結的所有線段中,垂線段最短.
4.平行公理:經過直線外一點,有且只有一條直線與這條直線平行.

三 公式:
直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.
四 常識:
1.定義有雙向性,定理沒有.
2.直線不能延長;射線不能正向延長,但能反向延長;線段能雙向延長.
3.命題可以寫為「如果………那麼………」的形式,「如果………」是命題的條件,「那麼………」 是命題的結論.
4.幾何畫圖要畫一般圖形,以免給題目附加沒有的條件,造成誤解.
5.數射線、線段、角的個數時,應該按順序數,或分類數.
6.幾何論證題可以運用「分析綜合法」、「方程分析法」、「代入分析法」、「圖形觀察法」四種方法分析.
7.方向角:

(1) (2)

8.比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.
9.幾何題的證明要用「論證法」,論證要求規范、嚴密、有依據;證明的依據是學過的定義、公理、定理和推論.

㈥ 初一下冊數學要學什麼

你好
第二冊

第五章相交線與平行線

5.1相交線

5.1.1相交線

有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。

兩條直線相交,有2對對頂角。

對頂角相等。

5.1.2

兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

注意:⑴垂線是一條直線。

⑵具有垂直關系的兩條直線所成的4個角都是90。

⑶垂直是相交的特殊情況。

⑷垂直的記法:a⊥b,AB⊥CD。

畫已知直線的垂線有無數條。

過一點有且只有一條直線與已知直線垂直。

連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

5.2平行線

5.2.1平行線

在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a‖b。

在同一平面內兩條直線的關系只有兩種:相交或平行。

平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

5.2.2直線平行的條件

兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。

兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的兩個角叫做內錯角。

兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。

判定兩條直線平行的方法:

方法1兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。簡單說成:同位角相等,兩直線平行。

方法2兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

方法3兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

5.3平行線的性質

平行線具有性質:

性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

性質3兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

同時垂直於兩條平行線,並且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。

判斷一件事情的語句叫做命題。

5.4平移

⑴把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。

⑵新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點,連接各組對應點的線段平行且相等。

圖形的這種移動,叫做平移變換,簡稱平移。
第六章平面直角坐標系

6.1平面直角坐標系

6.1.1有序數對

有順序的兩個數a與b組成的數對,叫做有序數對。

6.1.2平面直角坐標系

平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。

平面上的任意一點都可以用一個有序數對來表示。

建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。

6.2坐標方法的簡單應用

6.2.1用坐標表示地理位置

利用平面直角坐標系繪制區域內一些地點分布情況平面圖的過程如下:

⑴建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向;

⑵根據具體問題確定適當的比例尺,在坐標軸上標出單位長度;

⑶在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。

6.2.2用坐標表示平移

在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(x,y-b))。

在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度。
第七章三角形

7.1與三角形有關的線段

7.1.1三角形的邊

由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內角,簡稱三角形的角。

頂點是A、B、C的三角形,記作「△ABC」,讀作「三角形ABC」。

三角形兩邊的和大於第三邊。

7.1.2三角形的高、中線和角平分線

7.1.3三角形的穩定性

三角形具有穩定性。

7.2與三角形有關的角

7.2.1三角形的內角

三角形的內角和等於180。

7.2.2三角形的外角

三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。

三角形的一個外角等於與它不相鄰的兩個內角的和。

三角形的一個外角大於與它不相鄰的任何一個內角。

7.3多邊形及其內角和

7.3.1多邊形

在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

n邊形的對角線公式:

各個角都相等,各條邊都相等的多邊形叫做正多邊形。

7.3.2多邊形的內角和

n邊形的內角和公式:180(n-2)

多邊形的外角和等於360。

7.4課題學習鑲嵌
第八章二元一次方程組

8.1二元一次方程組

含有兩個未知數,並且未知數的指數都是1的方程叫做二元一次方程

把具有相同未知數的兩個二元一次方程合在一起,就組成了一個二元一次方程組。

使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解

二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。

8.2消元

由二元一次方程組中的一個方程,將一個未知數用含有另一未知數的式子表示出來,再代入另一方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。

兩個二元一次方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。

8.3再探實際問題與二元一次方程組
第九章不等式與不等式組

9.1不等式

9.1.1不等式及其解集

用「<」或「>」號表示大小關系的式子叫做不等式。

使不等式成立的未知數的值叫做不等式的解。

能使不等式成立的未知數的取值范圍,叫做不等式解的集合,簡稱解集。

含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。

9.1.2不等式的性質

不等式有以下性質:

不等式的性質1不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。

不等式的性質2不等式兩邊乘(或除以)同一個正數,不等號的方向不變。

不等式的性質3不等式兩邊乘(或除以)同一個負數,不等號的方向改變。

9.2實際問題與一元一次不等式

解一元一次方程,要根據等式的性質,將方程逐步化為x=a的形式;而解一元一次不等式,則要根據不等式的性質,將不等式逐步化為x<a(或x>a)的形式。

9.3一元一次不等式組

把兩個不等式合起來,就組成了一個一元一次不等式組。

幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。

對於具有多種不等關系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集。

9.4課題學習利用不等關系分析比賽
第十章實數

10.1平方根

如果一個正數x的平方等於a,即x2=a,那麼這個正數x叫做a的算術平方根。a的算術平方根記為,讀作「根號a」,a叫做被開方數。

如果一個數的平方等於a,那麼這個數叫做a的平方根或二次方根。

求一個數a的平方根的運算,叫做開平方。

10.2立方根

如果一個數的立方等於a,那麼這個數叫做a的立方根或三次方根。

求一個數的立方根的運算,叫做開立方。

10.3實數

無限不循環小數又叫做無理數。

有理數和無理數統稱實數。

一個正實數的絕對值是它本身;一個負實數的絕對值是它的相反數;0的絕對值是0。

㈦ 初一數學下冊前兩章知識點總結

第五章:

本章重點:一元一次不等式的解法,

本章難點:了解不等式的解集和不等式組的解集的確定,正確運用

不等式基本性質3。

本章關鍵:徹底弄清不等式和等式的基本性質的區別.

(1)不等式概念:用不等號(「≠」、「<」、「>」)表示的不等關系的式子叫做不等式

(2)不等式的基本性質,它是解不等式的理論依據.

(3)分清不等式的解集和解不等式是兩個完全不同的概念.

(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心

(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集

(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成

(8).利用數軸確定一元一次不等式組的解集

㈧ 初一下冊數學書不等式與不等式組(不等式及其解集)

第8章一元一次不等式
----專題復習

本章小結
1、本章我們認識了不等式,研究了不等式的性質。學習了利用不等式的性質解一元一次不等式(組),在數軸上表示一元一次不等式的解集,並會利用數軸直觀地得到一元一次不等式組的解集。
2、不等式的知識源於生活實際,我們要學會分析實際問題中量與量的不等關系,並抽象出不等式(組),利用得到的不等式(組)解決實際問題。
3、解一元一次不等式的過程與解一元一次方程類似。它包括:(1) 去分母;(2) 去括弧;(3) 移項;(4) 合並同類項;(5) 系數化為1這些步驟。解不等式時要根據實際題目的要求做到靈活安排,並合理選取解題步驟。需注意的是系數化為1時,如果不等式兩邊乘以或除以同一個正數,則不改變不符號方向;但在不等式兩邊乘以或除以同一個負數時,一定要改變不等號方向。
4、解一元一次不等式組時,先分別求得每個不等式的解集,再求出它們的公共部分。後者通常利用數軸或熟記四種基本情形,採取「同大取大,同小取小,大小小大取中間,大大小小是無解」的方法確定。
5、將一元一次不等式的解集在數軸上表示出來,不但可以加深我們對一元一次不等式(組)的解集的理解,也便於我們更直觀地得到一元一次不等式的正等數解集特解問題和一元一次方程組的解集。
專題綜合講解
專題一利用不等式的性質進行不等式的變形
例1選擇題
(1) 如果-a<2,那麼下列各式中正確的是()
A、a<-2 B、a>2 C、-a+1<3 D、-a-1>1
(2) 若a>b,則下列不等式一定成立的是()
A、 B、 C、-a>-b D、a-b>0
(3) (2003·隨州)若a<0,關於x的不等式ax+1>0的解集是()
A、x> B、x< C、x> D、x<
(4) 若x是任意實數,則下列不等式中恆成立的是()
A、3x>2x B、3x2>2x2 C、3+x>2 D、3+x2>2
解:(1) C (2) D (3) D (4) D
點評:(1) 解答本題的關鍵是對不等式基本性質的理解和掌握程度。在運用不等式三條基本性質求解後,再加以篩選。
(2) 對有的選擇題,如果直接求解困難或過繁,可用特殊值幫助篩選,以便減少答題時間。如(4)可取x=-1,0,分別淘汰A、C、B,故選D。
例2判斷下列不等式的變形是否正確。
(1) 由a<b得ac<bc (2) 由x>y且m≠0得
(3) 由x>y得xz2>yz2 (4) 由xz2>yz2得x>y
解:(1) 不正確,C可能是零,也可能是負數,變形後不能確定大小關系。
(2) 不正確。-m不一定是負數,變形後不能確定不等式的方向。
(3) 不正確。Z可能是0。
(4) 正確。由條件可知z2>0。
點評:准確理解不等式的性質是解題的關鍵。注意考慮問題要全面。尤其是要注意性質3的應用。
專題二解不等式或不等式組
例1不等式
解:小數化為分數,得,
去分母,得4(2x-1)-6(3x-5)-2(x+1)+3×5>0,
去括弧,得8x-4-18x+30-2x-2+15>0,
合並同類項,得-12x+39>0,
移項,得-12x+39>0
系數化為1,得x<
點評:既含分母又有小數的不等式,可將小數化為分數,也可將分數化為小數,但後者有可能出現無限小數,會使運算答案不正確,常將小數全部化為分數後再解。
例2解不等式組
解:解不等式(1),得x<-3;解不等式(2),得x≥-4,
∴不等式組的解集為-4≤x<-3.
點評:在解不等式(2)時要注意去分母括弧的正確使用,如0.2(x-3)-0.5(x+4)≤-1.4;本題也可先化小數系數為整數系數,如≤-14.
專題三求不等式(組)的特殊解
例1求不等式正的整數解。
解:去分母,得2(y+1)-3(y-1)≥y-1(注意不要忘記加括弧)
去括弧2y+2-3y+3≥y-1(注意變號)
移項、合並-2y≥-6
系數化為1,y≤3(此步注意改變不等號方向)
因為不大於3的正整數有1, 2, 3三個,
所以不等式的正整數解是1, 2, 3。
點評:要確定一個不等式的特殊解,首先確定不等式的解集范圍,然後把此范圍內的符合條件的數找出來即可。
例2求不等式組的非負整數解。
解:由不等式2x+1<3x+3得x>-2;由不等式得x≤5,所以原不等式組的解集是-2<x≤5,它的非負整數解為0, 1, 2, 3, 4, 5這六個數。
點評:對解答的不等式(組)的解集,在數軸上表示出來,可徹底解決漏解現象。如本例中,將所得不等式組的解集在數軸上表示成如圖,顯然其非負整數解一目了解,為0, 1, 2, 3, 4, 5。

-3 -2 -1 0 1 2 3 4 5 6
專題四用不等式解集的概念解決有關問題
例1已知不等式組與的解相同,求a的值.
解:可化為解不等式組得-2<x<1,而兩不等式組的解相同,故-2<x<a-4。從而a-4=1,故a=5.
例2(2003·重慶市)已知關於x的不等式組無解,則a的取值范圍是。
解:原不等式組可化為因為不等式組無解,所以x≤3,x>a沒有公共部分,即a≥3。
例3若關於x的不等式(ax-5)>x-a的解都是不等式1-2x<3的解,求a的取值范圍。
解:由不等式(ax-5)>x-a,得(a-2)x>5-2a;
由不等式1-2x<3,得x>-1;由題意得解得2<a≤3。
專題五不等式(組)與計算、估算、方程結合解決實際問題
方程和不等式的綜合應用題是近幾年中考常見題型,解這類問題的關鍵就是要弄清題中各量之間的關系,列出方程和不等式,從而求解。
例1(2003·黑龍江)某中學在防「非典」知識競賽中,評出一等獎4人,二等獎6人,三等獎20人,學校決定給所有獲獎學生各發一份獎品,同一等獎的獎品相同。
(1) 若一等獎、二等獎、三等獎的獎品分別是噴壺、口罩和溫度計,購買這三種獎品共計花費113元,其中購買噴壺的總錢數比購買口罩的總錢數多9元,而口罩單價比溫度計的單價多2元,求噴壺、口罩和溫度計的單價是多少元?
(2) 若三種獎品的單價都是整數,且要求一等獎獎品單價是二等獎獎品單價的2倍,二等獎獎品的單價是三等獎獎品單價的2倍,在總費用不少於90元而不到150元的前提下,購買一、二、三等獎獎品時,它們的單價有幾種情況?分別求出每種情況下一、二、三等獎獎品的單價。
分析:本題以某中學預防「非典」知識競賽這一活動為基本素材,編擬了一道方程與不等式珠聯璧合的應用題。
解:(1) 設噴壺和口罩的單價分別是y元和z元。
則解之得
∴z-2=2.5。
答:噴壺、口罩、溫度計單價分別是9元、4.5元、2.5元。
(2) 設三等獎獎品的單價為x元,則二等獎獎品單價為2x元、一等獎獎品單價為4x元,則90≤4×4x+6×2x+20x<150,
∴≤x<。又三種獎品單價都是整數,∴x=2或3。
當x=2時,2x=4,4x=8;當x=3時,2x=6,4x=12。
答:購買一、二、三等獎獎品時,它們的單價有兩種情況:第一種情況:一、二、三等獎獎品的單價分別為8元、4元、2元;第二種情況:一、二、三等獎獎品的單價分別為12元、6元和3元。
點評:不等式(組)的應用很廣,題型很多,與方程結合應用的題目較多。前面已舉了大量例子,這里不再贅述。
例2哈市慧明中學為加強現代信息技術課教學,擬投資建一個初級計算機機房和一個高級計算機機房,每個計算機機房配備1台教師用機,若乾颱學生用機。其中初級機房教師用機每台8000元,學生用機每台3500元;高級機房教師用機每台11500元,學生用機每台7000元。已知兩機房購買計算機的總錢數相等,且每個機房購買計算機的總錢數不少於20萬元也不超過21萬元。則該校擬建的初級機房,高級機房各應配置多少台計算機?
分析:解這類題時,要在審題中抓住關鍵詞語,並理解其含義,如「至少」,「至多」,「超過」,「大於」,「不大於」,「不小於」等,然後根據題意列出不等式組。
解:設該校擬建的初級機房配置x台計算機,高級機房配置y台計算機,根據題意,得
0.8+0.35(x-1)=1.15+0.7(y-1), x=2y,
20≤0.8+0.35(x-1)≤21,解得 ≤x≤,
20≤1.15+0.7(y-1)≤21. ≤y≤.
∵ x、y均為整數,
∴ x=56, 58;y=28, 29.

答:該校擬建的初級、高級機房分別有計算機56台、28台或58台、29台。
點評:不等式組解出後,要根據實際問題的意義,從解集中找出符合題意的答案,解一般取正整數。

㈨ 「不等式的解集」是什麼意思

意思:一般地,一個含有未知數的不等式的所有的解組成這個不等式的解的集合,簡稱不等式的解集。

閱讀全文

與初一下冊數學什麼叫不等式的解相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:893
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1401
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070