㈠ 小學數學教學的教法和學法主要有哪些
選擇和運用教學方法應該考慮以下幾個主要原則:
1、堅持啟發式教學,反對注入式教學
啟發式教學就是指教師從學生的實際情況出發,把學生當成學習的主體,應用各種方式方法調動學生學習的積極性、主動性和能動性,引導學生通過自己積極的學習活動掌握知識、形成技能、發展能力和促進個性健康發展。
啟發式教學的精神是尊重學生的主體人格,強調指導學生的學習方法,重視學生的技能形成、能力發展和個性展示。它把學生看成既是教育的對象,又是學習的主體,充分調動學生學習的主動性,激發他們的學習興趣和求知慾,從而積極地開展思維活動,在理解的基礎上掌握知識。這種教學有利於促進學生的智力,特別是思考力的發展和培養學生分析問題、解決問題的能力,是一種科學民主的教學方法。
注入式教學也稱「填鴨式」或「灌輸式」教學,是指教師從主觀出發,把學生置於被動地位,忽視學生的主體能動性,把學生看成是單純接受知識的「容器」,只注重教學過程的知識傳授。可以看出,注入式教學是把學生看成被動的教育對象,不注意調動學生的主動性和積極性,教師只是把知識灌輸給學生,使學生生吞活剝,不加咀嚼地呆讀死記,抑制了學生的思考力和創新精神。注入式教學方式既不利於學生真正領會掌握知識,又不利於其智慧的發展,是一種不科學不民主的教學方法
2、體現教育價值的原則
小學數學教育的基本價值追求是什麼?不同的理解將影響對具體數學教學方法的抉擇與組合。如果將小學數學教育的價值簡單地理解為就是掌握已經被發現的、最基礎的數學知識,那麼,可能更多地會考慮「採用什麼樣的方式講解,學生更能聽懂?」「通過哪些操練能使學生牢固掌握那些基礎性的知識!」「如何考量學生是否已經掌握了那些規定性的基礎知識?」等這樣一些問題,則相應地,在抉擇或組合教學方法的時候,可能會更多地集中在「敘述式講解」、「重復性練習」、「結論性演示」等方法之上;如果將小學數學教育的價值理解為發展學生的數學素養的話,可能更多地會考慮「採用什麼樣的組織方式能更有利於學生經歷一個探索與發現的過程?」「通過哪些獲得能促進學生的知識和經驗運用於現實情境?」「如何考量學生數學問題解決的能力」等這樣一些問題,則相應地,在抉擇或組合數學方法的時候,可能會更多地集中在「啟發式對話」、「探索性實驗」、「引發性問題解決」等方法之上。
3、目標導向原則
在任何一個數學教學活動開始前,教師都會(也必須)依據課程目標、學習任務以及學生特點等,設計出具體的教學目標。隨著新課程的實施,教學目標的多元和整合已經深入人心,新課標把教學目標劃分成「知識與技能,過程與方法,情感、態度和價值觀」三個維度。這個目標就是將數學學習的任務具體化,它是整個課堂學習活動的基本導向,在課堂教學中主導著教與學的方法與過程,是教學的出發點和歸宿。因此,教師對數學方法的抉擇與組合,首先需要考慮的是,如何能最大限度地達成這個已經被確定的目標。
4、與教學內容相適應的原則
教學任務是通過教學內容的傳授實現的。這里的教學內容是指學科性質和一節課的教材內容。教學內容是制約教學方法的重要條件,學科性質不同,教學方法也有不同。同一學科,由於各節課教材內容不同,其方法的選擇也有區別。同是傳授新知識,如是概念性內容,就要選用講授法;如是闡明事物的特性、揭示事物發生發展變化的規律,則可選用演示法。所以要依據教學內容來選擇與之相適應的教學方法。
5、促進兒童學習的原則
良好的教學方法應該是充分激發學生的學習動機,充分激勵學生主動參與學習的一種程序結構。它應充分考慮學生是怎樣學習的,怎樣才能學得更好,要能充分地引起學生的注意,同時又盡可能地保持學生的這種注意,使學生始終能積極主動地參與學習過程;它不僅要關注教師行為的合理性和有效性,更要充分地關切學生的情緒狀態,關切學生參與學習的程度,關切學生參與學習的過程中所遇到的問題或困難,關切學生可能會提出的各種各樣的問題等;它要有助於形成和強化學生學習數學的自信心;它要能使學生在學習過程中獲得最大可能的體驗,並在這種體驗下獲得某種「成功」的滿足。
教師應當通過各種各樣的方式讓學生明確自己的學習任務和學習目標;幫助學生依據學習內容確定自己的學習方式;注重兒童的個性、經驗基礎、興趣導向和學習方式,寧可改變自己預設的教育教學計劃;鼓勵學生採用不同策略和方式參與學習;讓學生運用各種各樣方式去觀察對象,預見結果,檢驗假設;將學生在學習過程中所呈現的不同反應整合進自己的教學方法之中。
6、兼顧差異性原則
首先,教師要認識到,不同年齡段的學生,其認知的心理水平和心理特點是不同的,例如,低年齡段的學生,更容易被一些新奇的對象所吸引,但對於一些復雜的情境,要能辨識出數學特徵還是比較困難的,他們在學習過程中更多地依賴直觀,因而對一些邏輯運算能力還比較弱。因此,在這個年齡段,可以多採用一些材料演示。操作實驗等方法。而對稍高年段的學生來說,他們已經開始能從一個較為復雜的情境中辯識出某些數學特徵,雖然數學思考仍主要依賴於直觀,但已經建立了初步的語言和符號的邏輯運算能力,因此,就可以更多地採用一些啟發式談話、探究式發現、探索性實驗等方法。
其次,教師要認識到,不同的學生,其認知結構以及學習風格也是不同的。一個專業成熟的教師,懂得如何依據不同的學生的認知結構特點和學習風格特點,選擇有靈活性、開放性和多樣性的適應性教學方法,特定的教學方法與特定的學生特徵相聯系,從而滿足學生的學習需要。
最後,教師要認識到,不同年齡段的學生,其生活經歷是不同的。即使是同一個年齡段的學生,其生活經驗也是不同的。而學生已有的生活經歷與相應累積的日常經驗以及建立的那些日常概念,是學生實現現實問題數學化的一個基礎。因此,在抉擇和組合教學方法時,應兼顧這些差異。
㈡ 新課改下的數學教學方法和學習方法有哪些
在教學方法上要不斷探索、創新,以適應我國現行教育改革發展的需要。下面我粗淺地談談在數學教學方法上的一點認識。 一、明確數學教學目的,不斷改進教學方法 數學教學目的,就是規定了數學教學應當完成的知識傳授、能力培養、思想、個性品質等方面的教育任務,是根據我國教育的性質、任務和課程目標,並結合數學科學的特點和中學生的年齡特徵而制定的。特別是現行初中數學的教學目的,就明確提出了要「運用所學知識解決題」,「在解決實際問題過程中要讓學生受到把實際問題抽象成數學問題的訓練」,「形成用數學的意識」。 作為數學教師,必須對教學目的有明確的認識,並緊緊圍繞教學目的展開教學。因為它是考核學生成績和檢查、評估教師教育教學質量的重要標准。因此,我們必須全面、深刻地掌握數學教學目的,並在教學過程中,經常以此來檢查和評價自己的教學水平和教學效果,從而不斷改進數學教學方法。 二、切實抓好課堂教學,進一步提高教學效果 課堂教學過程是師生相互交流的互動過程。師生均以一種積極的心態進入教學過程,是學生主動參與學習並取得教學效果的前提。 (一)注意學生學習興趣的培養,激發學生學習熱情 學習興趣是學生學習主動性的體現,也是學生學習活動的動力源泉。古往今來,很多教育家都非常重視對學生學習興趣的培養、引導和利用。孔子曰:「知之者,不如好之者」,說明「好學」對教育的重要性。作為教師要做到以「趣」引路,以「情」導航。 在教學活動中,教師的講授和學生的學習總是或多或少地帶有一些感情色彩,即教育情感性。任何學生對教師的第一節課都會產生期待心情,這種期待主要表現為:①對教師外表形象的期待;②對教師言談舉止的期待;③對教師課堂教學的期待。在教學實踐中,我們發現有許多學生對於自己喜愛的教師、感興趣的教學內容、引人入勝的教學方法等都會表現出極大的投入,其學習思維就會與教師的教學保持著和諧、完美的統一。學生通過這種方式學會了運用知識解決問題,並從中體驗到成功的樂趣,從而產生了進一步學習的願望。作為教師就應該認真研究學生的這種心理傾向,並通過這種途徑培養學生的求知慾望,引導學生形成良好的意識傾向,要充分相信每一位學生的潛能,鼓舞每一位學生主動參與學習。 (二)改革課堂教學結構:發揮學生的主體作用 長期以來,許多學校的課堂教學存在一個嚴重問題,即只注重教師與學生之間的「教」與「學」,而忽視了學生與學生之間的交流和學習,從而導致學生自主學習空間萎縮。表現為:教師權威高於一切,對學生要求太嚴太死;課堂氣氛緊張、沉悶,缺乏應有的活力;形成了教師教多少,學生學多少,教師「主講」,學生「主聽」的單一教學模式。違背了「教為主導、學為主體」的原則。長此以往,學生在學習上依賴性增強,缺乏獨立思考問題和解決問題的能力,最終導致厭學情緒,致使學習效率普遍降低。因此,要充分發揮學生的主體作用,就必須做到:①課堂上多給學生留出一些讓他們自主學習和討論的空間,使他們有機會進行獨立思考、相互討論,並發表各自的意見。②利用教師的主導作用,引導學生積極主動地參與教學過程。由於教學過程中數學教學的本質是數學思維活動的展開,數學課堂上學 生的主要活動是通過動腦、動手、動口參與數學思維活動。教師的主導作用主要在於教學生去學,既要幫助學生學會,也要幫助學生會學。不僅要鼓勵學生參與,而且要引導學生主動參與,才能使學生主體性得到充分的發揮和發展,進而不斷提高數學教學效果。③運用探究式教學。教學中,在教師的主導下,堅持學生是探究的主體,引導學生對知識的發生、形成、發展全過程進行探究活動。讓學生學會發現問題、提出問題,並逐步培養他們分析問題、解決問題的能力。從而激起他們強烈的求知慾和創造欲。讓學生從思想上產生由「要我學」到「我要學」的轉變,真正實現主動參與。 (三)重視學生數學能力的培養 數學能力實際上是學生在數學學習活動中聽、說、讀、寫、想等方面的能力,它們是數學課堂學習活動的前提和不可缺少的學習能力,也是提高數學課堂學習效率的保證。在數學教學活動中,「聽」就是學生首先要聽課,同時也要聽同學們對數學知識的理解和課後的感受,這就需要有「聽」的技能。因此,教師要隨時了解周圍學生對數學課知識要點的理解及聽課的效果,同時,教師也可以向學生傳授一些聽課技能。例如:①在聽課過程中怎樣保持注意力高度集中,思路與教師同步。②怎樣才能更好地領會教師的講解。③怎樣學會歸納要點、重點。④遇到不懂的地方怎麼辦。⑤別的同學回答問題時,也要注意聽,並積極參與討論等。「說」就是學生對所學的數學知識能夠用自己的語言進行描述,對數學中的概念能夠做出解釋,與同學之間進行討論,向老師提出問題,使得自己的見解和提出的問題易於被別人理解。「讀」就是學生的閱讀能力,從某種層面上講,也是為今後「說」的技能打基礎。學生通過閱讀課本和課外資料,既豐富了知識面,又養成了自學的習慣,從而增強了學生學習過程中的獨立性。「寫」就是學生將學到的知識具體運用到學習活動中去。它是學生學習知識、鞏固知識的重要途徑。例如數學中的一些證明題,有很多學生都知道它的證明方法,知道其中考查的知識點,但總不能夠很好地以「寫」的形式將其證明過程展現出來。即使寫了,各知識點之間的邏輯關系也較為混亂,推理過程也不夠嚴密。這些都是教學中學生普遍存在的問題,從某一側面也體現了培養學生「寫」能力的重要性。「寫」能力的高低,直接影響他們對數學思想、數學方法和數學知識的理解和掌握,並決定著他們數學思維能力的發展。「想」就是要發揮學生思維的「自由想像」。例如:我們在講完「圓的有關性質」後,提出「車輪為什麼要做成圓形的」,讓學生充分發揮自由想像,在想像中去感受、體驗,這樣既活躍了課堂氣氛,又讓學生在想像中對所學知識得到了進一步的鞏固。因此,在課堂教學中要盡量為學生創造有利於形成聽、說、讀、寫、想能力的條件,並不斷摸索培養的規律和方法。 (四)將「開放式問題」帶入課堂 數學教學中將開放式問題帶入課堂是對素質教育的一種探索,也是當前數學教育的發展潮流。 數學開放式問題的顯著特點是其思考空間廣闊,思維活動的自由度較大,學生的思維活動易於展開,在思考中能提出更多的問題,解決問題的途徑也更多,它具有與傳統封閉型題不同的特點。因此,在數學教學中有其獨特的效果。數學開放式問題的教學為學生提供了更多的交流與合作的機會,能促進學生思考, 引導學生的思維向縱深發展,為充分發揮學生的主體作用創造了條件,有利於培養學生「開放式」的數學思維和開拓進取精神。 隨著我國教育事業的不斷進步和發展,我們應緊跟時代的步伐,大力推進小學數學課程、教材、教法的改革,數學教師必須轉變教育觀念,掌握新的教學基本功,為最終提高新課程的教學而努力。
㈢ 小學數學教學方法有哪些學法指導有哪些
(一)講授法講授法是教師運用口頭語言系統地向學生傳授知識的方法。講授法是一種最古老的教學方法,也是迄今為止在世界范圍內應用最廣泛、最普遍的一種教學方法。 又可以分為講述、講讀、講解三種方式。
講述:教師向學生敘述、描繪事物和現象。
講解:教師向學生解釋、說明、論證概念、原理、公式等。
講讀:教師利用教科書邊讀邊講。
以上三種方式之間沒有嚴格的界限,在教學活動中經常穿插結合地使用。
講授法的優點在於,可以使學生在比較短的時間內獲得大量的、系統的知識,有利於發揮教師的主導作用,有利於教學活動有目的有計劃地進行。講授法的缺點在於,容易束縛學生,不利於學生主動、自覺地學習,而且對教師個人的語言素養依賴較大。
(二)談話法
談話法是教師根據學生已有的知識經驗,藉助啟發性問題,通過口頭問答的方式,引導學生通過比較、分析、判斷等思維活動獲取知識的教學方法。談話法的基本形式是學生在教師引導下通過獨立思考進行學習。
談話法的優點在於,能夠比較充分地激發學生的主動思維,促進學生的獨立思考,對於學生智力的發展有積極作用,同時也有助於學生語言表達能力的鍛煉和提高。談話法的缺點在於,與講授法相比,完成同樣的教學任務,它需要較多的時間。此外,當學生人數較多時,很難照顧到每一個學生。因此,談話法經常與講授法等其他方法配合使用。
(-三)討論法
討論法是在教師指導下,學生圍繞某個問題發表和交換意見,通過相互之間的啟發、討論、商量獲取知識的教學方法。討論法的基本形式是學生在教師的引導下藉助獨立思考和交流學習。
討論法的優點在於,年齡和發展水平相近的學生共同討論,容易激發興趣、活躍思維,有助於他們聽取、比較、思考不同意見,在此基礎上進行獨立思考,促進思維能力的發展。此外,討論法能夠普遍而充分地給予每一個學生表達自己觀點和意見的機會,調動所有學生的學習積極性,並且有效地促進學生口頭語言能力的發展。討論法的缺點在於,受到學生知識經驗水平和能力發展的限制,容易出現討論流於形式或者脫離主題的情況,對小學生而言更是如此,這需要教師加以注意。
(四)練習法
練習法是學生在教師指導下,進行各種練習,從而鞏固知識、形成技能技巧的教學方法。練習法的基本形式是學生在教師指導下的一種實踐性學習。
練習法的優點在於,可以有效地發展學生的各種技能技巧。任何技能技巧都是通過練習形成、鞏固和提高的,在教師指導下進行各種及時、集中的練習,能夠在這方面取得比較迅速的效果。
(五 ) 演示法
演示法是教師把實物或實物的模象展示給學生觀察,或通過示範性的實驗,通過現代教學手段,使學生獲得知識更新的一種教學方法。它是輔助的教學方法,經常與講授、談話、討論等方法配合一起使用。
(六) 讀書指導法
讀書指導法是教師 目的、有計劃地指導學生通過獨立閱讀教材和參考資料獲得知識的一種教學方法。
㈣ 小學數學的教法和學法有哪些呢
下面這個可以做為參考:
19種小學數學教學方法總結
良好的方法能使我們更好地發揮運用天賦的才能,而拙劣的方法則可能阻礙才能的發揮。------[英]貝爾納
「數學為其他科學提供了語言、思想和方法」,「初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中和其他學科學習中的問題」。(小學數學課程標准)
數學思維方法分為兩種,形象思維方法和抽象思維方法。
小學數學要培養學生的形象思維能力,並在此基礎上,為發展抽象思維能力打下堅實的基礎。
一、形象思維方法
形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。
形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。
1、實物演示法
利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。
這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。
二年級數學教材中,「三個小朋友見面握手,每兩人握一次,共要握幾次手」與「用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數」。像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的。
特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴於實物演示作思維的基礎。
所以,小學數學教師應盡可能多地製作一些數學教(學)具,而且這些教(學)具用過後要好好保存,可以重復使用。這樣可以有效地提高課堂教學效率,提升學生的學習成績。
績。
2、圖示法
藉助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。
圖示法直觀可靠,便於分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴於人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想像出現謬誤或走入誤區,最後導致錯誤的結果。比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解。
在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。
例1 把一根木頭鋸成3段需要24分鍾,鋸成6段需要多少分鍾?(圖略)
思維方法是:圖示法。
思維方向是:鋸幾次,每次用幾分鍾。
思路是:鋸3段鋸了幾次,每次用幾分鍾,鋸6段鋸了幾次,需要多少分鍾。
例2 判斷 等腰三角形中,點D是底邊BC的中點,圖甲的面積比圖乙的面積大,圖甲的周長比圖乙的周長長。(圖略)
思維方法:圖示法。
思維方向:先比較面積,再比較周長。
思路:作條輔助線。圖甲占的面積大,圖乙所佔面積小,所以「圖甲的面積比圖乙的面積大」是正確的。線段AD比曲線AD短,所以「圖甲的周長比圖乙的周長長」是錯誤的。
3、列表法
運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便於分析比較、提示規律,也有利於記憶。它的局限性在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關。比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」。
用列表法解決傳統數學問題:雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。
4、探索法
按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。
第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。
第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。
例3 找規律填數。
(1)1、4、 、10、13、 、19;
(2)2、8、18、32、 、72、 。
第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。
小學數學教學活動中,教師應盡量創設讓學生去探究的情景,創造讓學生去探究的機會,鼓勵有探究精神和習慣的學生。
5、觀察法
通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」
小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。
「觀察」的要求:
第一、觀察要細致、准確。
例4 找出下列各題錯在哪裡,並改正。
(1)25×16=25×(4×4)=(25×4)×(25×4);
(2)18×36+18×64=(18+18)×(36+64)
例5 直接寫出下列各題的得數:
(1)3.6+6.4 (2)3.6+6.04
(3)125×57×0.04 (4)(351-37-13)÷5
第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。
第三, 觀察必定與思考結合。
例6
7
10
6
18
這是一年級下學期的一道思考題,如果只觀察不思考,這道題目讓干什麼就不知道。
6、典型法
針對題目去聯想已經解過的典型問題的解題規律,從而找出解題思路的方法叫做典型法。典型是相對於普遍而言的。解決數學問題,有些需要用一般方法,有些則需要用特殊(典型)方法。比如,歸一、倍比和歸總演算法、行程、工程、消同求異、平均數等。
運用典型法必須注意:
(1)要掌握典型材料的關鍵及規律。
例7 已知爸爸比兒子大30歲,爸爸今年的年齡正好是兒子的7倍。爸爸、兒子今年分別是多少歲?關鍵點在:爸爸比兒子大30歲,爸爸的年齡比兒子多幾倍。典型題都有典型解法,要想真正學好數學,即要理解和掌握一般思路和解法,還要學會典型解法。
(2)熟悉典型材料,並能敏捷地聯想到所適用的典型,從而確定所需要的解題方法。
例8 見到「某城市有一條公共汽車線路,長16500米,平均每隔500米設一個車站。這條線路需要設多少個車站?」這樣題目,就應該聯想到上面所講到的「鋸木頭用多少分鍾」的典型問題。
(3)典型和技巧相聯系。
例9 甲乙兩個工程隊共有82人,如果從乙隊調8人到甲隊,兩隊人數正好相等。甲乙兩隊原來各有多少人?這題目的技巧:調前、調後兩隊總人數沒變。先算調後各隊人數,再算原來各隊人數。
7、放縮法
通過對被研究對象的放縮估計來解決問題的方法叫做放縮法。放縮法靈活、巧妙,但有賴於知識的拓展能力及其想像能力。
例16 求12和9的最小公倍數。
求兩個數的最小公倍數一般的方法是「短除式」方法,它是根據這兩個數的質因數情況來求出它們的最小公倍數的。但也有兩個典型方法:一是「如果兩個數是互質數,那麼這兩個數的最小公倍數就是它們的乘積」;二是「如果大數是小數的倍數,那麼這兩個數的最小公倍數就是大數」。現在我們根據典型方法二,進行擴展運用,放大「大數」來求12和9的最小公倍數。
12不是9的倍數,就把它放大2倍,得24,仍然不是9的倍數,放大3倍,得36,36是9的倍數,那麼,12和9的最小公倍數就是36。這種方法的關鍵點在於,如果大數不是小數的倍數,就把大數翻倍,但一定從2倍開始,如果一下子擴大6倍,得數是它們的公倍數,而不是最小的了。
例17 期末考試,小剛的語文成績和英語成績的和是197分;語文和數學成績加起來是199分;數學和英語成績加起來是196分。想一想,小剛的哪科成績最高?你能算出小剛的各科成績嗎?
思路一:「放大」。通過觀察發現,語、數、外三科成績在題目中各出現兩次,我們求197+199+196的和,這個和是「語數外成績的2倍」,除以2得三科成績之和,再減去任意兩科的成績,就得到第三科的成績。
思路二:「縮小」。我們用語數成績的和減去語外的成績,199-197=2(分),這是數學減英語成績的差。數學和英語的和是196分,再求數學的分數就不難了。
放縮法有時運用在估算和驗算上。
例18 檢驗下列計算結果是否正確?
(1)18.7×6.9=137.3; (2)17485÷6.6=3609.
對於(1)用總體估計,放大至19×7=133,估計得數要小於133,所以本題結果錯誤。對於(2)用最高位估計,把17看作18,把6.6看作6,18÷6=3,顯然答數的最高位不會是3,故本題結果也不正確。
例19 把雞和兔放在一起,共有48個頭,114隻足,問雞、兔各有幾只。
這是一道雞兔同籠的典型問題,我們也用放縮法,不妨把雞和兔的足數縮小2倍,那麼,雞的足數和它的頭數一樣,而兔的足數是它的只數的2倍。所以,總的足數縮小2倍後,雞和兔的總足數與它們的總只數相差數就是兔的只數。
8、驗證法
你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。
驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。
(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。
(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。
(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)
按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。
(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。
二、抽象思維方法
運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維。
抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。
小學數學要培養學生初步的抽象思維能力,重點突出在:(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。(2)思維方法上,應該學會有條有理,有根有據地思考。(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理。
9、對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
例20、三個連續自然數的和是18,則這三個自然數從小到大分別是多少?
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。
例21、判斷:能被2除盡的數一定是偶數。
這里要對照「除盡」和「偶數」這兩個數學概念。只有這兩個概念全理解了,才能做出正確判斷。
10、公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
例22、 計算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運用乘法分配律
=59×50 …………運用加法計演算法則
=(60-1) ×50 …………運用數的組成規則
=60×50-1×50 …………運用乘法分配律
=3000-50 …………運用乘法計演算法則
=2950 …………運用減法計演算法則
11、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯系與區別,這是比較的實質。
(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。
(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。
(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
例23、填空:0.75的最高位是( ),這個數小數部分的最高位是( );十分位的數4與十位上的數4相比,它們的( )
相同,( )不同,前者比後者小了( )。
這道題的意圖就是要對「一個數的最高位和小數部分的最高位的區別」,還有「數位和數值」的區別等。
例23、六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?
這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。
找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化。
找解決思路(方法):每人多種7-5=2(棵),那麼,全班就多種了75+15=90(棵),全班人數為90÷2=45(人)。
12、分類法
俗語:物以類聚,人以群分。
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。
例24、 自然數按約數的個數來分,可分成幾類?
答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個。
13、分析法
把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的一種思維方法叫做分析法。
依據:總體都是由部分構成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。
也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,一直到問題得到解決為止,這種解題模式是「由果溯因」。分析法也叫逆推法。常用「枝形圖」進行圖解思路。
例25、玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件?
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。
枝形圖:(略)
14、綜合法
把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。
用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執因導果,也叫順推法。這種方法適用於已知條件較少,數量關系比較簡單的數學題。
例26、兩個質數,它們的差是小於30的合數,它們的和即是11的倍數又是小於50的偶數。寫出適合上面條件的各組數。
思路:11的倍數同時小於50的偶數有22和44。
兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2。
和是22的兩個質數有:3和19,5和17。它們的差都是小於30的合數嗎?
和是44的兩個質數有:3和41,7和37,13和31。它們的差是小於30的合數嗎?
這就是綜合法的思路。
15、方程法
用字母表示未知數,並根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。方程法最大的特點是把未知數等同於已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利於由已知向未知的轉化,從而提高了解題的效率和正確率。
例27、一個數擴大3倍後再增加100,然後縮小2倍後再減去36,得50。求這個數。
例28、一桶油,第一次用去40%,第二次比第一次多用10千克,還剩餘6千克。這桶油重多少千克?
這兩題用方程解就比較容易。
16、參數法
用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的一種方法叫做參數法。參數又叫輔助未知數,也稱中間變數。參數法是方程法延伸、拓展的產物。
例29、汽車爬山,上山時平均每小時行15千米,下山時平均每小時行駛10千米,問汽車的平均速度是每小時多少千米?
上下山的平均速度不能用上下山的速度和除以2。而應該用上下山的路程÷2。
例30、一項工作,甲單獨做要4天完成,乙單獨做要5天完成。兩人合做要多少天完成?
其實,把總工作量看作「1」,這個「1」就是參數,如果把總工作量看作「2、3、4……」都可以,只不過看作「1」運算最方便。
17、排除法
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例31、為什麼說除2外,所有質數都是奇數?
這就要用反證法:比2大的所有自然數不是質數就是合數。假設:比2大的質數有偶數,那麼,這個偶數一定能被2整除,也就是說它一定有約數2。一個數的約數除了1和它本身外,還有別的約數(約數2),這個數一定是合數而不是質數。這和原來假定是質數對立(矛盾)。所以,原來假設錯誤。
例32、判斷:(1)同一平面上兩條直線不平行,就一定相交。(錯)
(2)分數的分子和分母同乘以或同除以一個相同的數,分數大小不變。(錯)
18、特例法
對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在於特殊性之中。
例33、大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的( )倍,大圓面積是小圓面積的( )倍。
可以取小圓半徑為1,那麼大圓半徑就是2。計算一下,就能得出正確結果。
例33、 正方形的面積和邊長成正比例嗎?
如果正方形的邊長為a,面積為s 。 那麼,s:a=a (比值不定)
所以,正方形的面積和邊長不成正比例。
19、化歸法
通過某種轉化過程,把問題歸結到一類典型問題來解題的方法叫做化歸法。化歸是知識遷移的重要途徑,也是擴展、深化認知的首要步驟。化歸法的邏輯原理是,事物之間是普遍聯系的。化歸法是一種常用的辯證思維方法。
例34、某制葯廠生產一批防「非典」葯,原計劃25人14天完成,由於急需,要提前4天完成,需要增加多少人?
這就需要在考慮問題時,把「總工作日」化歸為「總工作量」。
例35、超市運來馬鈴薯、西紅柿、豇豆三種蔬菜,馬鈴薯佔25%,西紅柿和豇豆的重量比是4:5,已知豇豆比馬鈴薯多36千克,超市運來西紅柿多少千克?
需要把「西紅柿和豇豆的重量比4:5」化歸為「各占總重量的百分之幾」,也就是把比例應用題化歸為分數應用題。
㈤ 新理念 小學數學新教學方法有哪些
自主探索式學習----重點在於學生親自體驗學習過程 , 其價值與其說是學生發現 結論 , 不如說更看重學生的探索過程。自主探索式學習重視讓每個學生根據自己的體 驗 , 通過觀察、實驗、猜想、驗證、推理等方式自由地、開放地去探究、去發現、去 「 再創造 」 有關數學問題口在這個過程中 , 學生不僅獲得了必要的數學知識和技能 , 還對數學 知識的形成過程有所了解 , 特別是體驗和學習數學的思考方法和數學的價值。合作學習----小學數學教學中經
自主探索式學習----重點在於學生親自體驗學習過程 , 其價值與其說是學生發現 結論 , 不如說更看重學生的探索過程。自主探索式學習重視讓每個學生根據自己的體 驗 , 通過觀察、實驗、猜想、驗證、推理等方式自由地、開放地去探究、去發現、去 「 再創造 」 有關數學問題口在這個過程中 , 學生不僅獲得了必要的數學知識和技能 , 還對數學 知識的形成過程有所了解 , 特別是體驗和學習數學的思考方法和數學的價值。合作學習----小學數學教學中經常被採用的形式。但目前小組合作學習效益高的較少 , 有的只是流於形式。有的研究者認為 , 小組學習有獨立型、競爭型、依賴型、依存 型等幾種類型。目前我們用得較多的是學生獨立學習後相互交流 , 真正意義上的合作一一相互依存地來研究或者共同解決一個問題還太少。「實踐活動」的教學方法----通過實踐活動,培養學生的創新精神和實踐能力,發掘學生潛能,讓學生學有用的數學知識。……無論是「優選」還是「創新」,一般都應注意以下四點:一是教學方法的選用或創新必須符合教學規律和原則;二是必須依據教學內容和特點,確保教學任務的完成;三是必須符合學生的年齡、心理變化特徵和教師本身的教學風格;四是必須符合現有的教學條件和所規定的教學時間。另外,在指導思想上,教師應注意用辯證的觀點來審視各種教學方法。正所謂「教無定法」。
常用的教學方法
進入20世紀80年代以來,伴隨著整個教學領域的深入改革,小學數學教學方法也呈現出蓬勃發展的勢頭。廣大的小學數學教師和教學研究人員,一方面對我國傳統的小學數學教學方法進行大膽的完善與改造,一方面積極地引進國外先進的教學方法,使我國新的教學方法,如雨後春筍,競相涌現。一、小學數學新教學方法介紹(一)發現法發現法是由美國當代著名教育家、認知心理學家布魯納50年代至60年代初所倡導的一種教學方法。1、發現法的基本含義及特點發現法是指教師不直接把現成的知識傳授給學生,而是引導學生根據教師和教科書提供的課題與材料,積極主動地思考,獨立地發現相應的問題和法則的一種教學方法。發現法與其他教學方法相比較,有以下幾個特點:(1)發現法強調學生是發現者,讓學生自己去獨立發現、去認識,自己求出問題的答案,而不是教師把現成的結論提供給學生,使學生成為被動的吸收者。(2)發現法強調學生內在學習動機的作用。學生最好的學習動機莫過於他們對所學課程具有內在的興趣。發現法符合兒童好玩、好動、好問和喜歡追根求源的心理特點,遇到新奇、復雜的問題,他們就會積極地去探索。教師在教學中充分利用這一特點,利用新奇、疑難和矛盾等引發學生的思維沖突,促使他們產生強烈的求知慾望,主動地去探究和解決問題,改變了以往傳統教學法僅利用外來刺激促發學生學習的做法。(3)發現法使教師的主導作用表現為潛在的、間接的。由於該法是讓學生運用已有的知識和教師提供的各種學習材料、直觀教具等,自己去觀察,用頭腦去分析、綜合、判斷、推理,親自去發現事物的本質規律,所以在這個過程中教師的主導作用是潛在的、間接的。2、發現法的主要優點及其局限性發現法有如下幾個主要優點。(1)可以使學生學習的外部動機轉化為內部動機,增強學習的信心。(2)有助於培養學生解決問題的能力。由於發現法經常練習怎樣解決問題,所以能使學生學會探究的方法,培養學生提出問題和解決問題的能力,以及樂於創造發明的態度。(3)運用發現法,有助於提高學生的智慧,發揮學生的潛力,培養學生優良的思維品質。(4)有利於學生對知識的記憶和鞏固。在發現學習的過程中,學生可就已有的知識結構進行內部改組,這種改組,可以使已有的知識結構與要學習的新知識更好的聯系起來,這種系統化和結構化的知識,就更加有助於學生的理解、鞏固和應用。發現法也有一定的局限性。(1)就教學效率而言,使用發現法需要花費的時間比較多。因為學生獲得知識的過程是再發現的過程,一切真理都要學生自己去獲得,或者重新發現,而不是由教師簡單地告訴學生,因此,教學過程必然經歷一個較長時間的摸索過程。(2)就教學內容而言,它的適應是有一定范圍的。發現法比較適用於具有嚴格邏輯的數、理、化等學科,對於人文學科是不太適用的。就適用的學科而言,也是只適用於概念和前後有聯系的概括性知識的教學,如求平均數、運算定律等。而概念的名稱、符號、表示法等,仍需要由教師來講解。(3)就教學的對象而言,它更適用於中、高年級的學生。因為發現學習必須以一定的基礎知識和經驗為發現的前提條件,因此,年級越高的學生,獨立探索的能力也就會越強。所以,並非所有的教學內容和教學對象都有必要和可能採用發現法教學。3、發現法教學舉例(一位數除兩位數的教學)給出一道題如39÷3。學生可先拿39個物品,每3個一份,把它們分成13份。做幾個這樣的題目後,可以讓他們把物品10個組成一組。例如,給出這樣一道題:「哈利買了4條糖果,每條有10塊。他吃了1塊,把剩下的每3塊包成一包,分給同學們,分給了幾個同學?」學生可能有以下幾種解法:(1)每3個分成一堆,然後數出分得的堆數。(2)從3個10中各先拿出1個,剩下的每9個分給3個同學,再把其餘的也每3個分成一堆。9+9+9+3+3+3+3=39(塊)↓↓↓↓↓↓↓3+3+3+1+1+1+1=13(人)(3)與(2)相似,但他們看出有4個9。9+9+9+9+3=39(塊)↓↓↓↓↓3+3+3+3+1=13(人)(4)他們看出3個10正好分給10個人,剩下的每3個分成一組。30+3+3+3=39(塊)↓ ↓↓↓10+1+1+1=13(人)(5)與(4)相似,但他們看出剩下的9正好分給3個人。30+9=39(塊)↓ ↓10+3=13(人)在學生得出解法之後,全班進行討論。教師對不同的演算法不給出評價。再出一道題,許多學生會選用比他第一次用的更為簡便的方法。教師進一步提出引導性問題,促使學生找出更為有效的計算方法,形成一般的豎式計算。(二)嘗試教學法嘗試教學法是小學數學教學方法中一種影響比較大的教學方法。它是一種具有中國特色的教學方法。嘗試教學法是由常州市教育科學研究所的邱學華老師最早設計和提出的,經過在一些地區和全國逐步推廣,到現在已有十多年的時間,取得了很好的教學效果,甚至在國際上也有一定的影響。1、嘗試教學法的基本內容什麼是嘗試教學法?嘗試教學法的基本思路就是:教學過程中,不是先由教師講,而是讓學生在上知識的基礎上先來嘗試練習,在嘗試的過程中指導學生自學課本,引導學生討論,在學生嘗試練習的基礎上,教師再進行有針對性的講解。嘗試教學法的基本程序分為五個步驟:出示嘗試題;自學課本;嘗試練習;學生討論;教師講解。嘗試教學法與普通的教學方法的根本區別就在於,改變教學過程中「先講後練」的方式,以「先練後講」的方式作為教學的主要形式。嘗試教學法產生的背景是:在20世紀80年代初,我國教學改革已經走上了正軌,國內有許多教學改革的實驗研究。同時,也有許多國外的教學改革的經驗大量地介紹進來。在這種情況下,人們開始思考如何根據我國的教學改革的實驗,研究和創造具有中國特色的,既符合現代教育改革的需要,又具有較強的操作性的教學方法。邱學華老師多年來進行小學數學教學的研究,在「文革」前後進行了多項小學數學教學改革方面的調查與實驗,深感研究一種新的小學數學教學法的必要性。因此,他在分析和對比國內外教學改革的經驗的基礎上,提出了嘗試教學法的設想。他借鑒了中國古代的「啟發式教學」原理、發現法和自學輔導法教學的思路,綜合地分析和研究這些教學法的長處與不足,試圖形成一種獨特的,具有操作性和可行性的教學方法。2、嘗試教學法的教學程序和課堂教學結構嘗試教學法基本的教學程序可分為五個步驟。(1)出示嘗試題嘗試題一般是與課本上的例題相仿的題目,是課本上問題的變形。如書上例題:1/2+1/3嘗試題:1/4+5/6出示嘗試題的目的在於激發學生的學習興趣,使學生明確這節課所學習的內容。(2)自學課本在學生嘗試練習,對這個問題產生了一定的興趣之後,教師引導學生看一看書上對這個題目是怎樣講的。教師提出一些與解題思路有關的問題:如上題,「分母不同怎麼辦?」「為什麼要通分?」通過自學課本,學生可以知道自己對個問題認識的情況,教師也可以了解學生在學習中遇到的困難是什麼。(3)嘗試練習學生通過自學課本,對所學的內容有了一個基本了解,並且大部分學生對解答嘗試題有了辦法,這時,就再出嘗試題讓學生試一試。一般採取讓好、中、差三類同學板演,其他同學同時在練習本上做的辦法。(4)學生討論在嘗試練習時,可能有的同學做得不對,也可能出現不同的做法。可以讓學生結合自己的解題方法,進行討論。(5)教師講解學生會做題,並不等於掌握了知識。教師這時可按照一定邏輯系統向學生講解所學的內容。這種講解是有針對性的,是在學生對所學的內容有了初步認識的基礎上,在學生已經通過某種方式學會了或部分學會了解題方法時進行的講解,更能夠突出重點。以上五個步驟是嘗試教學法在進行新課時所用的,作為一節完整的課,嘗試教學法的課堂教學結構包括以下六個環節:(1)基本訓練(5分鍾);(2)導入新課(2分鍾);(3)進行新課(15分鍾);(4)鞏固練習(6分鍾);(5)課堂作業(10分鍾);(6)課堂小結(2分鍾)。這一教學結構的優點在於:突出了教學重點;增加了練習時間;改變了滿堂灌的做法。3、嘗試教學法的優越性和局限性其優越性表現在如下幾方面。(1)有利於培養學生的探索精神和自學能力。學生在學習的過程中,都想自己試一試,用自己的方法來解決問題。(2)有利於提高課堂教學效率。它可以充分利用教學中的最佳時間,使學生盡快地進入新內容的學習,並以較多的時間進行嘗試性和鞏固性的練習。(3)有利於大面積提高教學質量。這種教學方法具有很強的操作性,教師一般都可以掌握,並且更有利於差等生的學習。因此它可以適用於更廣泛的場合,從而大面積地提高教學質量。其局限性表現在如下幾方面。(1)需要學生具備一定的數學基礎和自學能力,對年齡較小的學生不適合用這種教學方法。(2)適合於後繼課的教學,對於新的概念原理的教學不宜使用。(3)對於操作性較強的內容不適用於運用。4、嘗試教學法應用舉例嘗試教學法在數學教學中應用比較廣泛。適用於許多內容的教學。下面是:「商中間有零的除法」的教學實例。(梗概)(1)基本訓練(略)口算:板演:645÷3(2)導入新課把練習題中的645改成615,來繼續學習。(3)進行新課①出示嘗試題:615÷3②嘗試練習試試看,這道題和以前的題有些不同,能做出這道題嗎?③自學課本④學生討論針對學生的三種演算法進行討論(明確其中只有第二種演算法是正確的):2 525 3 ⑤教師講解(4)鞏固練習(5)課堂作業(6)課堂小結(三)自學輔導法1、自學輔導法的基本含義自學輔導法是由中國科學院心理研究所盧仲衡教授主持的「中學數學自學輔導實驗」中所採用的教學方法。在中學數學教學中,它取得了很大的成功。這種方法的基本思想,對於小學數學教學也有一定影響。有人也在小學進行相似的實驗研究。特別是運用自學輔導教學的基本原理進行小學數學教學的改革。自學輔導的實驗研究最早是在1958年提出並且進行實驗的,開始是借鑒了西方的程序教學的原理,實行小步子、多反饋的教學原則,後來進行了改造,並命名為自學輔導法。自學輔導法是一種在教師的指導和輔導下,以學生的自學為主的教學方法。在小學數學教學中運用自學輔導法一般是指在教師的指導下,學生通過閱讀課本,獲得知識與技能的教學方法。2、自學輔導法的教學程序自學輔導法運用心理學的原理,採取適當步子、及時反饋的原則重新編寫教材,實行三個本子綜合運用,即課本、練習本、答案本。運用自學輔導法,在教學中以學生的自學為主,規定了一節課中學生用於自學的時間在30~35分鍾,這包括自學、自練、自檢。教師用於講解的時間一般不超過15分鍾。自學輔導法在教學中的基本步驟分為五步。(1)提出課題。教師可以直接導入新課,也可以復習有關知識後提出課題,後一種方法更加適合小學生的學習特點。對高年級學生提出課題的同時,還應提供自學提綱,使其帶著問題自學,圍繞課題的中心問題邊讀邊想,求得問題的解決。(2)學生自學。這一步主要讓學生獨立閱讀課本,與此同時教師進行必要的指導。教師要從實際出發,根據不同年級、不同認知水平和教材難易選用相應的方式指導自學,考題指導要提綱挈領、簡明扼要。(3)答疑解難。針對學生在自學中出現的問題,教師有針對性地進行解答,也可以啟發學生進行討論互相解答。為進一步提高學生自學能力,在答疑之後,還要以再讓學生閱讀課本以鞏固所學的內容。(4)整理和小結。由教師出題對學生學習效果進行檢查,如發現有理解方面的問題要及時補救,還要對所學的內容進行歸納小結。小結時盡量讓學生運用准確的數學語言進行概括,得出結論,逐步培養學生運用數學語言進行表達的能力。(5)鞏固和應用。根據教學內容布置課堂獨立作業,目的是使學生進一步理解和鞏固知識,初步形成技能。3、對自學輔導法的評價此法的主要優點在於:能充分調動學生學習的主動性,使學生有更多的機會獨立思考,通過自學掌握知識,有利於自學能力的培養。這種教法,能在課堂上基本解決問題,大大減輕了學生課業負擔。由於學生在課堂上能夠及時改正作業中的錯誤,使得教師從作業中解放出來,將更多的時間用來備課和研究學生問題,有利於提高教學質量。此外,學生可以在課外多看其他參考書,擴大知識面,有利於學生全面發展。自學輔導法不僅是一種教學方法,而且是教學思想、教學內容、教學方法的綜合。特別是它是基於教材內容的選擇與編排的一種教學方法。因此,它可以看作是一種綜合的教學方法。4、自學輔導法教學實例(比例的意義和基本性質)具體教學過程:(1)教師談話(2)准備練習(3)進行新課①出示例題和自學思考題例題:一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。時間(時)25路程(千米)80200從表中可以看到,這輛汽車:第一次所行駛的路程和時間的比是 ;第二次所行駛的路程和時間的比是 。這兩個比的比值是多少?它們有什麼關系?思考:什麼是比例?組成比例需要什麼條件?由這幾個條件可以得到比例嗎?如果把比例寫成分數的形式是怎樣的?比例的基本性質是什麼?②引導自學,總結法則引導學生觀察兩個比例,說出比例的意義。引導學生集體討論:組成比例的條件。讓學生將比例轉化為分數的形式。引導學生練習,思考:比和比例的區別。讓學生認識比例各部分的名稱。引導學生通過運用加、減、乘、除不同的方法,探索比例的基本性質。③質疑問難、精講點撥教師根據學生提出的問題,在解釋疑惑的基礎上,指出比例的基本性質:在比例里,兩外項之積等於兩內項之積,這叫做比例的基本性質。(4)課堂練習(四)「探究—研討」法「探究—研討」法是美國的一位教學法專家蘭·本達(Lan Benda)教授提出來的。在美國有一定的影響。80年代初介紹到我國。在理科教學和數學教學中都有廣泛的應用。1、「探究—研討」法的基本內容「探究—研討」法的基本思路是把教學分為兩個大的環節,即「探究」和「研討」。第一個環節「探究」是指在教師的指導下,學生自己去探索。教師為學生提供一定的問題情景和必要的操作材料,讓學生自己通過操作、擺弄,研究問題中各種因素或數量的關系。教師在教學活動的過程中,給予適當的指導。在探究過程中,為學生提供有結構的材料是一個重要的因素。教師應當結合教學的內容,為學生選擇充分的學習和研究的材料。如,彩色木條、幾何拼板等。第二環節「研討」是給學生充分發表自己意見的機會。學生在前一個階段,對所研究的問題都有一定的認識。在這個階段,教師組織學生,對自己所看到的、想到的發表意見,充分利用語言的交流,使學生了解更多的信息。並且在研討的過程中,可以互相啟發,對所研究的問題有更全面和深刻的認識。最後由師生共同找出所學習問題的規律或結論。在具體的教學過程中,可以不受這兩個環節的限制,靈活地組織和運用。2、「探究—研討」法的主要特點「探究—研討」法有以下幾個主要特點。一是能充分發揮學生的主動性和創造性。二是教師的主導作用體現在選擇恰當的材料和設計有利於學生探究的問題情境中。三是形成一種多向交流的課堂教學氣氛。3、「探究—研討」法的應用舉例(求平均數問題)先把全班學生分成若干個小組,每組四個人。量出每個學生的身高,並根據測量的身高剪下一張紙條。教師提出,「怎樣知道四個人連起來一共有多高?」「四個人平均有多高?」然後教師說明什麼是平均數。並提出「如何求出全班同學的平均身高?」「怎樣表示出這個平均身高?」學生說出可以把全班的身高加起來,然後再用總人數去除。接著學生把表示每一個人身高的紙條貼在牆上釘的一張紙上,在平均數的地方畫一條線。發現有些在線的下方,有些在線的上方。並分別用「-」和「+」來表示。學生把高出來的部分剪下來,恰好可以補上低下去的那一部分。學生感到非常興奮。接下來又有同學提出了計算平均數的簡便方法。找出最矮的同學的身高。把全班同學高出這個數字的值加起來,再除以全班總人數,再加上最矮的同學的身高,就是全班的平均身高。還有的同學提出了隨便找一個標准線,與這個標准線進行比較計算平均身高的簡便方法。二、小學數學教學方法改革的特點分析過去,多數人認為學生課堂上學習的數學知識主要是指數學事實(如概念、公式、法則、算理等等),但隨著主體性教育理論的發展,隨著數學教育研究的不斷深入,隨著人們對學校數學教育本質的深入反思,數學理論與實踐工作者逐漸認識到:學樣數學主要是「活動的、操作的」數學,而不是形式化的數學。「學生應經歷數學化,而非數學;抽象化,而非抽象;步驟化,而非步驟;形式化,而非形式;演算法化,而非演算法;語言表述,而非語言」的數學學習過程。因此,課堂里學習的數學認識不僅包括數學事實,而且包括數學活動經驗。新授課的教學不應再是以往以教師系統傳授教材內容為主的單向教學模式,而是「師生之間、學生之間交往互動與共同發展的過程。數學教學應緊密聯系學生的生活實際,從學生的生活經驗和已有知識出發,創設生動有趣的情境,引導學生開展觀察、操作、猜想、推理、交流等活動,使學生通過數學活動,掌握基本的數學知識和技能,初步學會從數學的角度去觀察事物、思考問題,激發對數學的興趣,以及學好數學的願望。教師是學生數學活動的組織者、引導者與合作者;要根據學生的具體情況,對教材進行再加工,有創造地設計教學過程;要正確認識學生個體差異,因材施教,使每個學生都在原有的基礎上得到發展;要讓學生獲得成功的體驗,樹立學好數學的自信心。」伴隨著新的數學課程改革的理念,以及哲學、政治、科技、文化等方面的發展。現代教學方法的發展呈現了新的特點。第一,以充分調動學生的學習主動性與發揮教師的主導作用相結合為基本特徵,力求教與學的最佳結合。以赫爾巴特(J.F.Herbert)為代表的傳統的「三中心」,強調教師的絕對權威和嚴格的紀律,把學生當作盛裝知識的容器;而以杜威(J.Dewey)為代表的「新三中心」,將學生比作太陽,把教師視為行星,把兒童獨立學習的可能絕對化,否定了教師的主導作用。我們的教學方法避免了這兩種極端,將學生主體作用與教師主導作用有機結合起來,把這一教學的主要矛盾視為具有動態性、轉換性、發展性和層次性的對立統一體。在教學過程中,教師能夠引導學生獨立思考與合作交流。對於情景問題,教師和學生有不同的認知准備,他們的想法也會彼此不同。通過生生之間、師生之間的交流能夠起到相互促進的作用。因此教師能夠將全班上課與小組合作學習有效地結合起來,鼓勵學生在小組內提出並解釋他們自己的想法,通過小組交流或全班交流,學會數學地交流和交流地學習數學,以發展學生的數學思考力、語言對思維的表達能力和對自己學習的責任感。第二,通過生動、有趣的學習情境,激發學生的學習動機,啟發學生動腦、動口、動手,引導學生探索發現。教師充分利用學生的生活經驗、知識背景,設計生動的、學生感興趣的學習情境,讓學生通過觀察、操作、猜測、交流、反思等活動,逐步體會數學知識的產生、形成與發展的過程,感受數學的力量,體會數學的美妙,同時掌握必要的基礎知識與基本技能。即在「做數學」的過程中學習數學。第三,注重照顧學生的個別差異,鼓勵學習方法和解題策略多樣化。鼓勵解決問題策略的多樣化,是因材施教的有效途徑。如計算教學,可以鼓勵學生運用已有的知識背景,探求計算結果,而不宜教師首先示範,講解筆演算法則和算理,限制學生思維。教師通過先出示帶有一定現實意義的問題情境,讓學生先估算,然後獨立計算?在此基礎上進行小組交流,感受解決問題策略的多樣化與靈活性。第四,著重研究學生,特別注重學習方法的研究和指導,讓學生在學會的過程中,逐步達到會學。學習方法是學生獲得知識,形成能力過程中所採取的、基本活動方式和基本思想方法,學法的研究和指導,是保證現代教法實施的必要環節,是提高教學質量的關鍵。第五,在使學生獲得適應未來社會生活和進一步發展所必需的重要數學知識以及基本的數學思想方法和必要的應用技能外,更加重視培養學生的態度、情感、價值觀。態度、情感、價值觀作為學習的內驅力,在學習中發揮著重要的作用。現代小學數學教學方法充分地考慮到這一點,注重學生學習興趣的培養,學習動機的激發,強調師生雙方的感情交流,充分利用情感的作用去開啟學生認知結構的大門。第六,強調多種教學方法的交叉使用和互相配合。重視採用現代化教學手段。傳統的教學方法往往採用固定的教學方法,形成一套模式。隨著現代教學論的發展、教學方法的增多以及對教學方法本質的深入研究,廣大教育工作者逐漸認識到教學方法是多種多樣的,沒有一種萬能的教學方法。教學方法因數學課題、所教的兒童以及教師的風格而有所不同;教學方法也不是「單一的」,可以有不同的組合。另外,重視現代化教學手段的運用,把形、聲、光結合起來,生動、形象、鮮明,感染力強,抽象的數學概念和原理,通過結合形象的畫面來講解,可以更好地吸引學生的注意力,提高學習興趣。加深對教材的理解和記憶。在我國開展的CAI、微格教學。都是應用現代技術手段的直接產物,現代教學方法的發展。必須考慮到現代化教學技術手段的作用和地位。考慮到現代技術設備的引入對常規教學方法的沖擊和變革,找到其中的組合點和發展方向,使其為教學方法服務。以上是現代教學方法呈現的新特點。但縱觀各種小學教學方法。還存在著一些問題:一些教學方法的命名欠推敲,主觀隨意性很大,不夠科學;一些教學方法的「內涵」和「外延」不清;一些教學方法存在著將某種教學方法凝固化、模式化的傾向;有些教學方法缺乏教學理論依據;等等。這些問題都需要很好地加以解決。否則不僅有礙教學質量的提高,也有礙於教學方法研究的深入開展。
常被採用的形式。但目前小組合作學習效益高的較少 , 有的只是流於形式。有的研究者認為 , 小組學習有獨立型、競爭型、依賴型、依存 型等幾種類型。目前我們用得較多的是學生獨立學習後相互交流 , 真正意義上的合作一一相互依存地來研究或者共同解決一個問題還太少。「實踐活動」的教學方法----通過實踐活動,培養學生的創新精神和實踐能力,發掘學生潛能,讓學生學有用的數學知識。……無論是「優選」還是「創新」,一般都應注意以下四點:一是教學方法的選用或創新必須符合教學規律和原則;二是必須依據教學內容和特點,確保教學任務的完成;三是必須符合學生的年齡、心理變化特徵和教師本身的教學風格;四是必須符合現有的教學條件和所規定的教學時間。另外,在指導思想上,教師應注意用辯證的觀點來審視各種教學方法。正所謂「教無定法」。
㈥ 小學數學教法和學法有哪些
良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。
現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。
㈦ 小學數學教學的教法和學法主要有哪些
19種小學數學教學方法總結
良好的方法能使我們更好地發揮運用天賦的才能,而拙劣的方法則可能阻礙才能的發揮.------[英]貝爾納
「數學為其他科學提供了語言、思想和方法」,「初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中和其他學科學習中的問題」.(小學數學課程標准)
數學思維方法分為兩種,形象思維方法和抽象思維方法.
小學數學要培養學生的形象思維能力,並在此基礎上,為發展抽象思維能力打下堅實的基礎.
一、形象思維方法
形象思維方法是指人們用形象思維來認識、解決問題的方法.它的思維基礎是具體形象,並從具體形象展開來的思維過程.
形象思維的主要手段是實物、圖形、表格和典型等形象材料.它的認識特點是以個別表現一般,始終保留著對事物的直觀性.它的思維過程表現為表象、類比、聯想、想像.它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象.它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力.
1、實物演示法
利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法.
這種方法可以使數學內容形象化,數量關系具體化.比如:數學中的相遇問題.通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向.再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多.
二年級數學教材中,「三個小朋友見面握手,每兩人握一次,共要握幾次手」與「用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數」.像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的.
特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握.長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴於實物演示作思維的基礎.
所以,小學數學教師應盡可能多地製作一些數學教(學)具,而且這些教(學)具用過後要好好保存,可以重復使用.這樣可以有效地提高課堂教學效率,提升學生的學習成績.
績.
2、圖示法
藉助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法.
圖示法直觀可靠,便於分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴於人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想像出現謬誤或走入誤區,最後導致錯誤的結果.比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解.
在課堂教學當中,要多用圖示的方法來解決問題.有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段.
例1 把一根木頭鋸成3段需要24分鍾,鋸成6段需要多少分鍾?(圖略)
思維方法是:圖示法.
思維方向是:鋸幾次,每次用幾分鍾.
思路是:鋸3段鋸了幾次,每次用幾分鍾,鋸6段鋸了幾次,需要多少分鍾.
例2 判斷 等腰三角形中,點D是底邊BC的中點,圖甲的面積比圖乙的面積大,圖甲的周長比圖乙的周長長.(圖略)
思維方法:圖示法.
思維方向:先比較面積,再比較周長.
思路:作條輔助線.圖甲占的面積大,圖乙所佔面積小,所以「圖甲的面積比圖乙的面積大」是正確的.線段AD比曲線AD短,所以「圖甲的周長比圖乙的周長長」是錯誤的.
3、列表法
運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法.列表法清晰明了,便於分析比較、提示規律,也有利於記憶.它的局限性在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關.比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」.
用列表法解決傳統數學問題:雞兔同籠問題.製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向.
4、探索法
按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法.我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來.」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈.「學習要以探究為核心」,是新課程的基本理念之一.人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試.
第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究.例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣.教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離.學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」.
第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律.
例3 找規律填數.
(1)1、4、 、10、13、 、19;
(2)2、8、18、32、 、72、 .
第三,獨立探究與合作探究結合.獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花.
小學數學教學活動中,教師應盡量創設讓學生去探究的情景,創造讓學生去探究的機會,鼓勵有探究精神和習慣的學生.
5、觀察法
通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法.巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」
小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系.
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個因數的位置,積不變.
「觀察」的要求:
第一、觀察要細致、准確.
例4 找出下列各題錯在哪裡,並改正.
(1)25×16=25×(4×4)=(25×4)×(25×4);
(2)18×36+18×64=(18+18)×(36+64)
例5 直接寫出下列各題的得數:
(1)3.6+6.4 (2)3.6+6.04
(3)125×57×0.04 (4)(351-37-13)÷5
第二、科學觀察.科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象.比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念.
第三, 觀察必定與思考結合.
例6
7
10
6
18
這是一年級下學期的一道思考題,如果只觀察不思考,這道題目讓干什麼就不知道.
6、典型法
針對題目去聯想已經解過的典型問題的解題規律,從而找出解題思路的方法叫做典型法.典型是相對於普遍而言的.解決數學問題,有些需要用一般方法,有些則需要用特殊(典型)方法.比如,歸一、倍比和歸總演算法、行程、工程、消同求異、平均數等.
運用典型法必須注意:
(1)要掌握典型材料的關鍵及規律.
例7 已知爸爸比兒子大30歲,爸爸今年的年齡正好是兒子的7倍.爸爸、兒子今年分別是多少歲?關鍵點在:爸爸比兒子大30歲,爸爸的年齡比兒子多幾倍.典型題都有典型解法,要想真正學好數學,即要理解和掌握一般思路和解法,還要學會典型解法.
(2)熟悉典型材料,並能敏捷地聯想到所適用的典型,從而確定所需要的解題方法.
例8 見到「某城市有一條公共汽車線路,長16500米,平均每隔500米設一個車站.這條線路需要設多少個車站?」這樣題目,就應該聯想到上面所講到的「鋸木頭用多少分鍾」的典型問題.
(3)典型和技巧相聯系.
例9 甲乙兩個工程隊共有82人,如果從乙隊調8人到甲隊,兩隊人數正好相等.甲乙兩隊原來各有多少人?這題目的技巧:調前、調後兩隊總人數沒變.先算調後各隊人數,再算原來各隊人數.
7、放縮法
通過對被研究對象的放縮估計來解決問題的方法叫做放縮法.放縮法靈活、巧妙,但有賴於知識的拓展能力及其想像能力.
例16 求12和9的最小公倍數.
求兩個數的最小公倍數一般的方法是「短除式」方法,它是根據這兩個數的質因數情況來求出它們的最小公倍數的.但也有兩個典型方法:一是「如果兩個數是互質數,那麼這兩個數的最小公倍數就是它們的乘積」;二是「如果大數是小數的倍數,那麼這兩個數的最小公倍數就是大數」.現在我們根據典型方法二,進行擴展運用,放大「大數」來求12和9的最小公倍數.
12不是9的倍數,就把它放大2倍,得24,仍然不是9的倍數,放大3倍,得36,36是9的倍數,那麼,12和9的最小公倍數就是36.這種方法的關鍵點在於,如果大數不是小數的倍數,就把大數翻倍,但一定從2倍開始,如果一下子擴大6倍,得數是它們的公倍數,而不是最小的了.
例17 期末考試,小剛的語文成績和英語成績的和是197分;語文和數學成績加起來是199分;數學和英語成績加起來是196分.想一想,小剛的哪科成績最高?你能算出小剛的各科成績嗎?
思路一:「放大」.通過觀察發現,語、數、外三科成績在題目中各出現兩次,我們求197+199+196的和,這個和是「語數外成績的2倍」,除以2得三科成績之和,再減去任意兩科的成績,就得到第三科的成績.
思路二:「縮小」.我們用語數成績的和減去語外的成績,199-197=2(分),這是數學減英語成績的差.數學和英語的和是196分,再求數學的分數就不難了.
放縮法有時運用在估算和驗算上.
例18 檢驗下列計算結果是否正確?
(1)18.7×6.9=137.3; (2)17485÷6.6=3609.
對於(1)用總體估計,放大至19×7=133,估計得數要小於133,所以本題結果錯誤.對於(2)用最高位估計,把17看作18,把6.6看作6,18÷6=3,顯然答數的最高位不會是3,故本題結果也不正確.
例19 把雞和兔放在一起,共有48個頭,114隻足,問雞、兔各有幾只.
這是一道雞兔同籠的典型問題,我們也用放縮法,不妨把雞和兔的足數縮小2倍,那麼,雞的足數和它的頭數一樣,而兔的足數是它的只數的2倍.所以,總的足數縮小2倍後,雞和兔的總足數與它們的總只數相差數就是兔的只數.
8、驗證法
你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質.
驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功.應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣.
(1)用不同的方法驗證.教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算.
(2)代入檢驗.解方程的結果正確嗎?用代入法,看等號兩邊是否相等.還可以把結果當條件進行逆向推算.
(3)是否符合實際.「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中.比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)
按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去.教學中,常識性的東西予以重視.做衣服套數的近似計算要用「去尾法」.
(4)驗證的動力在猜想和質疑.牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現.」「猜」也是解決問題的一種重要策略.可以開拓學生的思維、激發「我要學」的願望.為了避免瞎猜,一定學會驗證.驗證猜測結果是否正確,是否符合要求.如不符合要求,及時調整猜想,直到解決問題.
二、抽象思維方法
運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維.
抽象思維又分為:形式思維和辯證思維.客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式.形式思維是辯證思維的基礎.
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理.
辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律.
小學數學要培養學生初步的抽象思維能力,重點突出在:(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性.(2)思維方法上,應該學會有條有理,有根有據地思考.(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密.(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理.
9、對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法.根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法.
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識.
例20、三個連續自然數的和是18,則這三個自然數從小到大分別是多少?
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數.
例21、判斷:能被2除盡的數一定是偶數.
這里要對照「除盡」和「偶數」這兩個數學概念.只有這兩個概念全理解了,才能做出正確判斷.
10、公式法
運用定律、公式、規則、法則來解決問題的方法.它體現的是由一般到特殊的演繹思維.公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法.但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用.
例22、 計算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運用乘法分配律
=59×50 …………運用加法計演算法則
=(60-1) ×50 …………運用數的組成規則
=60×50-1×50 …………運用乘法分配律
=3000-50 …………運用乘法計演算法則
=2950 …………運用減法計演算法則
11、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法.
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整.
(2)找聯系與區別,這是比較的實質.
(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件.
(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出.
(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯.
例23、填空:0.75的最高位是( ),這個數小數部分的最高位是( );十分位的數4與十位上的數4相比,它們的( )
相同,( )不同,前者比後者小了( ).
這道題的意圖就是要對「一個數的最高位和小數部分的最高位的區別」,還有「數位和數值」的區別等.
例23、六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗.六年級有多少學生?
這是兩種方案的比較.相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣.
找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化.
找解決思路(方法):每人多種7-5=2(棵),那麼,全班就多種了75+15=90(棵),全班人數為90÷2=45(人).
12、分類法
俗語:物以類聚,人以群分.
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法.分類是以比較為基礎的.依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類.
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉.
例24、 自然數按約數的個數來分,可分成幾類?
答:可分為三類.(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個.
13、分析法
把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的一種思維方法叫做分析法.
依據:總體都是由部分構成的.
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路.
也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,一直到問題得到解決為止,這種解題模式是「由果溯因」.分析法也叫逆推法.常用「枝形圖」進行圖解思路.
例25、玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件.問平均每天超過計劃多少件?
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件.計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來.要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知.
枝形圖:(略)
14、綜合法
把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法.
用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執因導果,也叫順推法.這種方法適用於已知條件較少,數量關系比較簡單的數學題.
例26、兩個質數,它們的差是小於30的合數,它們的和即是11的倍數又是小於50的偶數.寫出適合上面條件的各組數.
思路:11的倍數同時小於50的偶數有22和44.
兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2.
和是22的兩個質數有:3和19,5和17.它們的差都是小於30的合數嗎?
和是44的兩個質數有:3和41,7和37,13和31.它們的差是小於30的合數嗎?
這就是綜合法的思路.
15、方程法
用字母表示未知數,並根據等量關系列出含有字母的表達式(等式).列方程是一個抽象概括的過程,解方程是一個演繹推導的過程.方程法最大的特點是把未知數等同於已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足.有利於由已知向未知的轉化,從而提高了解題的效率和正確率.
例27、一個數擴大3倍後再增加100,然後縮小2倍後再減去36,得50.求這個數.
例28、一桶油,第一次用去40%,第二次比第一次多用10千克,還剩餘6千克.這桶油重多少千克?
這兩題用方程解就比較容易.
16、參數法
用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的一種方法叫做參數法.參數又叫輔助未知數,也稱中間變數.參數法是方程法延伸、拓展的產物.
例29、汽車爬山,上山時平均每小時行15千米,下山時平均每小時行駛10千米,問汽車的平均速度是每小時多少千米?
上下山的平均速度不能用上下山的速度和除以2.而應該用上下山的路程÷2.
例30、一項工作,甲單獨做要4天完成,乙單獨做要5天完成.兩人合做要多少天完成?
其實,把總工作量看作「1」,這個「1」就是參數,如果把總工作量看作「2、3、4……」都可以,只不過看作「1」運算最方便.
17、排除法
排除對立的結果叫做排除法.
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果.這種方法也叫淘汰法、篩選法或反證法.這是一種不可缺少的形式思維方法.
例31、為什麼說除2外,所有質數都是奇數?
這就要用反證法:比2大的所有自然數不是質數就是合數.假設:比2大的質數有偶數,那麼,這個偶數一定能被2整除,也就是說它一定有約數2.一個數的約數除了1和它本身外,還有別的約數(約數2),這個數一定是合數而不是質數.這和原來假定是質數對立(矛盾).所以,原來假設錯誤.
例32、判斷:(1)同一平面上兩條直線不平行,就一定相交.(錯)
(2)分數的分子和分母同乘以或同除以一個相同的數,分數大小不變.(錯)
18、特例法
對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法.特例法的邏輯原理是:事物的一般性存在於特殊性之中.
例33、大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的( )倍,大圓面積是小圓面積的( )倍.
可以取小圓半徑為1,那麼大圓半徑就是2.計算一下,就能得出正確結果.
例33、 正方形的面積和邊長成正比例嗎?
如果正方形的邊長為a,面積為s . 那麼,s:a=a (比值不定)
所以,正方形的面積和邊長不成正比例.
19、化歸法
通過某種轉化過程,把問題歸結到一類典型問題來解題的方法叫做化歸法.化歸是知識遷移的重要途徑,也是擴展、深化認知的首要步驟.化歸法的邏輯原理是,事物之間是普遍聯系的.化歸法是一種常用的辯證思維方法.
例34、某制葯廠生產一批防「非典」葯,原計劃25人14天完成,由於急需,要提前4天完成,需要增加多少人?
這就需要在考慮問題時,把「總工作日」化歸為「總工作量」.
例35、超市運來馬鈴薯、西紅柿、豇豆三種蔬菜,馬鈴薯佔25%,西紅柿和豇豆的重量比是4:5,已知豇豆比馬鈴薯多36千克,超市運來西紅柿多少千克?
需要把「西紅柿和豇豆的重量比4:5」化歸為「各占總重量的百分之幾」,也就是把比例應用題化歸為分數應用題.