導航:首頁 > 數字科學 > 怎麼設計計算機數學模型圖

怎麼設計計算機數學模型圖

發布時間:2022-07-18 15:32:45

Ⅰ 在電腦上構建幾何模型等數學圖像可以用什麼軟體

這個問題好專業呀.

三維的可以考慮用 3DMax, 那隻是一個作圖的工具.
沒辦法根據方程組之類的畫出模型.

能構建三維上以的軟體沒有見過, 但是記得在一本書上看到過有些國外的數學家用電腦輔助構建多維模型, 並做些到平面上的投影, 挺有趣的.

Ⅱ 數學建模方法和步驟

數學建模的主要步驟:

第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建

模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以

高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應

盡量使問題線性化、均勻化。

第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間

的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老

人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱

大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工

具愈簡單愈有價值。

第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,

特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計

算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作

出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差

分析,數據穩定性分析。

數學建模採用的主要方法有:

(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模

型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策

等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。

(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。

(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀

態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構


3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的

可能變化,人為地組成一個系統。

Ⅲ 怎麼建立數學模型

—般說來建立數學模型的方法大體上可分為兩大類、一類是機理分析方法,一類是測試分析方法.機理分析是根據對現實對象特性的認識、分析其因果關系,找出反映內部機理的規律,建立的模型常有明確的物理或現實意義.

下面給出建模的—般步驟:
模型准備 首先要了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料.
模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣.
模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞.
模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術.
模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等.
模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意.
模型應用 應用的方式自然取決於問題的性質和建模的目的,這方面的內容不是本書討論的范圍。
應當指出,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,本書的建模實例就採取了靈活的表述方式.

Ⅳ 數學建模怎麼建立模型

1、模型准備

首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

2、模型假設

根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。

3、模型構成

根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。

這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工具愈簡單愈有價值。

4、模型求解

可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

5、模型分析

對模型解答進行數學上的分析。能否對模型結果作出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論哪種情況都需進行誤差分析,數據穩定性分析。


6、模型檢驗

把數學上分析的結果翻譯回到現實問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性。

7、模型應用

取決於問題的性質和建模的目的。

Ⅳ 建立數學模型流程

1)建模准備
數學建模是一項創新活動,它所面臨的課題是人們在生產和科研中為了使認識和實踐進一步發展必須解決的問題。「什麼是問題?問題就是事物的矛盾,哪裡有沒解決的矛盾,哪裡就有問題」。因此發現課題的過程就是分析矛盾的過程貫穿生產和科技中的根本矛盾是認識和實踐的矛盾,我們分析這些矛盾,從中發現尚未解決的矛盾,就是找到了需要解決的實際問題,如果這些實際問題需要給出定量的分析和解答,那麼就可以把這些實際問題確立為數學建模的課題,建模准備就是要了解問題的實際背景,明確建模的目的,掌握對象的各種信息,弄清實際對象的特徵,情況明才能方法對。

(2)建模假設
作為課題的原型都是復雜的、具體的,是質和量、現象和本質、偶然和必然的統一體,這樣的原型,如果不經過抽象和簡化,人們對其認識是困難的,也無法准確把握它的本質屬性。建模假設就是根據實際對象的特徵和建模的目的,在掌握必要資料的基礎上,對原型進行抽象、簡化,把那些反映問題本質屬性的形態、量及其關系抽象出來,簡化掉那些非本質的因素,使之擺脫原型的具體復雜形態,形成對建模有用的信息資源和前提條件,並且用精確的語言作出假設,是建模過程關鍵的一步。對原型的抽象、簡化不是無條件的,一定要善於辨別問題的主要方面和次要方面,果斷地抓住主要因素,拋棄次要因素,盡量將問題均勻化、線性化,並且要按照假設的合理性原則進行,假設合理性原則有以下幾點:
①目的性原則:從原型中抽象出與建模目的有關的因素,簡化掉那些與建模目的無關的或關系不大的因素。
②簡明性原則:所給出的假設條件要簡單、准確,有利於構造模型。
③真實性原則:假設條件要符合情理,簡化帶來的誤差應滿足實際問題所能允許的誤差范圍。
④全面性原則:在對事物原型本身作出假設的同時,還要給出原型所處的環境條件。

(3)模型建立
在建模假設的基礎上,進一步分析建模假設的各條件首先區分哪些是常量,哪些是變數,哪些是已知量,哪些是未知量;然後查明各種量所處的地位、作用和它們之間的關系,建立各個量之間的等式或不等式關系,列出表格、畫出圖形或確定其他數學結構,選擇恰當的數學工具和構造模型的方法對其進行表徵,構造出刻畫實際問題的數學模型。

在構造模型時究竟採用什麼數學工具,要根據問題的特徵、建模的目的要求以及建模者的數學特長而定 可以這樣講,數學的任一分支在構造模型時都可能用到,而同一實際問題也可以構造出不同的數學模型,一般地講,在能夠達到預期目的的前提下,所用的數學工具越簡單越好。

在構造模型時究竟採用什麼方法構造模型,要根據實際問題的性質和建模假設所給出的建模信息而定,就以系統論中提出的機理分析法和系統辨識法來說,它們是構造數學模型的兩種基本方法。機理分析法是在對事物內在機理分析的基礎上,利用建模假設所給出的建模信息或前提條件來構造模型;系統辨識法是對系統內在機理一無所知的情況下利用建模假設或實際對系統的測試數據所給出的事物系統的輸入、輸出信息來構造模型。隨著計算機科學的發展,計算機模擬有力地促進了數學建模的發展,也成為一種構造模型的基本方法,這些構模方法各有其優點和缺點,在構造模型時,可以同時採用,以取長補短,達到建模的目的。

(4)模型求解
構造數學模型之後,再根據已知條件和數據分析模型的特徵和結構特點,設計或選擇求解模型的數學方法和演算法,這其中包括解方程、畫圖形、證明定理、邏輯運算以及穩定性討論,特別是編寫計算機程序或運用與演算法相適應的軟體包,並藉助計算機完成對模型的求解。

(5)模型分析
根據建模的目的要求,對模型求解的數字結果,或進行變數之間的依賴關系分析,或進行穩定性分析,或進行系統參數的靈敏度分析,或進行誤差分析等。通過分析,如果不符合要求,就修改或增減建模假設條件,重新建模,直到符合要求;通過分析如果符合要求,還可以對模型進行評價、預測、優化等。

(6)模型檢驗
模型分析符合要求之後,還必須回到客觀實際中去對模型進行檢驗,用實際現象、數據等檢驗模型的合理性和適用性,看它是否符合客觀實際,若不符合,就修改或增減假設條件,重新建模,循環往復,不斷完善,直到獲得滿意結果 目前計算機技術已為我們進行模型分析、模型檢驗提供了先進的手段,充分利用這一手段,可以節約大量的時間、人力和物力。

(7)模型應用
模型應用是數學建模的宗旨,也是對模型的最客觀、最公正的檢驗 因此,一個成功的數學模型,必須根據建模的目的,將其用於分析、研究和解決實際問題,充分發揮數學模型在生產和科研中的特殊作用。

以上介紹的數學建模基本步驟應該根據具體問題靈活掌握,或交叉進行,或平行進行,不拘一格地進行數學建模則有利於建模者發揮自己的才能。
關於軟體有matlab lindo 等

Ⅵ 數學建模怎麼做

給你個答卷模式吧:
一。論文的結構基本上就是一下幾個部分:
1.摘要
2.問題的敘述,問題的分析,背景的分析等
3.模型的假設,符號說明(表)
4.模型的建立(問題分析,公式推導,基本模型,最終或簡化模型等)
5.模型的求解
二。計算方法設計或選擇;演算法設計或選擇, 演算法思想依據,步驟及實現,計算框圖;所採用的軟體名稱(因為很多問題實際上都會用到計算機上的個來軟體,所以註明這些還是非常有必要的);
三。附錄,參考文獻,模型評價都是少不了的。

如果你實在還沒聽明白,我給你個簡單的方法,做建模的時候很有用的。當你接到某套題目時,你先看看這是屬於數學建模什麼模型的(比如最優解,微分方程模型等等),然後你就可以去找與這類問題相似的優秀數學建模,相信對你的建模會有很好的幫助作用。

祝你成功!

Ⅶ 建立數學模型的方法和步驟

第一、 模型准備 首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。 第二、 模型假設 根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。 第三、 模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工具愈簡單愈有價值。 第四、模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。 第五、模型分析 對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不"。能否對模型結果作出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差分析,數據穩定性分析。

Ⅷ 這個數學模型怎麼建

我去年參加過數學建模,稍微有點了解!這個要用到概率,最好按百分製表示,你多統計點數據,每組數據先把圖像畫出來,先按平均值算一次,然後再建立個模型,按照比重分一定的比例,比如0.1,0.2,0.3,0.1,0.3,這是個比方。如果你有時間,你還可以用更多的時間去建立更多的模型。將建立的模型,與現實世界比較,你看是否合理,不合理找出原因,應該在概率方面出錯了。這個建模不是太難,好好做,幾天就做出來了!

Ⅸ 計算機圖形學中用戶模型設計需要考慮哪些因素

計算機圖形學(Computer Graphics,簡稱CG)是一種使用數學演算法將二維或三維圖形轉化為計算機顯示器的柵格形式的科學。簡單地說,計算機圖形學的主要研究內容就是研究如何在計算機中表示圖形、以及利用計算機進行圖形的計算、處理和顯示的相關原理與演算法。

目錄

研究內容主要組成
主要目的
概念區分
研究內容
學科歷史1、智能CAD
2 計算機美術與設計
計算機設計學
3 計算機動畫藝術
計算機動畫在電影特技中的應用
國內情況
4 科學計算可視化
國外科學計算可視化現狀
5 虛擬現實
虛擬現實技術的應用
多通道用戶界面
主要強調
學科趨勢
學科教材
領域專家
圖書信息:
內容簡介:
人民郵電出版社圖書研究內容 主要組成
主要目的
概念區分
研究內容
學科歷史 1、智能CAD
2 計算機美術與設計
計算機設計學
3 計算機動畫藝術
計算機動畫在電影特技中的應用
國內情況
4 科學計算可視化
國外科學計算可視化現狀
5 虛擬現實
虛擬現實技術的應用
多通道用戶界面
主要強調
學科趨勢
學科教材
領域專家
圖書信息:
內容簡介:
人民郵電出版社圖書
展開 編輯本段研究內容
主要組成
圖形通常由點、線、面、體等幾何元素和灰度、色彩、線型、線寬等非幾何屬性組成。從處理技術上來看,圖形主要分為兩類,一類是基於線條信息表示的,如工程圖、等高線地圖、曲面的線框圖等,另一類是明暗圖,也就是通常所說的真實感圖形。
主要目的
計算機圖形學一個主要的目的就是要利用計算機產生令人賞心悅目的真實感圖形。為此,必須建立圖形所描述的場景的幾何表示,再用某種光照模型,計算在假想的光源、紋理、材質屬性下的光照明效果。所以計算機圖形學與另一門學科計算機輔助幾何設計有著密切的關系。事實上,圖形學也把可以表示幾何場景的曲線曲面造型技術和實體造型技術作為其主要的研究內容。同時,真實感圖形計算的結果是以數字圖像的方式提供的,計算機圖形學也就和圖像處理有著密切的關系。概念區分
圖形與圖像兩個概念間的區別越來越模糊,但還是有區別的:圖像純指計算機內以點陣圖形式存在的灰度信息,而圖形含有幾何屬性,或者說更強調場景的幾何表示,是由場景的幾何模型和景物的物理屬性共同組成的。
研究內容
計算機圖形學的研究內容非常廣泛,如圖形硬體、圖形標准、圖形交互技術、光柵圖形生成演算法、曲線曲面造型、實體造型、真實感圖形計算與顯示演算法、非真實感繪制,以及科學計算可視化、計算機動畫、自然景物模擬、虛擬現實等。
編輯本段學科歷史
1963年,伊凡·蘇澤蘭(Ivan Sutherland)在麻省理工學院發表了名為《畫板》的博士論文, 它標志著計算機圖形學的正式誕生。至今已有四十多年的歷史。此前的計算機主要是符號處理系統,自從有了計算機圖形學,計算機可以部分地表現人的右腦功能了,所以計算機圖形學的建立具有重要的意義。近年來, 計算機圖形學在如下幾方面有了長足的進展:
1、智能CAD
CAD 的發展也顯現出智能化的趨勢,就目前流行的大多數CAD 軟體來看,主要功能是支持產品的後續階段一一工程圖的繪制和輸出,產品設計功能相對薄弱, 利用AutoCAD 最常用的功能還是互動式繪圖,如果要想進行產品設計, 最基本的是要其中的AutoLisp語言編寫程序,有時還要用其他高級語言協助編寫,很不方便。而新一代的智能CAD 系統可以實現從概念設計到結構設計的全過程。例如,德國西門子公司開發的Sigraph Design軟體可以實現如下功能:① 從一開始就可以用計算機設計草圖,不必耗時費力的輸入精確的坐標點,能隨心所欲的修改,一旦結構確定,給出正確的尺寸即得到滿意的圖紙;② 這個軟體中具有關系數據結構, 當你改變圖紙的局部,相關部分自動變化,在一個視圖上的修改,其他視圖自動修改,甚至改變一個零件圖,相關的其它零件圖以及裝配圖的相關部分自動修改:③ 在各個專業領域中,有一些常用件和標准件, 因此,希望有一個參數化圖庫。而Sigraph不用編程只需畫一遍圖就能建成自己的圖庫;④Sigraph還可以實現產品設計的動態模擬用於觀察設計的裝置在實際運行中是否合理等等。智能CAD的另一個領域是工程圖紙的自動輸入與智能識別,隨著CAD技術的迅速推廣應用,各個工廠、設計院都需將成千上萬張長期積累下來的設計圖紙快速而准確輸入計算機,作為新產品開發的技術資料。多年來,CAD 中普遍採用的圖形輸入方法是圖形數字化儀交互輸入和滑鼠加鍵盤的交互輸入方法.很難適應工程界大量圖紙輸入的迫切需要。因此, 基於光電掃描儀的圖紙自動輸入方法已成為國內外CAD工作者的努力探索的新課題。但由於工程圖的智能識別涉及到計算機的硬體、計算機圖形學、模式識別及人工智慧等高新技術內容,使得研究工作的難點較大。工程圖的自動輸入與智能識別是兩個密不可分的過程,用掃描儀將手繪圖紙輸入到計算機後,形成的是點陣圖象。CAD 中只能對矢量圖形進行編輯, 這就要求將點陣圖象轉化成矢量圖形.而這些工作都讓計算機自動完成.這就帶來了許多的問題.如① 圖象的智能識別;② 字元的提取與識別;③ 圖形拓撲結構的建立與圖形的理解;④實用化的後處理方法等等。國家自然科學基金會和863計劃基金都在支持這方面的研究, 國內外已有一些這方面的軟體付諸實用,如美國的RVmaster,德國的VPmax, 以及清華大學,東北大學的產品等。但效果都不很理想.還未能達到人們企盼的效果。

Ⅹ 數學建模的七個步驟

數學建模(mathematical modeling)就是通過建立數學模型來解決各種實際問題的方法。數學建模沒有固定的格式和標准,也沒有明確的方法,通常有6個步驟:

明確問題
合理假設
搭建模型
求解模型
分析檢驗
模型解釋
1、明確問題

數學建模所處理的問題通常是各領域的實際問題,這些問題本身往往含糊不清,難以直接找到關鍵所在,不能明確提出該用什麼方法。因此建立模型的首要任務是辨明問題,分析相關條件和問題,一開始盡可能使問題簡單,然後再根據目的和要求逐步完善。

2、合理假設

作出合理假設,是建模的一個關鍵步驟。一個實際問題不經簡化、假設,很難直接翻譯成數學問題,即使可能也會因其過於復雜而難以求解。因此,根據對象的特徵和建模的目的,需要對問題進行必要合理地簡化。

合理假設的作用除了簡化問題,還對模型的使用范圍加以限定。

作假設的依據通常是出於對問題內在規律的認識,或來自對數據或現象的分析,也可以是兩者的綜合。作假設時,既要運用與問題相關的物理、化學、生物、經濟、機械等專業方面的知識,也要充分發揮想像力、洞察力和判斷力,辨別問題的主次,盡量使問題簡化。

為保證所作假設的合理性,在有數據的情況下應對所作的假設及假設的推論進行檢驗,同時注意存在的隱含假設。

3、搭建模型

搭建模型就是根據實際問題的基本原理或規律,建立變數之間的關系。

要描述一個變數隨另一個變數的變化而變化,最簡單的方法是作圖,或者畫表格,還可以用數學表達式。在建模中,通常要把一種形式轉換成另一種形式。將數學表達式轉換成圖形和表格較容易,反過來則比較困難。

用一些簡單典型函數的組合可以組成各種函數形式。使用函數解決具體的實際問題,還比須給出各參數的值,尋求這些參數的現實解釋,往往可以抓住問題的一些本質特徵。

4、求解模型

對模型的求解往往涉及不同學科的專業知識。現代計算機科學的發展提供了強有力的輔助工具,出現了很多可進行工程數值計算和數學推導的軟體包和模擬工具,熟練掌握數學建模的模擬工具可大大增強建模能力。

不同數學模型的求解難易不同,一般情況下很多實際問題不能求出解析解,因此需要藉助計算機用數值的方法來求解,在編寫代碼之前要明確演算法和計算步驟,弄清初始值、步長等因素對結果的影響。

5、分析檢驗

在求出模型的解後,必須對模型和「解」進行分析,模型和解的適用范圍如何,模型的穩定性和可靠性如何,是否到達建模目的,是否解決了問題?

數學模型相對於客觀實際不可避免地會帶來一定誤差,一方面要根據建模的目的確定誤差的允許范圍,另一方面要分析誤差來源,想辦法減小誤差。

一般誤差有以下幾個來源,需要小心分析檢驗:

模型假設的誤差:一般來說模型難以完全反映客觀實際,因此需要做不同的假設,在對模型進行分析時,需要對這些假設小心檢驗,分析比較不同假設對結果的影響。
求近似解方法的誤差:一般來說很難得到模型的解析解,在採用數值方法求解時,數值計算方法本身也會有誤差。這類誤差許多是可以控制的。
計算工具的舍入誤差:在用計算器或計算機進行數值計算時,都不可避免由於機器字長有限而產生舍入誤差,如果進行了大量運算,這些誤差的積累是不可忽視的。
數據的測量誤差:在用感測器、調查問卷等方法獲得數據時,應注意數據本身的誤差。
6、模型解釋

數學建模的最後階段是用現實世界的語言對模型進行翻譯,這對使用模型的人深入了解模型的結果是十分重要的。模型和解是否有實際意義,是否與實際證據相符合。這一步是使數學模型有實際價值的關鍵一步。

相關閱讀

數學模型和數學建模介紹

數學建模常用的

閱讀全文

與怎麼設計計算機數學模型圖相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:893
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1401
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070