A. 數學建模有哪些方法
一、機理分析法 從基本物理定律以及系統的結構數據來推導出模型。
1. 比例分析法--建立變數之間函數關系的最基本最常用的方法。
2. 代數方法--求解離散問題(離散的數據、符號、圖形)的主要方 法。
3. 邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策等學科中得到廣泛應用。
4. 常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"的表達式。
5. 偏微分方程--解決因變數與兩個以上自變數之間的變化規律。
二、數據分析法 從大量的觀測數據利用統計方法建立數學模型。
1. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2… n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
2. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
三、模擬和其他方法
1. 計算機模擬(模擬)--實質上是統計估計方法,等效於抽樣試驗
① 離散系統模擬--有一組狀態變數。
② 連續系統模擬--有解析表達式或系統結構圖。
2. 因子試驗法--在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構。
3. 人工現實法--基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的可能變化,人為地組成一個系統。
B. 數學建模主要有哪些分析方法
2常用的建模方法(I)初等數學法。主要用於一些靜態、線性、確定性的模型。例如,席位分配問題,學生成績的比較,一些簡單的傳染病靜態模型。(2)數據分析法。從大量的觀測數據中,利用統計方法建立數學模型,常見的有:回歸分析法,時序分析法。(3)模擬和其他方法。主要有計算機模擬(是一種統計估計方法,等效於抽樣試驗,可以離散系統模擬和連續系統模擬),因子試驗法(主要是在系統上做局部試驗,根據試驗結果進行不斷分析修改,求得所需模型結構),人工現實法(基於對系統的了解和所要達到的目標,人為地組成一個系統)。(4)層次分析法。主要用於有關經濟計劃和管理、能源決策和分配、行為科學、軍事科學、軍事指揮、運輸、農業、教育、人才、醫療、環境等領域,以便進行決策、評價、分析、預測等。該方法關鍵的一步是建立層次結構模型。
C. 建立數學模型有哪兩類主要方法
—般說來建立數學模型的方法大體上可分為兩大類、一類是機理分析方法,一類是測試分析方法.機理分析是根據對現實對象特性的認識、分析其因果關系,找出反映內部機理的規律,建立的模型常有明確的物理或現實意義.
模型准備 首先要了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料.
模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣.
模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞.
模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術.
模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等.
模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意.
模型應用 應用的方式自然取決於問題的性質和建模的目的,這方面的內容不是本書討論的范圍。
應當指出,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,本書的建模實例就採取了靈活的表述方式
D. 數學的模型有哪些
數學的模型有:
應用領域類型:生態模型、交通模型、環境模型、作戰模型、社會模型、醫學模型、機械模型等。
建立模型的數學方法:幾何模型、網路模型、運籌模型、隨機模型等。
建模目的類型:描述模型、分析模型、預測模型、決策模型、控制模型等。
模型結構的了解程度類型:白箱模型、灰箱模型、黑箱模型。
建立數學模型的要求:
1、真實完整。
(1)真實的、系統的、完整的反映客觀現象;
(2)必須具有代表性;
(3)具有外推性,即能得到原型客體的信息,在模型的研究實驗時,能得到關於原型客體的原因;
(4)必須反映完成基本任務所達到的各種業績,而且要與實際情況相符合。
2、簡明實用。在建模過程中,要把本質的東西及其關系反映進去,把非本質的、對反映客觀真實程度影響不大的東西去掉,使模型在保證一定精確度的條件下,盡可能的簡單和可操作,數據易於採集。
3、適應變化。隨著有關條件的變化和人們認識的發展,通過相關變數及參數的調整,能很好的適應新情況。
E. 數學模型的解算方法
常用的解算方法有兩種。
1.解析法
就是用數學物理方法(分離變數法、拉普拉斯變換、傅立葉變換、漢格爾變換等)求解數學模型,得到某些變數變化規律的解析表達式,即解析解或分析解。由於這種解法求解,所必需的假設條件受到許多限制(如含水層為均質、邊界呈規則幾何形)使得數學模型求解困難,限制了這種方法的應用。
2.數值解法
主要是有限差分法及有限單元法。其基本步驟是:
1)將滲流區域按條件剖分為許多單元(單元內為均質的,邊界是規則的),按要求在單元上定義一個結點(點元),將滲流區域內連續的水頭分布離散化為在全部結點上有多個數所組成的數組。
2)在離散化的基礎上,將偏微分方程聯同邊界條件轉化為線性代數方程組。
3)解線性代數方程組求出水頭分布。若是非穩定流,還應根據初始的水頭分布多次解方程組,以求得各時刻的水頭分布。
在把微分方程轉換為線性代數方程組時,有限差分法是用差商代替導數;而有限單元法則是用線性的或高次插值函數來實現離散化,再用變分或其他數學方法將偏微分方程轉化為線性代數方程組。隨著電子計算機的發展,數值解法越來越成為求解地下水運動數學模型的重要方法。
小結
本章要求重點理解掌握以下基本概念和原理:滲透與滲流,滲透系數及滲透率,儲水系數和儲水率,穩定流與非穩定流,有壓流和無壓流,一維流、二維流、三維流,以及達西定律和滲流折射定律的表達式。
復習思考題
1.研究滲流常用什麼方法,為什麼?
2.在地下水動力學中,為什麼可以用測壓水頭代替總水頭?
3.水力坡度表示的方式有哪些?不同方式的使用條件是什麼?
4.達西定律為什麼不能叫層流定律?
5.滲透系數與滲透率有什麼不同?在什麼條件下可以相互替代?
6.什麼是含水介質的均質與非均質、各向同性與各向異性?
F. 數學建模中的分析方法有哪些
數學建模分析方法大體分為機理分析和測試分析兩種。
機理分析:根據對客觀事物特性的認識,找出反映內部機理的數量規律,建立的模型常有明確的物理或現實意義。
測試分析:將研究的對象看做一個「黑箱」系統(意思是它的內部機理看不清楚),通過對系統輸入、輸出數據的測量和統計分析,按照一定的准則找出與數據擬合最好的模型。
希望對你有幫助
G. 數學模型及其解法
按照描述地下水流變數的性質,地下水流的數學模型可分為兩類。一類是隨機模型,研究的對象是隨機變數,即該變數的取值不是確定性的而是概率。另一類是確定性模型,模型中變數取確定值,確定性模型由上述一個或一組微分方程及其相應的定解條件所構成,本教材僅介紹確定性模型(下文簡稱數學模型)。
求解數學模型的方法主要有3類:即解析法、數值法(數值模擬法)和物理模擬法。
解析法是應用數學分析方法獲得一個用連續函數表達其解的方法(通常以水頭H表示)。這個函數式(稱解析解)反映了含水層參數、源匯項及邊界條件等對水頭時空分布的影響,因此,可以直接或通過數學分析方法來揭示各因素與水頭H時空分布的內在聯系。我們強調解析解是個連續函數,就是說其解可以給出任何空間點和時間點的水頭值,因而可以通過數學分析方法給定任意時空點的水力坡度J、滲流速度v和任意斷面的流量等運動要素。它的另一個優點是,解析解是精確的。解析法的主要缺點是,能夠求解的問題一般比較簡單,除個別問題外,一般要求含水層為均質、等厚、邊界為直線、圓形或無界等。
數值方法與解析法不同,其解(稱數值解)不是一個連續分布的函數,而是按要求事先設計好的時空離散點上的數值解(例如水頭值)。這些數值解不能直接給出含水層參數、源匯項、邊界等各因素對水頭時空分布的函數關系,只能從數值分布特徵去尋找規律。另外,數值解本身是一種近似解。然而它最大的優點是,不受水文地質條件的限制,可用於自然界各種復雜的條件。一般地講,只要地下水運動機理清楚了的問題,都可用數值法求解。數值解方法的運算量往往很大,一般要藉助於電子計算機才能實現。
物理模擬方法:由於已知控制地下水運動的基本微分方程是拋物線方程和橢圓方程等,這一數學物理方程在其他物理現象方面也存在,例如電動力學、熱動力學等。因此,如果研究對象的幾何形狀、參數分布與邊界條件是相似的,則可以利用一種物理現象來研究另一種物理現象,這是物理模型。藉助某種物理模型來研究滲流的方法稱為物理模擬方法。
本教材主要介紹求解均勻流體飽和流動的解析方法,而對物理模擬僅從教學目的出發選擇幾種進行簡要介紹。關於地下水的數值方法將在《地下水流動問題數值方法》 (陳崇希等,1990)中進行專門介紹。
H. 數學建模的方法有哪些
預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);
歸類判別:歐氏距離判別、fisher判別等 ;
圖論:最短路徑求法 ;
最優化:列方程組 用lindo 或 lingo軟體解 ;
其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 。
建模常用演算法,僅供參考:
蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決 問題的演算法,同時間=可以通過模擬可以來檢驗自己模型的正確性,是比賽時必 用的方法) 。
數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數 據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具) 。
線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多 數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通 常使用Lindo、Lingo 軟體實現) 。
圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算 法,涉及到圖論的問題可以用這些方法解決,需要認真准備) 。
動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算 法設計中比較常用的方法,很多場合可以用到競賽中) 。
最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些 問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助, 但是演算法的實現比較困難,需慎重使用) 。
網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很 多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種 暴力方案,最好使用一些高級語言作為編程工具) 。
一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計 算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替 積分等思想是非常重要的) 。
數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分 析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編 寫庫函數進行調用) 。
圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文 中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問 題,通常使用Matlab 進行處理)。
I. 數學模型有哪些
1、生物學數學模型
2、醫學數學模型
3、地質學數學模型
4、氣象學數學模型
5、經濟學數學模型
6、社會學數學模型
7、物理學數學模型
8、化學數學模型
9、天文學數學模型
10、工程學數學模型
11、管理學數學模型
數學模型的歷史可以追溯到人類開始使用數字的時代。隨著人類使用數字,就不斷地建立各種數學模型,以解決各種各樣的實際問題。
數學模型這種數學結構是藉助於數學符號刻劃出來的某種系統的純關系結構。從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。
因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內的關系的數學表達。
J. 數學模型有哪些
數學建模常用模型主要有:
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算
法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要
處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題
屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、
Lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉
及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計
中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是
用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實
現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽
題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好
使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只
認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非
常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常
用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調
用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該
要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab
進行處理)