導航:首頁 > 數字科學 > 數學又叫做什麼

數學又叫做什麼

發布時間:2022-07-21 12:30:21

① 數學的本質是什麼。

研究空間形式和數量關系的科學。

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。

從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

(1)數學又叫做什麼擴展閱讀

許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。

此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能。

由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。

② 數學的含義是什麼

數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。

許多諸如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。

此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。因此,我們可以學習群、環、域和其他的抽象系統。

把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。

代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究。這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性。組合數學研究列舉滿足給定結構的數對象的方法。

應用數學及美學

一些數學只和生成它的領域有關,且用來解答此領域的更多問題。但一般被一領域生成的數學在其他許多領域內也十分有用,且可以成為一般的數學概念。即使是「最純的」數學通常亦有實際的用途,此一非比尋常的事實,被1963年諾貝爾物理獎得主維格納稱為「數學在自然科學中不可想像的有效性」。

如同大多數的研究領域,科學知識的爆發導致了數學的專業化。主要的分歧為純數學和應用數學。在應用數學內,又被分成兩大領域,並且變成了它們自身的學科——統計學和計算機科學。

許多數學家談論數學的優美,其內在的美學及美。「簡單」和「一般化」即為美的一種。另外亦包括巧妙的證明,如歐幾里得對存在無限多素數的證明;又或者是加快計算的數值方法,如快速傅里葉變換。

高德菲·哈羅德·哈代在《一個數學家的自白》一書中表明他相信單單是美學上的意義,就已經足夠作為純數學研究的正當理由。

以上內容參考網路-數學

③ 古代人把數學稱為什麼東西

古代人把數學稱為算術。
算術是數學中最古老、最基礎和最初等的部分,它研究數的性質及其運算。把數和數的性質、數和數之間的四則運算在應用過程中的經驗累積起來,並加以整理,就形成了最古老的一門數學——算術。在古代全部數學就叫做算術,現代的代數學、數論等最初就是由算術發展起來的。後來,算學、數學的概念出現了,它代替了算術的含義,包括了全部數學,算術就變成了其中的一個分支。

④ 什麼叫數學

數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。

而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

(4)數學又叫做什麼擴展閱讀:

一、數學空間

空間的研究源自於歐式幾何.三角學則結合了空間及數,且包含有非常著名的勾股定理、三角函數等。現今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學。

數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。

在代數幾何中有著如多項式方程的解集等幾何對象的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。

二、數學標點

數學是一門國際性的學科,對各個方面都要求嚴謹。

我國規定初等及以上的數學已可以算作是科技類文獻。

我國規定文獻類文章句號必須用「.」,數學採用的目的一是為此,二是為了避免和下腳標混淆,三是因為我國曾在國際上投稿數學類研究報告,人家卻不採用,因為外國的句號大多不是「。」.

在證明題中,∵(因為)後面要用「,」,∴(所以)後面要用「.」,在一道大題中若有若干小問,則每小問結束接「;」,最後一問結束用「.」,在①②③④這樣的序號後都應用「;」表連接,最後一個序號後用「.」表結束.

⑤ 什麼叫做數學

1 簡介
定義
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語 : mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意,以及另外還有個較狹隘且技術性的意義數學——「數學研究」。即使在其語源內,其形容詞意義和與學習有關的,亦會被用來指數學的。其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數 τα μαθηματικa(ta mathēmatiká)。以前中國古代把數學叫算術,又稱算學,最後才改為數學。
數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
對象
基礎數學知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。
今天,數學被使用在世界不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然許多以純數學開始的研究,但之後會發現許多應用。
創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……)。
領域
數學商業上計算的需要、了解數與數之間的體系、測量土地及預測天文觀念。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。
學科
研究現實世界的空間形式和數量關系的學科,包括算數、代數、幾何、三角、微積分等。
2 歷史
數學的起源
數學,起源於人類早期的生產活動。為中國古代六藝之一(六藝中稱為「數」),亦被古希臘學者視為哲學之起點。數學的希臘語Μαθηματικ? mathematikós)意思就是「學問的基礎」,源於ματθημα(máthema)(「科學,知識,學問」)。
數學的演進
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。
除了認知到如何去數實際物質的數量,史前的人類亦了解如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關多計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。

⑥ 數學是什麼什麼是數學

數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。

數學定義的三個主要類型被稱為邏輯學家,直覺主義者和形式主義者,每個都反映了不同的哲學思想學派。都有嚴重的問題,沒有人普遍接受。

(6)數學又叫做什麼擴展閱讀

西方數學簡史

數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。

第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年。

算術(加減乘除)也自然而然地產生了。更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普。歷史上曾有過許多各異的記數系統。

古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。

西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備。但尚未出現極限的概念。

17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發。

⑦ 為什麼叫做數學

數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體 數學(mathematics;希臘語:μαθηματικά)這一詞在西方源自於古希臘語的μάθημα(máthēma),其有學習、學問、科學,以及另外還有個較狹隘且技術性的意義-「數學研究」,即使在其語源內。其形容詞μαθηματικός(mathēmatikós),意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká),此一希臘語被亞里士多德拿來指「萬物皆數」的概念。(拉丁文:Mathemetica)原意是數和數數的技術。 我國古代把數學叫算術,又稱算學,最後才改為數學。
數學史
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。 今日,數學被使用在世界不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然許多以純數學開始的研究,但之後會發現許多應用。 創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。

編輯本段數學研究的各領域
數學主要的學科首要產生於商業上計算的需要、了解數字間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的子領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。 數量 數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括了如費馬最後定理之著名的結果。數論還包括兩個被廣為探討的未解問題:孿生素數猜想及哥德巴赫猜想。 當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成復數。數的進一步廣義化可以持續至包含四元數及八元數。自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:艾禮富數,它允許無限集合之間的大小可以做有意義的比較。 結構 許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。向量分析則將其擴展至第四個基本的領域內,即變化。 空間 空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及數,且包含有著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。在其許多分支中,拓撲學可能是二十世紀數學中有著最大進展的領域,並包含有存在久遠的龐加萊猜想及有爭議的四色定理,其只被電腦證明,而從來沒有由人力來驗證過. 基礎與哲學 為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。德國數學家康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,就連被譽為「博大精深,富於創舉」的數學家Pioncare也把集合論比作有趣的「病理情形」,甚至他的老師Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」.對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」他還指出:「數學的本質在於它的自由性,不必受傳統觀念束縛。」這種爭辯持續了十年之久。Cantor由於經常處於精神壓抑之中,致使他1884年患了精神分裂症,最後死於精神病院。 然而,歷史終究公平地評價了他的創造,集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。 數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性。 恩格斯說:「數學是研究現定世界的數量關系與空間形式的科學。」
編輯本段數學的分類
離散數學 模糊數學
數學的五大分支
1.經典數學 2.近代數學 3.計算機數學 4.隨機數學 5.經濟數學
數學分支
1.算術 2.初等代數 3.高等代數 4. 數論 5.歐幾里得幾何 6.非歐幾里得幾何 7.解析幾何 8.微分幾何 9.代數幾何 10.射影幾何學 11.幾何拓撲學 12.拓撲學 13.分形幾何 14.微積分學 15. 實變函數論 16.概率和統計學 17.復變函數論 18.泛函分析 19.偏微分方程 20.常微分方程 21.數理邏輯 22.模糊數學 23.運籌學 24.計算數學 25.突變理論 26.數學物理學
廣義的數學分類
從縱向劃分: 1.初等數學和古代數學:這是指17世紀以前的數學。主要是古希臘時期建立的歐幾里得幾何學,古代中國、古印度和古巴比倫時期建立的算術,歐洲文藝復興時期發展起來的代數方程等。 2.變數數學:是指17--19世紀初建立與發展起來的數學。從17世紀上半葉開始的變數數學時期,可以分為兩個階段:17世紀的創建階段(英雄時代)與18世紀的發展階段(創造時代)。 3.近代數學:是指19世紀的數學。近代數學時期的19世紀是數學的全面發展與成熟階段,數學的面貌發生了深刻的變化,數學的絕大部分分支在這一時期都已經形成,整個數學呈現現出全面繁榮的景象。 4.現代數學:是指20世紀的數學。1900年德國著名數學家希爾伯特(D. Hilbert)在世界數學家大會上發表了一個著名演講,提出了23個預測和知道今後數學發展的數學問題(見下),拉開了20世紀現代數學的序幕。 1900年,在巴黎國際數學家代表大會上,希爾伯特發表了題為《數學問題》的著名講演。他根據過去特別是十九世紀數學研究的成果和發展趨勢,提出了23個最重要的數學問題。這23個問題通稱希爾伯特問題,後來成為許多數學家力圖攻克的難關,對現代數學的研究和發展產生了深刻的影響,並起了積極的推動作用,希爾伯特問題中有些現已得到圓滿解決,有些至今仍未解決。他在講演中所闡發的想信每個數學問題都可以解決的信念,對於數學工作者是一種巨大的鼓舞。 希爾伯特的23個問題分屬四大塊:第1到第6問題是數學基礎問題;第7到第12問題是數論問題;第13到第18問題屬於代數和幾何問題;第19到第23問題屬於數學分析。 現在只列出一張清單: (1)康托的連續統基數問題。 (2)算術公理系統的無矛盾性。 (3)只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。 (4)兩點間以直線為距離最短線問題。 (5)拓撲學成為李群的條件(拓撲群)。 (6)對數學起重要作用的物理學的公理化。 (7)某些數的超越性的證明。 (8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。 (9)一般互反律在任意數域中的證明。 (10)能否通過有限步驟來判定不定方程是否存在有理整數解? (11)一般代數數域內的二次型論。 (12)類域的構成問題。 (13)一般七次代數方程以二變數連續函數之組合求解的不可能性。 (14)某些完備函數系的有限的證明。 (15)建立代數幾何學的基礎。 (16)代數曲線和曲面的拓撲研究。 (17)半正定形式的平方和表示。 (18)用全等多面體構造空間。 (19)正則變分問題的解是否總是解析函數? (20)研究一般邊值問題。 (21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。 (22)用自守函數將解析函數單值化。 (23)發展變分學方法的研究。 從橫向劃分: 1.基礎數學(Pure Mathematics)。又稱為理論數學或純粹數學,是數學的核心部分,包含代數、幾何、分析三大分支,分別研究數、形和數形關系。 2.應用數學(Applied mathematics)。簡單地說,也即數學的應用。 3 .計算數學(Computation mathematics)。研究諸如計算方法(數值分析)、數理邏輯、符號數學、計算復雜性、程序設計等方面的問題。該學科與計算機密切相關。 4.概率統計(Probability and mathematical statistics)。分概率論與數理統計兩大塊。 5.運籌學與控制論(Op-erations research and control)。運籌學是利用數學方法,在建立模型的基礎上,解決有關人力、物資、金錢等的復雜系統的運行、組織、管理等方面所出現的問題的一門學科。
編輯本段符號、語言與嚴謹
在現代的符號中,簡單的表示式可能描繪出復雜的概念。此一圖像即是由一簡單方程所產生的。 我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的。在此之前,數學被文字書寫出來,這是個會限制住數學發展的刻苦程序。現今的符號使得數學對於專家而言更容易去控作,但初學者卻常對此感到怯步。它被極度的壓縮:少量的符號包含著大量的訊息。如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼。 數學語言亦對初學者而言感到困難。如何使這些字有著比日常用語更精確的意思。亦困惱著初學者,如開放和域等字在數學里有著特別的意思。數學術語亦包括如同胚及可積性等專有名詞。但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性。數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。 嚴謹是數學證明中很重要且基本的一部份。數學家希望他們的定理以系統化的推理依著公理被推論下去。這是為了避免錯誤的「定理」,依著不可靠的直觀,而這情形在歷史上曾出現過許多的例子。在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹。牛頓為了解決問題所做的定義到了十九世紀才重新以小心的分析及正式的證明來處理。今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度。當大量的計量難以被驗證時,其證明亦很難說是有效地嚴謹。
編輯本段數學的發展史
世界數學發展史 數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικ??(mathematikós)意思是「學問的基礎」,源於μ?θημα(máthema)(「科學,知識,學問」)。 數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。 更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。 從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可他主要是關於數字的,而且他是一門學科,故稱數學……
以簡單地被概括為數學對數量、結構、空間及時間方面的研究。 到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。 數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail B. Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」

⑧ 什麼是數學

數學
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」

歷史

自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。

從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。

本質特徵

對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。

事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」

其它解釋

另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」

從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。

基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。

研究內容

人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們和起來叫做整數。

對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。

人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。

數論這門學科最初是從研究整數開始的,所以叫做整數論。後來整數論又進一步發展,就叫做數論了。確切的說,數論就是一門研究整數性質的學科。

數論的發展簡況

自古以來,數學家對於整數性質的研究一直十分重視,但是直到十九世紀,這些研究成果還只是孤立地記載在各個時期的算術著作中,也就是說還沒有形成完整統一的學科。

自我國古代,許多著名的數學著作中都關於數論內容的論述,比如求最大公約數、勾股數組、某些不定方程整數解的問題等等。在國外,古希臘時代的數學家對於數論中一個最基本的問題——整除性問題就有系統的研究,關於質數、和數、約數、倍數等一系列概念也已經被提出來應用了。後來的各個時代的數學家也都對整數性質的研究做出過重大的貢獻,使數論的基本理論逐步得到完善。

在整數性質的研究中,人們發現質數是構成正整數的基本「材料」,要深入研究整數的性質就必須研究質數的性質。因此關於質數性質的有關問題,一直受到數學家的關注。

到了十八世紀末,歷代數學家積累的關於整數性質零散的知識已經十分豐富了,把它們整理加工成為一門系統的學科的條件已經完全成熟了。德國數學家高斯集中前人的大成,寫了一本書叫做《算術探討》,1800年寄給了法國科學院,但是法國科學院拒絕了高斯的這部傑作,高斯只好在1801年自己發表了這部著作。這部書開始了現代數論的新紀元。

在《算術探討》中,高斯把過去研究整數性質所用的符號標准化了,把當時現存的定理系統化並進行了推廣,把要研究的問題和意志的方法進行了分類,還引進了新的方法。

數論的基本內容

數論形成了一門獨立的學科後,隨著數學其他分支的發展,研究數論的方法也在不斷發展。如果按照研究方法來說,可以分成初等數論、解析數論、代數數論和幾何數論四個部分。

初等數論是數論中不求助於其他數學學科的幫助,只依靠初等的方法來研究整數性質的分支。比如中國古代有名的「中國剩餘定理」,就是初等數論中很重要的內容。

解析數論是使用數學分析作為工具來解決數論問題的分支。數學分析是以函數作為研究對象的、在極限概念的基礎上建立起來的數學學科。用數學分析來解決數論問題是由歐拉奠基的,俄國數學家車比雪夫等也對它的發展做出過貢獻。解析數論是解決數論中艱深問題的強有力的工具。比如,對於「質數有無限多個」這個命題,歐拉給出了解析方法的證明,其中利用了數學分析中有關無窮級數的若干知識。二十世紀三十年代,蘇聯數學家維諾格拉多夫創造性的提出了「三角和方法」,這個方法對於解決某些數論難題有著重要的作用。我國數學家陳景潤在解決「哥德巴赫猜想」問題中使用的是解析數論中的篩法。

代數數論是把整數的概念推廣到代數整數的一個分支。數學家把整數概念推廣到一般代數數域上去,相應地也建立了素整數、可除性等概念。

幾何數論是由德國數學家、物理學家閔可夫斯基等人開創和奠基的。幾何數論研究的基本對象是「空間格網」。什麼是空間格網呢?在給定的直角坐標繫上,坐標全是整數的點,叫做整點;全部整點構成的組就叫做空間格網。空間格網對幾何學和結晶學有著重大的意義。由於幾何數論涉及的問題比較復雜,必須具有相當的數學基礎才能深入研究。

數論是一門高度抽象的數學學科,長期以來,它的發展處於純理論的研究狀態,它對數學理論的發展起到了積極的作用。但對於大多數人來講並不清楚它的實際意義。

由於近代計算機科學和應用數學的發展,數論得到了廣泛的應用。比如在計算方法、代數編碼、組合論等方面都廣泛使用了初等數論范圍內的許多研究成果;又文獻報道,現在有些國家應用「孫子定理」來進行測距,用原根和指數來計算離散傅立葉變換等。此外,數論的許多比較深刻的研究成果也在近似分析、差集合、快速變換等方面得到了應用。特別是現在由於計算機的發展,用離散量的計算去逼近連續量而達到所要求的精度已成為可能。

數論在數學中的地位是獨特的,高斯曾經說過「數學是科學的皇後,數論是數學中的皇冠」。因此,數學家都喜歡把數論中一些懸而未決的疑難問題,叫做「皇冠上的明珠」,以鼓勵人們去「摘取」。下面簡要列出幾顆「明珠」:費爾馬大定理、孿生素數問題、歌德巴赫猜想、圓內整點問題、完全數問題……

在我國近代,數論也是發展最早的數學分支之一。從二十世紀三十年代開始,在解析數論、刁藩都方程、一致分布等方面都有過重要的貢獻,出現了華羅庚、閔嗣鶴、柯召等第一流的數論專家。其中華羅庚教授在三角和估值、堆砌素數論方面的研究是享有盛名的。1949年以後,數論的研究的得到了更大的發展。特別是在「篩法」和「歌德巴赫猜想」方面的研究,已取得世界領先的優秀成績。

特別是陳景潤在1966年證明「歌德巴赫猜想」的「一個大偶數可以表示為一個素數和一個不超過兩個素數的乘積之和」以後,在國際數學引起了強烈的反響,盛贊陳景潤的論文是解析數學的名作,是篩法的光輝頂點。至今,這仍是「歌德巴赫猜想」的最好結果。

人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們和起來叫做整數。

對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。

人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。

數論這門學科最初是從研究整數開始的,所以叫做整數論。後來整數論又進一步發展,就叫做數論了。確切的說,數論就是一門研究整數性質的學科。

數論的發展簡況

自古以來,數學家對於整數性質的研究一直十分重視,但是直到十九世紀,這些研究成果還只是孤立地記載在各個時期的算術著作中,也就是說還沒有形成完整統一的學科。

自我國古代,許多著名的數學著作中都關於數論內容的論述,比如求最大公約數、勾股數組、某些不定方程整數解的問題等等。在國外,古希臘時代的數學家對於數論中一個最基本的問題——整除性問題就有系統的研究,關於質數、和數、約數、倍數等一系列概念也已經被提出來應用了。後來的各個時代的數學家也都對整數性質的研究做出過重大的貢獻,使數論的基本理論逐步得到完善。

在整數性質的研究中,人們發現質數是構成正整數的基本「材料」,要深入研究整數的性質就必須研究質數的性質。因此關於質數性質的有關問題,一直受到數學家的關注。

到了十八世紀末,歷代數學家積累的關於整數性質零散的知識已經十分豐富了,把它們整理加工成為一門系統的學科的條件已經完全成熟了。德國數學家高斯集中前人的大成,寫了一本書叫做《算術探討》,1800年寄給了法國科學院,但是法國科學院拒絕了高斯的這部傑作,高斯只好在1801年自己發表了這部著作。這部書開始了現代數論的新紀元。

在《算術探討》中,高斯把過去研究整數性質所用的符號標准化了,把當時現存的定理系統化並進行了推廣,把要研究的問題和意志的方法進行了分類,還引進了新的方法。

數論的基本內容

數論形成了一門獨立的學科後,隨著數學其他分支的發展,研究數論的方法也在不斷發展。如果按照研究方法來說,可以分成初等數論、解析數論、代數數論和幾何數論四個部分。

初等數論是數論中不求助於其他數學學科的幫助,只依靠初等的方法來研究整數性質的分支。比如中國古代有名的「中國剩餘定理」,就是初等數論中很重要的內容。

解析數論是使用數學分析作為工具來解決數論問題的分支。數學分析是以函數作為研究對象的、在極限概念的基礎上建立起來的數學學科。用數學分析來解決數論問題是由歐拉奠基的,俄國數學家車比雪夫等也對它的發展做出過貢獻。解析數論是解決數論中艱深問題的強有力的工具。比如,對於「質數有無限多個」這個命題,歐拉給出了解析方法的證明,其中利用了數學分析中有關無窮級數的若干知識。二十世紀三十年代,蘇聯數學家維諾格拉多夫創造性的提出了「三角和方法」,這個方法對於解決某些數論難題有著重要的作用。我國數學家陳景潤在解決「哥德巴赫猜想」問題中也使用的是解析數論的方法。

代數數論是把整數的概念推廣到代數整數的一個分支。數學家把整數概念推廣到一般代數數域上去,相應地也建立了素整數、可除性等概念。

幾何數論是由德國數學家、物理學家閔可夫斯基等人開創和奠基的。幾何數論研究的基本對象是「空間格網」。什麼是空間格網呢?在給定的直角坐標繫上,坐標全是整數的點,叫做整點;全部整點構成的組就叫做空間格網。空間格網對幾何學和結晶學有著重大的意義。由於幾何數論涉及的問題比較復雜,必須具有相當的數學基礎才能深入研究。

數論是一門高度抽象的數學學科,長期以來,它的發展處於純理論的研究狀態,它對數學理論的發展起到了積極的作用。但對於大多數人來講並不清楚它的實際意義。

由於近代計算機科學和應用數學的發展,數論得到了廣泛的應用。比如在計算方法、代數編碼、組合論等方面都廣泛使用了初等數論范圍內的許多研究成果;又文獻報道,現在有些國家應用「孫子定理」來進行測距,用原根和指數來計算離散傅立葉變換等。此外,數論的許多比較深刻的研究成果也在近似分析、差集合、快速變換等方面得到了應用。特別是現在由於計算機的發展,用離散量的計算去逼近連續量而達到所要求的精度已成為可能。

數論在數學中的地位是獨特的,高斯曾經說過「數學是科學的皇後,數論是數學中的皇冠」。因此,數學家都喜歡把數論中一些懸而未決的疑難問題,叫做「皇冠上的明珠」,以鼓勵人們去「摘取」。下面簡要列出幾顆「明珠」:費爾馬大定理、孿生素數問題、歌德巴赫猜想、圓內整點問題、完全數問題……

在我國近代,數論也是發展最早的數學分支之一。從二十世紀三十年代開始,在解析數論、刁藩都方程、一致分布等方面都有過重要的貢獻,出現了華羅庚、閔嗣鶴、柯召等第一流的數論專家。其中華羅庚教授在三角和估值、堆砌素數論方面的研究是享有盛名的。1949年以後,數論的研究的得到了更大的發展。特別是在「篩法」和「歌德巴赫猜想」方面的研究,已取得世界領先的優秀成績。

特別是陳景潤在1966年證明「歌德巴赫猜想」的「一個大偶數可以表示為一個素數和一個不超過兩個素數的乘積之和」以後,在國際數學引起了強烈的反響,盛贊陳景潤的論文是解析數學的名作,是篩法的光輝頂點。至今,這仍是「歌德巴赫猜想」的最好結果。

⑨ 什麼叫做什麼叫做數學

數學是研究現實世界中數量關系和空間形式的科學。簡單地說,是研究數和形的科學。由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數。基礎數學的知識與運用總是個人與團體生活中不可或缺的一塊。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。今日,數學被使用在世界上不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家亦研究沒有任何實際應用價值的純數學,即使其應用常會在之後被發現。創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純粹數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。數學分支1.算術 2.初等代數3.高等代數 4. 數論5.歐式幾何 6.非歐式幾何7.解析幾何 8.微分幾何9.代數幾何 10.射影幾何學11.拓撲幾何學 12.拓撲學13.分形幾何 14.微積分學15. 實變函數論 16.概率和數量統計17.復變函數論 18.泛函分析19.偏微分方程 20.常微分方程21.數理邏輯 22.模糊數學23.運籌學 24.計算數學25.突變理論 26.數學物理學

⑩ 數學還叫什麼

以前中國古代把數學叫算術,又 稱算學,最後才改為數學。

數學是利用符號語言研究數量、結構、變 化以及空間模型等概念的一門科學。

閱讀全文

與數學又叫做什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1401
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070