導航:首頁 > 數字科學 > 數學最早來自哪裡

數學最早來自哪裡

發布時間:2022-02-05 00:13:25

Ⅰ 數學的來歷30字

數學來源於人類早期的生產活動。

遠在1萬5千年前人類就已經能相當逼真地描繪出人和動物的形象,這是萌發圖形意識的最早證據。後來就逐漸開始了對圓形和直線形的追求,因而成為數學圖形的最早的原型。

在日常生活和生產實踐中又逐漸產生了計數意識和計數系統,人類摸索過多種記數方法,有開始的結繩記數,用石塊記數,語言點數,進一步用符號,逐步發展到今天我們所用的數字。圖形意識和計數意識發展到一定程度,又產生了度量意識。

拓展資料:

數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。

在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

數學是研究現實世界空間形式和數量關系的一門科學。分為初等數學和高等數學。它在科學發展和現代生活生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具。

數學有學習、學問、科學之意,以及另外還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義和與學習有關的,亦會被用來指數學的。在中國古代,數學叫算術,又稱算學,最後才改為數學。數學分為兩部分,一部分是幾何,另一部分是代數。

數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。

Ⅱ 數學起源於哪一年

數學起源於公元前4世紀。
公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。
從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。
公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」

Ⅲ 數學最早在哪個國家誕生

1,什麼是數學?數學本身是一個歷史的概念,數學的內涵隨著時代的變化而變化,給數學下一個一勞永逸的定義是不可能的。我們在這里就從歷史的角度來談談「什麼是數學」這個問題。公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」 從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」 二.數與形的概念的產生人類在蒙昧時代就已具有識別事物多寡的能力。原始人在採集、狩獵等生產活動中首先注意到一隻羊與許多羊、一頭狼與整群狼在數量上的差異。通過一隻羊與許多羊、一頭狼與整群狼的比較,就逐漸看到了一隻羊、一頭狼、一條魚、一棵樹等等之間存在著某種共通的東西(即它們的單位性)。當對數的認識變得越來越明確時,人們感到有必要以某種方式來表達事物的這一屬性,於是導致了記數。 古代的記數方法: 1. 手指計數:利用兩只手的十個手指。亞里士多德指出:十進制的廣泛採用,只不過是我們絕大多數人生來具有10個手指這一事實的結果。 2. 石子記數:在地上擺小石子,但記數的石子堆很難長久保存。 3. 結繩記數:在一根繩子上打結來表示事物的多少。比如今天獵到五頭羊,就以在繩子上打五個結來表示;約定三天後再見面,就在繩子上打三個結,過一天解一個結;等等。秘魯的印加族人(印第安人中的一部分)古時(公元前1500年前)每收進一捆莊稼,就在繩上打個結,用來記錄收獲的多少。中國古代文獻《周易 系辭下》有「上古結繩而治」之說。「結繩而治」即結繩記數或結繩記事。結繩記數這種方法,不但在遠古時候使用,而且一直在某些民族中沿用下來。宋朝人在一本書中說:「韃靼無文字,每調發軍馬,即結草為約,使人傳達,急於星火。」這是用結草來調發軍馬,傳達要調的人數。其他如藏族、彝族等,雖都有文字,但在一般不識字的人中間都還長期使用這種方法。中央民族大學就收藏著一副高山族的結繩,由兩條繩子組成:每條上有兩個結,再把兩條繩結在一起。 4. 刻痕記數:1937年在維斯托尼斯(摩拉維亞)發現一根40萬年前的幼狼前肢骨,7英寸長,上面有55道很深的刻痕。這是已發現的用刻痕方法計數的最早資料。直到今天,在歐、亞、非大陸的某些地方,仍然有一些牧人用在棒上刻痕的方法來計算他們的牲畜。 直到距今大約五千年前,終於出現了書寫記數以及相應的記數系統。我們介紹幾種古老文明的早期記數系統。(按時代順序) 1. 古埃及的象形數字(公元前3400年左右) 2. 巴比倫楔形文字(公元前2400年左右) 3. 中國甲骨文數字(公元前1600年左右) 4. 希臘阿提卡數字(公元前500年左右) 5. 中國籌算數碼(公元前500年左右) 6. 印度婆羅門數字(公元前300年左右) 7. 瑪雅數字(?) 而我們現代廣泛使用的是阿拉伯數字。其實,這些阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。與數的概念形成一樣,人類最初的幾何知識也是他們從對形的直覺中萌發出來的,例如,不同種族的人都注意到了圓月和挺拔的松樹在形象上的區別。幾何學便是建立在對這類從自然界提取出來的「形」的總結的基礎之上。例如,一個平面只不過是一片平地的表面,而一條直線則是拉緊了的一段繩子,來自希臘文的英文Hypotenuse(斜邊、弦)原先的意思就是「拉緊」。同樣,三角形、圓、正方形、長方形等一系列幾何形式的概念也來自於人們的觀察和實踐。在不同的地區,幾何學的這種實踐來源方向不盡相同。 1. 古埃及幾何學:正如古羅馬歷史學家希羅多德所指出的,埃及的幾何學是「尼羅河的饋贈」。一年一度的尼羅河洪水沖毀了某個人的土地,那麼他就必須向法老報告所受的損失。法老會派專人來測量所失去的土地,再按相應的比例減稅。這樣一來,幾何學就產生並發展起來了。這類專門負責測量事物的人有專門的名稱,叫做「司繩」。 2. 巴比倫人的幾何學:也是源於實際的測量,它的重要特徵是其算術性質,至少在公元前1600年,他們就已熟悉長方形、直角三角形和等腰三角形和某些梯形的面積計算。 3. 古印度幾何學:起源與宗教實踐密切相關,公元前8世紀至5世紀形成的所謂「繩法經」,便是關於祭壇與寺廟建造中的幾何問題及其求解法則的記載。 4. 古代中國幾何學:起源更多地與天文觀測相聯系。中國最早的數學經典《周髀算經》(至晚在公元前2世紀成書)事實上是一部討論西周初年天文測量中所用數學方法的著作。若滿意請採納!!謝謝

Ⅳ 初中高中的數學物理化學,從新中國最早開始,都取自於哪裡可以說是來自國內的什麼書籍國外呢

你在搞研究啊。這課題太大了!三門課程,一門一門地「研究「吧。好像沒有必要,這里可能沒有人幫助到你。

Ⅳ 數學符號「0」起源於哪個國家

關於0的起源,有以下幾種觀點:


0是極為重要的數字元號,而關於0這個思維的概念在其它地區很早就有。


據歷史記載,瑪雅人有一個被稱為「人類頭腦最光輝的產物」的數學體系,瑪雅人(或他們的歐梅克祖先)獨立發展了零的概念,瑪雅文明最早發明特別字體的0。瑪雅數字中0 以貝殼模樣的象形符號代表。 並且使用二十進制的數字系統;數字以點(·)代表1,橫棒(-)代表5。碑文顯示他們有時會用到到億。


這里提到的零,並不是我們所用的阿拉伯數字0,但這應該是最早含有0的概念的數字元號了。


古埃及早在公元前2千年就有人在記帳時用特別符號來記載零。


古巴比倫的文獻記載中有0的萌芽。但是與現在不同的是,0的符號是用空位來表示的,例如要表示一百零一,古巴比倫寫作1 1。


在中國很早便有0這個概念,許多文獻中均有記載。中國古代使用算籌進行計算,在算籌和算盤上,以空位表示0。公元前4世紀,中國數學家就已經了解負數和零的概念了。(而在我國遠古時代的結繩記數法中,「零」是在對「有」的否定中出現的,意思是「沒有」。)


公元1世紀的《九章算術》說:「正負術曰:同名相除,異名相益,正無入負之,負無入正之。其異名相除,同名相益,正無入正之,負無入負之。」(這段話的大意是「減法:遇到同符號數字應相減其數值,遇到異符號數字應相加其數值,零減正數的差是負數,零減負數的差是正數。」)以上文字里的「無入」通常被數學歷史家認為是零的概念。(全文見維基文庫的《九章算術》)雖然如此,但是當時並沒有使用符號來表示零。籌算數碼中開始沒有「零」的符號,遇到"零"就空位。比如「6708」就可以表示為"┴〧 ╥ "(由於七沒有對應的符號,用商碼代替的;畢竟商碼來源於算籌)。數字中沒有"零",是很容易發生錯誤的。所以後來有人把銅錢擺在空位上,以免弄錯,這或許與"〇"的符號出現有關。【印度直到7世紀初,印度大數學家葛拉夫.瑪格蒲達才首先說明了0的性質,任何數乘0是0,任何數加上0或減去0得任何數。遺憾的是,他並沒有提到以命位記數法來進行計算的實例.】


不過多數人認為,「0」這一數學符號的發明應歸功於公元6世紀的印度人。印度文明可遠溯到公元前2000年,但他們在公元前800年以前是沒有數學的。大約在公元前3世紀以後,印度出現了數的記號,典型的的是婆羅門數字。婆羅門數字的出色之處是它給1到9的每個數都有單獨的記號,還沒有零和進位記法。他們最早用黑點(·)表示零,後來逐漸變成了「o」。


但是據說公元前2500年左右,印度婆羅門教最古老的文獻《吠陀》已有「0」這個符號的應用,當時的零在印度婆羅門教表示空的位置(但是他們在公元前800年以前是沒有數學的,所以這個說法存疑。按照這個說法,中國遠古結繩記數法中,〇是在對「有」的否定中出現的,意思是「沒有」。也可以算了)。---個人對最後這段存疑問,如果是真的;那麼為何公元六世紀印度人還在用黑點作為"零"的符號,至於何時由點轉為圓,具體時間已無從考證。(公元718年出書的《開元占經》104卷演算法,1089頁,譯制印度的《九執歷》;那個時候印度人的零依然是黑點。)



大約在公元前三世紀,古印度人完成了數字元號1到9的發明創造,但此時還沒有「0」。「0」的符號出現,是在1到9數字元號發明一千多年後的印度笈多王朝。剛出現時,它還不是用圓圈;而是用一個黑點來表示。至於何時由點轉為圓,具體時間已無從考證。直到公元876年,人們在印度的瓜廖爾(Gwalior)這個地方;發現了一塊刻有「27o」這個數字的石碑。這也是人們發現的有關「0」符號的最早記載,但是這個零的符號是個比〇小一圈的圓圈o;也不是現代「0」這個符號的樣子。



但是如果說符號的話,中國算籌里早已經有空格;後來更是用銅錢在算籌里表示零的符號。此後銅錢演變為〇,作為零的符號;是很正常的事情。在690年時;武則天頒布了則天文字,其中一個字就是「〇」了(比印度的0的小圓圈符號o早出現186年);雖然當時還不是零的意思。而中國古代數學上記錄「〇」時是用「囗」來表示的,一方面為了將數字區別開來;更重要的是由於我國古代用毛筆書寫。而毛筆行書連筆書寫的習慣,寫「〇」比寫「囗」要方便得多,所以零逐漸變成按逆時針方向畫「〇」;這就是中國的零號。1180年金朝《大明歷》中就有「四百〇三」,「三百〇九」等數字。


據英國著名科學史專家李·約瑟博士的考證,「0」產生於中印文化,是中國首先使用的位值制促進了零的出現。印度是在中國籌算和位值制的影響下才創造「0」的。中國遠在三千多年前的殷商時期,就採用了位值制,甲骨文中有「六百又五十又九(659)」等數字,明確地使用了十進位。


而印度一個黑點,又如何演化成〇的符號呢?不知道有沒有演變過程的證據?而且古印度是沒有十進位值制的,中國是全球最早有十進位值制的。古埃及雖然是十進制,但是沒有位置制。巴比倫雖然有位置制,但是巴比倫是60進制;只有中國有同時滿足十進制與位置制而來的十進位值制。但是中文文獻中〇的符號表示「0」最早出現時間,也是無法考據的。宋代蔡沈《律率新書》(1135一1198)中用方格「囗」表示空缺。1180年金朝《大明歷》中有「四百〇三」,「三百〇九」等數字。公元1247年,秦九韶在其著作數書九章中使用符號「〇」來表示零的概念。李冶《測圓海鏡》(1248)第十四問中就有「0」的圖像。


總之,有關〇的起源還沒有一個定論,但是無論如何,0自從一出現就具有非常旺盛的生命力,現在,它廣泛應用於社會的各個領域。

Ⅵ 數學起源於哪裡

數學起源於公元前4世紀。公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。

從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)

直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」

從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」

拓展資料:

學數學意義

學數學的意義就是不光會做老師們純粹為了考大家的題目,更重要的是把這些討厭的問題變成人人都喜聞樂見的實際性成果,數學家們是默默無聞卻強大無比的歷史推進者!

掌握數字規律,訓練邏輯思維,能訓練人們的思維能力.開發腦力.更理性的去認識這個世界.數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題 掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學.意義深遠!

Ⅶ 數學知識的起源

數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」

自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。

從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。

對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。

事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」

另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」

從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。

基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。

人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們和起來叫做整數。

對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。

人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。

Ⅷ 數學最早的來源和名稱

「數學」的由來

古希臘人在數學中引進了名稱,概念和自我思考,他們很早就開始猜測數學是如何產生的。雖然他們的猜測僅是匆匆記下,但他們幾乎先佔有了猜想這一思考領域。古希臘人隨意記下的東西在19世紀變成了大堆文章,而在20世紀卻變成了令人討厭的陳辭濫調。 在現存的資料中,希羅多德(Herodotus,公元前484--425年)是第一個開始猜想的人。他只談論了幾何學,他對一般的數學概念也許不熟悉,但對土地測量的准確意思很敏感。作為一個人類學家和一個社會歷史學家,希羅多德指出,古希臘的幾何來自古埃及,在古埃及,由於一年一度的洪水淹沒土地,為了租稅的目的,人們經常需要重新丈量土地;他還說:希臘人從巴比倫人那裡學會了日晷儀的使用,以及將一天分成12個時辰。希羅多德的這一發現,受到了肯定和贊揚。認為普通幾何學有一個輝煌開端的推測是膚淺的。

柏拉圖關心數學的各個方面,在他那充滿奇妙幻想的神話故事《費德洛斯篇》中,他說:

故事發生在古埃及的洛克拉丁(區域),在那裡住著一位老神仙,他的名字叫賽斯(Theuth),對於賽斯來說,朱鷺是神鳥,他在朱鷺的幫助下發明了數,計算、幾何學和天文學,還有棋類游戲等。

柏拉圖常常充滿了奇怪的幻想,原因是他不知道自己是否正亞里士多德最後終於用完全概念化的語言談論數學了,即談論統一的、有著自己發展目的的數學。在他的《形而上學》(Meta-physics)第1卷第1章中,亞里士多德說:數學科學或數學藝術源於古埃及,因為在古埃及有一批祭司有空閑自覺地致力於數學研究。亞里士多德所說的是否是事實還值得懷疑,但這並不影響亞里士多德聰慧和敏銳的觀察力。在亞里士多德的書中,提到古埃及僅僅只是為了解決關於以下問題的爭論:1.存在為知識服務的知識,純數學就是一個最佳的例子:2.知識的發展不是由於消費者購物和奢華的需要而產生的。亞里士多德這種「天真」的觀點也許會遭到反對;但卻駁不倒它,因為沒有更令人信服的觀點.

就整體來說,古希臘人企圖創造兩種「科學」的方法論,一種是實體論,而另一種是他們的數學。亞里士多德的邏輯方法大約是介於二者之間的,而亞里士多德自己認為,在一般的意義上講他的方法無論如何只能是一種輔助方法。古希臘的實體論帶有明顯的巴門尼德的「存在」特徵,也受到赫拉克利特「理性」的輕微影響,實體論的特徵僅在以後的斯多葛派和其它希臘作品的翻譯中才表現出來。數學作為一種有效的方法論遠遠地超越了實體論,但不知什麼原因,數學的名字本身並不如「存在」和「理性」那樣響亮和受到肯定。然而,數學名稱的產生和出現,卻反映了古希臘人某些富於創造的特性。下面我們將說明數學這一名詞的來源。

「數學」一詞是來自希臘語,它意味著某種『已學會或被理解的東西』或「已獲得的知識」,甚至意味著「可獲的東西」, 「可學會的東西」,即「通過學習可獲得的知識」,數學名稱的這些意思似乎和梵文中的同根詞意思相同。甚至偉大的辭典編輯人利特雷(E.Littre 也是當時傑出的古典學者),在他編輯的法語字典(1877年)中也收入了「數學」一詞。牛津英語字典沒有參照梵文。公元10世紀的拜占庭希臘字典「Suidas」中,引出了「物理學」、「幾何學」和「算術」的詞條,但沒有直接列出「數學」—詞。

「數學」一詞從表示一般的知識到專門表示數學專業,經歷一個較長的過程,僅在亞里士多德時代,而不是在柏拉圖時代,這一過程才完成。數學名稱的專有化不僅在於其意義深遠,而在於當時古希臘只有「詩歌」一詞的專有化才能與數學名稱的專有化相媲美。「詩歌」原來的意思是「已經製造或完成的某些東西」,「詩歌」一詞的專有化在柏拉圖時代就完成了。而不知是什麼原因辭典編輯或涉及名詞專有化的知識問題從來沒有提到詩歌,也沒有提到詩歌與數學名稱專有化之間奇特的相似性。但數學名稱的專有化確實受到人們的注意。

首先,亞里士多德提出, 「數學」一詞的專門化使用是源於畢達哥拉斯的想法,但沒有任何資料表明對於起源於愛奧尼亞的自然哲學有類似的思考。其次在愛奧尼亞人中,只有泰勒斯(公元前640?--546年)在「純」數學方面的成就是可信的,因為除了第歐根尼·拉爾修(Diogenes Laertius)簡短提到外,這一可信性還有一個較遲的而直接的數學來源,即來源於普羅克洛斯(Proclus)對歐幾里得的評註:但這一可信性不是來源於亞里士多德,盡管他知道泰勒斯是一個「自然哲學家」;也不是來源於早期的希羅多德,盡管他知道塞利斯是一個政治、軍事戰術方面的「愛好者」,甚至還能預報日蝕。以上這些可能有助於解釋為什麼在柏拉圖的體系中,幾乎沒有愛奧尼亞的成份。赫拉克利特(公元前500--?年)有一段名言:「萬物都在運動中,物無常往」, 「人們不可能兩次落進同一條河裡」。這段名言使柏拉圖迷惑了,但赫拉克賴脫卻沒受到柏拉圖給予巴門尼德那樣的尊敬。巴門尼德的實體論,從方法論的角度講,比起赫拉克賴脫的變化論,更是畢達哥拉斯數學的強有力的競爭對手。

對於畢達哥拉斯學派來說,數學是一種「生活的方式」。事實上,從公元2世紀的拉丁作家格利烏斯(Gellius)和公元3世紀的希臘哲學家波菲利(Porphyry)以及公元4世紀的希臘哲學家揚布利科斯(Iamblichus)的某些證詞中看出,似乎畢達哥拉斯學派對於成年人有一個「一般的學位課程」,其中有正式登記者和臨時登記者。臨時成員稱為「旁聽者」,正式成員稱為「數學家」。

這里「數學家」僅僅表示一類成員,而並不是他們精通數學。畢達哥拉斯學派的精神經久不衰。對於那些被阿基米德神奇的發明所深深吸引的人來說,阿基米德是唯一的獨特的數學家,從理論的地位講,牛頓是一個數學家,盡管他也是半個物理學家,一般公眾和新聞記者寧願把愛因斯坦看作數學家,盡管他完全是物理學家。當羅吉爾·培根(Roger Bacon,1214--1292年)通過提倡接近科學的「實體論」,向他所在世紀提出挑戰時,他正將科學放進了一個數學的大框架,盡管他在數學上的造詣是有限的,當笛卡兒(Descartes,1596--1650年)還很年輕時就決心有所創新,於是他確定了「數學萬能論」的名稱和概念。然後萊布尼茨引用了非常類似的概念,並將其變成了以後產生的「符號」邏輯的基礎,而20世紀的「符號」邏輯變成了熱門的數理邏輯。

在18世紀,數學史的先驅作家蒙托克萊(Montucla)說,他已聽說了關於古希臘人首先稱數學為「一般知識」,這一事實有兩種解釋:一種解釋是,數學本身優於其它知識領域;而另一種解釋是,作為一般知識性的學科,數學在修辭學,辯證法,語法和倫理學等等之前就結構完整了。蒙托克萊接受了第二種解釋。他不同意第一種解釋,因為在普羅克洛斯關於歐幾里得的評注中,或在任何古代資料中,都沒有發現適合這種解釋的確證。然而19世紀的語源學家卻傾向於第一種解釋,而20世紀的古典學者卻又偏向第二種解釋。但我們發現這兩種解釋並不矛盾,即很早就有了數學且數學的優越性是無與倫比的。

閱讀全文

與數學最早來自哪裡相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:702
乙酸乙酯化學式怎麼算 瀏覽:1370
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1008
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1367
中考初中地理如何補 瀏覽:1257
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:669
數學奧數卡怎麼辦 瀏覽:1347
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1446
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:821
武大的分析化學怎麼樣 瀏覽:1210
ige電化學發光偏高怎麼辦 瀏覽:1299
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1386
化學理學哪些專業好 瀏覽:1450
數學中的棱的意思是什麼 瀏覽:1015