導航:首頁 > 數字科學 > 怎麼給小學生講數學應用題

怎麼給小學生講數學應用題

發布時間:2022-07-22 03:06:05

A. 怎樣解小學數學應用題

如何解好數學應用題
在小學數學教學中,應用題的教學佔有重要地位。如何教好這部分知識,下面談談我的一些做法和體會。
一、培養學生的審題習慣 細致地審題,弄明白題意,是准確解答應用題的先決條件。因此,在教學中可先讓學生根據解題要求找出題中直接條件和間接條件,構建起條件與問題之間的聯系,確定數量關系。為了便於分析問題中的已知量與未知量之間的相依關系,審題時可要求學生邊讀題邊思考,用不同的符號劃出條件和問題或用線段圖把已知條件和所求問題表示出來。
為了培養兒童細致審題的習慣,我常把一些容易混淆的題目同時出現,讓學生分析計算。例如:①圖書室的科技書與故事書共3000冊,科技書的冊數是故事書的2/3,有科技書多少冊? ②圖書室有故事書3000冊,科技書冊數是故事書的2/3,有科技書多少冊? 題①中3000冊為共有數,題②中3000冊是一種的,因此計算方法不相同。經常進行此類練習,就容易養成認真審題的習慣。
二、教給學生分析應用題常用的推理方法 在解題過程中,學生往往習慣於模仿教師和例題的解答方法,機械地去完成。因此,教給學生分析應用題的推理方法,幫助學生明確解題思路至關重要。分析法和綜合法是常用的分析方法。所謂分析法,就是從應用題中欲求的問題出發進行分析,首先考慮,為了解題需要哪些條件,而這些條件哪些是已知的,哪些是未知的,直到未知條件都能在題目中找到為止。例如:甲車一次運煤300千克,乙車比甲車多運50千克,兩車一次共運煤多少千克? 指導學生口述,要求兩車一次共運煤多少千克?根據題意必須知道哪兩個條件(甲車運的和乙車運的)?題中列出的條件哪個是已知的(甲車運的),哪個是未知的(乙車運的),應先求什麼(乙車運的300+50=350)?然後再求什麼(兩車一共用煤多少千克,300+350=650)? 綜合法是從應用題的已知條件出發,通過分析推導出題中要求的問題。如上例,引導學生這樣想:知道甲車運煤300千克,乙車比甲車多用50千克,可以求出乙車運煤重量(300+50=350),有了這個條件就能求出兩車一共運煤多少千克?(300+350=650)。通過上面題的兩種解法可以看出,不論是用分析法還是用綜合法,都要把應用題的已知條件和所求 問題結合起來考慮,所求問題是思考方向,已知條件是解題的依據。
三、對易混淆的問題進行對比分析 對一些有聯系而又容易混淆的應用題可引導學生進行對比分析,例如:求一個數的幾分之幾與已知一個數的幾分之幾是多少,求這個數的應用題,學生往往容易混淆。一是他們分不清是用乘法還是用除法;二是分不清計算時需不需要加括弧。因此,可安排下列一組題進行對比教學。 ①果園里有梨樹240棵,蘋果樹占梨樹的1/3,有蘋果樹多少棵? ②果園里有梨樹240棵,占蘋果樹的1/3,有蘋果樹多少棵? ③果園里有梨樹240棵,蘋果樹比梨樹少1/3,有蘋果樹多少棵? ④果園里有梨樹240棵,比蘋果樹少1/3,有蘋果樹多少棵? ⑤果園里有梨樹240棵,蘋果樹比梨樹多1/3,有蘋果棵多少棵? ⑥果園里有梨樹240棵,比蘋果樹多1/3,有蘋果樹多少棵? 兩數相比較,以後面的數為標准數,前面的數為比較數,即與誰相比誰為標准數(通常設標准數為1)。已知一個數,求它的幾分之幾是多少與已知一個數的幾分幾之是多少,求這個數。這兩類應用題的相同點是:都知道比較數占標准數的幾分之幾;不同點是:前者是已知標准數求比較數,後者是已知比較數求標准數。題①、③、⑤都是蘋果樹與梨樹相比較,梨樹的棵數為標准數,蘋果樹的棵數為比較數,梨樹的棵數已經知道,因此,它們屬於前類用乘法。題②、④、⑥都是梨樹與蘋果樹相比較,蘋果樹的棵數為標准數,梨樹的棵樹為比較數,蘋果樹的棵數為標准數,梨樹的棵數為比較數,蘋果樹的棵 數題目中都不知道,因此,它屬於後類用除法。題①、②中比較數占標准數的幾分之幾已經知道,計算時不用「括弧」,題③、④、⑤、⑥中比較數占標准數的幾分之幾不知道,需由1加幾分之幾和1減幾分之幾求得,因此計算時需加「括弧」。
四、要引導學生自編應用題 讓學生了解應用題的結構,重視自編應用題的教學,是提高解題能力的重要環節。在低年級進行簡單應用題教學時,就讓學生了解一道應用題總題由已知條件和所求問題兩部分組成,因此,可進行填空練習。 如:(1)學校舉行運動會有女運動員153人,男運動員比女運動員多37人,?(補問題) (2)學校舉行運動會,有女運動員153人,,一共有多少人?(補合適條件) 在高年級要引導學生自編應用題,通過自編,使學生認識和掌握各類應用題的結構特點。如: 1、按指定算式編題:如按算式240×1/3=?編一道應用題。 2、把一種應用題改編成另一種形式的應用題:如我班有45名學生,女生佔2/5,女生有多少人?把它改編成一道已知一個數的幾分之幾是多少,求這個數的應用題。 3、指定題目類型編題,如編道反比例應用題。如何教孩子解小學數學應用題? 羅漢中心小學 李寅 我這里的方法已經經過我侄女的檢驗,我從她小學四年級開始用這種方法教她,並說這種方法可以讓她受用到初一。一般來說,女孩子的邏輯思維比較差,數學對她們來說是難點,但正因為我這種方法的作用使她的數學一直能在班上名列前茅,她自己也多次說過要感謝我這種方法。
現在我侄兒又讀小學四年級了,他又開始問我這方面的數學題,我又開始用這種方法來教我侄兒,下面的兩題是他今晚問的我,我以這兩題為例來談談我的方法。
題一:某商場的女職工比男職工多60人,女職工人數是男職工的3倍,這個商場有男女職工各多少人? 題二、父親比兒子的年齡大27歲,4年後父親的年齡是兒子年齡的4倍,父親現在多少歲? 我跟我侄兒講,你把題目中的「比」、「是」之類的看作「=」,把「多」、「大」之類的看作是「+」,把「少」、「小」之類的看作「-」,把「的幾倍」看作「×幾」。然後用文字根據題意一步一步的列出關系式。
比如題一中的,「女職工比男職工多60人」可以寫成「女職工=男職工+60人」,簡寫成「女=男+60」;「女職工人數是男職工的3倍」可以寫成「女職工人數=男職工×3倍」,簡寫成「女=男×3」。這樣我們就輕輕鬆鬆的列出了題一中的兩個關系式: 女=男+60 (1) 女=男×3 (2) 然後再教他將(2)代入(1)可得: 男×3=男+60 (3) 然後再教他等式兩邊同時減去一個相同的數——「男」,可得: 2男=60 (4) 解得: 男=30 (5) 然後將(5)代入(1)或(2),可得: 女=90 (6) 這樣題目就輕輕鬆鬆的跟他講清楚了。題二隻是稍作了點變動,講法類似。 我這種方法有兩個要點: 一是,把題目中的「比」、「是」之類的看作「=」,把「多」、「大」之類的看作是「+」,把「少」、「小」之類的看作「-」,把「倍」看作「×」。 二是,用文字列數學關系式。 其實小學數學應用題難就難在這兩點,一是題意不好理解,他們有時搞不清「多」、「大」應該是「+」,還是「-」;「少」、「小」應該是「-」,還是「+」;「的幾倍」應該「×」,還是「÷」;「比」、「是」前後的未知量搞顛倒。 二是他們沒學過代數,或只學過解一個未知數——「x」的方程,不會列關系式。如果我們教他們設未知量為「x」、「y」、「z」,他們會非常不理解,難以接受。但我們如果直接用題目中的文字列數學關系式(即,直接用題目中的「父親」、「兒子」、「女職工」、「男職工」等當未知量列數學關系式)的話,他們就能非常自然的理解。然後再教他們簡單的解方程的技巧,而小學數學應用題的方程解法一般都很簡單。 我這種方法的要點二——「用文字列數學關系式」,可以說是數學應用題的算數解法到代數解法的中間過渡階段,然而我們小學數學應用題的教學中缺少了這一環。正是因為缺少了這一環,導致我們的老師很難跟學生講清楚這類數學應用題的算數解法的理由和求解過程,導致我們的學生很難理解一些算數解法,不僅學生難以理解,就連我們這些作為「大人」的家長其實也常常難以理解。而我們的家長面對孩子們問這類題目時,用初一的代數方法很容易解出,卻很難講清楚算數方法,而列出的算數方法通常也是根據代數方法的解法演變過來的,即在用代數方法求解「x」、「y」的過程中不進行演算,而只進行推導,將最後的推導作為算數解法。
而用我這上面的方法向孩子講解,可以讓孩子有一個從算數解法到代數解法的適應過程。 其實我們小學數學應用題的教學過程的最大敗筆就是缺少了「用文字列數學關系式」這一環,非要學生用算數方法很難解,但用代數方法很容易求解的題目。這完全是折磨學生的一種教學方法,卻美其名為鍛煉孩子的邏輯思維能力。孩子的邏輯思維能力不是這個鍛煉法,而是應該讓孩子有一個,從算數方法到文字方法,再到代數方法的一個層層遞進的過程。我這種方法就是在受到了小學數學應用題的演算法解法的折磨過程,並在初一學習了代數方法後悟出來的一個方法。 我這里呼籲各位家長和老師用這種方法向您的孩子教學,以彌補我們小學數學教育的一個重大缺陷,更希望教育部能夠接受這種方法讓它能夠走進課堂,以減少對我們的孩子和家長的折磨。如何教孩子解小學數學應用題? 羅漢中心小學 李寅 我這里的方法已經經過我侄女的檢驗,我從她小學四年級開始用這種方法教她,並說這種方法可以讓她受用到初一。一般來說,女孩子的邏輯思維比較差,數學對她們來說是難點,但正因為我這種方法的作用使她的數學一直能在班上名列前茅,她自己也多次說過要感謝我這種方法。 現在我侄兒又讀小學四年級了,他又開始問我這方面的數學題,我又開始用這種方法來教我侄兒,下面的兩題是他今晚問的我,我以這兩題為例來談談我的方法。 題一:某商場的女職工比男職工多60人,女職工人數是男職工的3倍,這個商場有男女職工各多少人? 題二、父親比兒子的年齡大27歲,4年後父親的年齡是兒子年齡的4倍,父親現在多少歲? 我跟我侄兒講,你把題目中的「比」、「是」之類的看作「=」,把「多」、「大」之類的看作是「+」,把「少」、「小」之類的看作「-」,把「的幾倍」看作「×幾」。然後用文字根據題意一步一步的列出關系式。 比如題一中的,「女職工比男職工多60人」可以寫成「女職工=男職工+60人」,簡寫成「女=男+60」;「女職工人數是男職工的3倍」可以寫成「女職工人數=男職工×3倍」,簡寫成「女=男×3」。這樣我們就輕輕鬆鬆的列出了題一中的兩個關系式: 女=男+60 (1) 女=男×3 (2) 然後再教他將(2)代入(1)可得: 男×3=男+60 (3) 然後再教他等式兩邊同時減去一個相同的數——「男」,可得: 2男=60 (4) 解得: 男=30 (5) 然後將(5)代入(1)或(2),可得: 女=90 (6) 這樣題目就輕輕鬆鬆的跟他講清楚了。題二隻是稍作了點變動,講法類似。 我這種方法有兩個要點: 一是,把題目中的「比」、「是」之類的看作「=」,把「多」、「大」之類的看作是「+」,把「少」、「小」之類的看作「-」,把「倍」看作「×」。 二是,用文字列數學關系式。 其實小學數學應用題難就難在這兩點,一是題意不好理解,他們有時搞不清「多」、「大」應該是「+」,還是「-」;「少」、「小」應該是「-」,還是「+」;「的幾倍」應該「×」,還是「÷」;「比」、「是」前後的未知量搞顛倒。 二是他們沒學過代數,或只學過解一個未知數——「x」的方程,不會列關系式。如果我們教他們設未知量為「x」、「y」、「z」,他們會非常不理解,難以接受。但我們如果直接用題目中的文字列數學關系式(即,直接用題目中的「父親」、「兒子」、「女職工」、「男職工」等當未知量列數學關系式)的話,他們就能非常自然的理解。然後再教他們簡單的解方程的技巧,而小學數學應用題的方程解法一般都很簡單。 我這種方法的要點二——「用文字列數學關系式」,可以說是數學應用題的算數解法到代數解法的中間過渡階段,然而我們小學數學應用題的教學中缺少了這一環。正是因為缺少了這一環,導致我們的老師很難跟學生講清楚這類數學應用題的算數解法的理由和求解過程,導致我們的學生很難理解一些算數解法,不僅學生難以理解,就連我們這些作為「大人」的家長其實也常常難以理解。而我們的家長面對孩子們問這類題目時,用初一的代數方法很容易解出,卻很難講清楚算數方法,而列出的算數方法通常也是根據代數方法的解法演變過來的,即在用代數方法求解「x」、「y」的過程中不進行演算,而只進行推導,將最後的推導作為算數解法。 而用我這上面的方法向孩子講解,可以讓孩子有一個從算數解法到代數解法的適應過程。 其實我們小學數學應用題的教學過程的最大敗筆就是缺少了「用文字列數學關系式」這一環,非要學生用算數方法很難解,但用代數方法很容易求解的題目。這完全是折磨學生的一種教學方法,卻美其名為鍛煉孩子的邏輯思維能力。孩子的邏輯思維能力不是這個鍛煉法,而是應該讓孩子有一個,從算數方法到文字方法,再到代數方法的一個層層遞進的過程。我這種方法就是在受到了小學數學應用題的演算法解法的折磨過程,並在初一學習了代數方法後悟出來的一個方法。 我這里呼籲各位家長和老師用這種方法向您的孩子教學,以彌補我們小學數學教育的一個重大缺陷,更希望教育部能夠接受這種方法讓它能夠走進課堂,以減少對我們的孩子和家長的折磨。 1 方程與不等式的應用題教案
一、〖知識點〗 列方程(組)解應用題的一般步驟、列不等式(組)解應用題、應用問題的主要類型
二、〖大綱要求〗能夠列方程(組)解應用題、列不等式(組)解應用題
三、內容分析列出方程(組)解應用題的一般步驟是: (i)弄清題意和題目中的已知數、未知數,用字母表示題目中的一個(或幾個)未知數; (ii)找出能夠表示應用題全部含義的一個(或幾個)相等關系; (iii)根據找出的相等關系列出需要的代數式,從而列出方程(或方程組); (iv)解這個方程(或方程組),求出未知數的值; (v)寫出答案(包括單位名稱)小學五年級數學《分數應用題》教學設計

B. 如何上好小學數學應用題教學的課

如何上好小學數學應用題教學的課
應用題是數學教學的重要組成部分,也是數學教學中的一個難點。為了使學生不怕應用題,掌握分析應用題的方法,我認為可以從以下幾個方面進行訓練:
一、注重培養學生分析等量關系的能力

在應用題教學中能正確分析等量關系是解應用題的關鍵。解答應用題的過程就是分析數量之間的關系,進行推理,由已知求得未知的過程。學生解答應用題時,只有對題目中的數量之間的關系一清二楚,才有可能把題目正確地解答出來。換一個角度來說,如果學生對題目中的某一種數量關系不夠清楚,那麼也不可能把題目正確地解答出來。而要分析等量關系首先要理解並熟記一些常用的等量關系。例如,工作效率×工作時間=工作總量、每份數×份數=總數、單價×數量=總價、速度×時間=路程,以及幾何圖形計算的有關公式等等。下面就如何分析等量關系舉幾個例子加以分析:

(一)培養學生解一般應用題時分析等量關系的能力

例如,某公司要生產手機54萬部,前10天每天生產1.5萬部,餘下的要在20天完成,平均每天要生產多少萬部?當學生弄清題意後老師就提問要想求平均每天要生產多少萬部?必須知道哪兩個條件?(餘下要生產多少和需要的時間)用哪個等量關系?(餘下要生產的量÷餘下的時間=平均每天要生產的),餘下要生產的量題里沒告訴我們又要怎麼求?用哪個等量關系?(一共要生產的前10天共生產的=餘下要生產的量),前10天共生產的又沒告訴我們要怎麼求?用哪個等量關系?(每天生產1.5萬部×10天=前10天共生產的)一個題目分析下來要用到好幾個等量關系,只有這樣一步一步分析等量關系學生才能找到解應用題的途徑,才能列式解答。

(二)培養學生解分數應用題時分析等量關系的能力

分數應用題的等量關系的分析要找到題中的關鍵句,也就是分率句。在分析分數應用題時,我要求學生先從分率句中找出單位「1」的量,然後再寫出三個字的等量關系即「1」×=量。例如我國領土遼闊廣大,南北相距5500千米,東西相距的千米數是南北的52/55。東西相距多少千米?從分率句東西相距的千米數是南北的52/55中先找到單位的「1」的量「南北相距的千米數」用南北相距的千米數乘52/55等於東西相距的千米數即南北相距的千米數×52/55=東西相距的千米數。不管是分數乘法或分數除法應用題都可能用相同的等量關系,只要找到了等量關系再根據單位「1」的量已知用乘法計算,單位「1」的量未知用除法計算。

(三)培養學生列方程解應用題時分析等量關系的能力

列方程解應用題找等量關系更是必不可少的。列方程解應用題的等量關系可以順著題意找,找到等量關系後設未知量為x與已知量共同參與列式。例如,商店原來有一些餃子粉,每袋5千克,賣出7袋以後,還剩40千克。這個商店原來有多少千克餃子粉?它的等量關系順著題意,用原有的重量減去賣出的重量就等於剩下的重量即原有的重量-賣出的重量=剩下的重量,根據等量關系就可列出方程(x-5×7=40)。

二、注重培養學生列表或畫線段圖的能力

畫圖分析應用題是一種能力,這種能力需要在整個應用題教學過程中逐步培養。應用題是比較抽象的,用列表或畫線段圖分析能幫助學生弄清題里各數量間的關系。

(一)一般應用題中有關實際數與計劃數的問題可以藉助列表進行分析

例如,食堂買來280千克大米,計劃吃7天。實際每天比計劃少吃5千克,這批大米實際吃了多少天?可列下表加以分析

每天吃的千克數 天數 總千克數

計劃 2 8 0 ÷7 7 天 2 8 0 千克

實際 比計劃少吃5 千克 ? 天 2 8 0 千克

從表中很容易看出,要想求實際吃了多少天,就要先求計劃每天吃的,用計劃每天吃的減去實際比計劃每天少吃的5千克就可以求出實際每天吃的,從而求出實際每天吃的列式為:280÷(280÷7-5)。用這種方法分析這類應用題即使程度再差的學生都能解答,特別是中下生效果很好。

(二)分數、百分數應用題可以畫線段圖幫助分析

分數、百分數應用題藉助線段圖能夠幫助學生弄清有關數量和標准量的關系,找到解題的途徑。教學時,經常指導學生作線段圖訓練,使學生掌握作圖的基本方法:必須先畫表示單位「1」的線段,注意線段的規范性以及作圖的靈活性,運用補、截、移、疊等作圖技巧,講究作圖的科學性。同時引導學生認真看圖,分析思考,理解數量關系,使學生的思維與作圖同步進行。這樣就能充分發揮線段圖的直觀啟示性。

三、注重培養學生對比辨析的能力

對於易混、易錯的題目,有意識地設計一些似是而非的變式題組讓學生練習、比較,從而掌握解題規律。例如(1)少年宮舞蹈隊有23人。合唱隊的人數比舞蹈隊的3倍多15人。合唱隊有多少人?(2)少年宮合唱隊有84人,合唱隊的人數比舞蹈隊的3倍多15人。舞蹈隊有多少人?通過對比使學生理解和掌握(1)的一倍數已知用算術解(2)的一倍數未知用方程解。又如分數應用題中學生非常容易混淆的兩道題:(1)一根繩子8米剪去1/4,還剩多少米?(2)一根繩子8米剪去1/4米,還剩多少米?通過對比使學生明白(1)中的1/4是表示分率,而(2)中的1/4米是表示數量不能混淆。

四、注重培養學生發散思維的能力

發散思維是解決問題時沿著各種方向、不同途徑去探索和思考。讓學生進行多角度、多層次的聯想訓練以及一題多解訓練,以培養學生思維的多向性和靈活性。如,飼養小組養的白兔和黑兔共有18隻,其中黑兔的只數是白兔只數的1/5。白兔和黑兔各有多少只?可以用四種不同的方法解答(1)方程解:解:設白兔有x只,則黑免有1/5x只,列方程x+1/5x=18。(2)歸一法:從分率句中可知白兔有5份,黑兔有1份,共6份,用18÷6×1=3(只)求出黑兔,用18÷6×5=15(只)求出黑兔。(3)按比例分配法:從分率句中可知白兔有5份,黑兔有1份,共6份,黑兔佔一共的1/6,白兔佔一共的5/6,用18×1/6=3(只)求出黑兔,用18×5/6=15(只)求出白兔。(4)用分數的方法:從分率句中可知白兔是單位「1」,而黑兔的只數是白兔只數的1/5,18÷(1+1/5)=15(只)是白兔的只數,15×1/5=3(只)是黑兔的只數。平常教學時多進行一題多解的訓練拓展學生的解題思路,並對多種解法加以比較從中找到最佳的解法。從而使學生懂得,在解應用題時,要盡可能地選用最簡捷的方法。

五、注重培養學生驗算的能力

驗算是數學教學的一個重要環節,它是培養學生良好的學習品質和自我評價能力的重要步驟。驗算的方法有估算、代入,另解。下面就估算舉例加以說明。

例如,油菜籽的出油率是42%%。要榨出2100千克的油,需要油菜籽多少千克?在做這道題時往往有學生出現2100×42%%=882(千克)的錯誤解法。教學時,要引導學生想一想:要榨2100千克油,只需882千克油菜籽是否符合客觀實際呢?從而判斷答案是錯誤的。再引導學生重新審題,理解「42%%」的意義,就是表示油是油菜籽的百分之幾的數,得出油菜籽千克數×42%%=油的千克數,找到了正確的解法,2100÷12%%=5000(千克),這樣就能做到及時發現錯誤,糾正錯誤。

C. 怎樣給小學三年級孩子講數學應用題他會明白

鏈接: https://pan..com/s/1gnk709GDxbXkNuvVZZrw3g

提取碼: c7kc

D. 如何講解小學數學應用題

如何上好小學數學應用題教學的課
應用題是數學教學的重要組成部分,也是數學教學中的一個難點。為了使學生不怕應用題,掌握分析應用題的方法,我認為可以從以下幾個方面進行訓練:
一、注重培養學生分析等量關系的能力

在應用題教學中能正確分析等量關系是解應用題的關鍵。解答應用題的過程就是分析數量之間的關系,進行推理,由已知求得未知的過程。學生解答應用題時,只有對題目中的數量之間的關系一清二楚,才有可能把題目正確地解答出來。換一個角度來說,如果學生對題目中的某一種數量關系不夠清楚,那麼也不可能把題目正確地解答出來。而要分析等量關系首先要理解並熟記一些常用的等量關系。例如,工作效率×工作時間=工作總量、每份數×份數=總數、單價×數量=總價、速度×時間=路程,以及幾何圖形計算的有關公式等等。下面就如何分析等量關系舉幾個例子加以分析:

(一)培養學生解一般應用題時分析等量關系的能力

例如,某公司要生產手機54萬部,前10天每天生產1.5萬部,餘下的要在20天完成,平均每天要生產多少萬部?當學生弄清題意後老師就提問要想求平均每天要生產多少萬部?必須知道哪兩個條件?(餘下要生產多少和需要的時間)用哪個等量關系?(餘下要生產的量÷餘下的時間=平均每天要生產的),餘下要生產的量題里沒告訴我們又要怎麼求?用哪個等量關系?(一共要生產的前10天共生產的=餘下要生產的量),前10天共生產的又沒告訴我們要怎麼求?用哪個等量關系?(每天生產1.5萬部×10天=前10天共生產的)一個題目分析下來要用到好幾個等量關系,只有這樣一步一步分析等量關系學生才能找到解應用題的途徑,才能列式解答。

(二)培養學生解分數應用題時分析等量關系的能力

分數應用題的等量關系的分析要找到題中的關鍵句,也就是分率句。在分析分數應用題時,我要求學生先從分率句中找出單位「1」的量,然後再寫出三個字的等量關系即「1」×=量。例如我國領土遼闊廣大,南北相距5500千米,東西相距的千米數是南北的52/55。東西相距多少千米?從分率句東西相距的千米數是南北的52/55中先找到單位的「1」的量「南北相距的千米數」用南北相距的千米數乘52/55等於東西相距的千米數即南北相距的千米數×52/55=東西相距的千米數。不管是分數乘法或分數除法應用題都可能用相同的等量關系,只要找到了等量關系再根據單位「1」的量已知用乘法計算,單位「1」的量未知用除法計算。

(三)培養學生列方程解應用題時分析等量關系的能力

列方程解應用題找等量關系更是必不可少的。列方程解應用題的等量關系可以順著題意找,找到等量關系後設未知量為x與已知量共同參與列式。例如,商店原來有一些餃子粉,每袋5千克,賣出7袋以後,還剩40千克。這個商店原來有多少千克餃子粉?它的等量關系順著題意,用原有的重量減去賣出的重量就等於剩下的重量即原有的重量-賣出的重量=剩下的重量,根據等量關系就可列出方程(x-5×7=40)。

二、注重培養學生列表或畫線段圖的能力

畫圖分析應用題是一種能力,這種能力需要在整個應用題教學過程中逐步培養。應用題是比較抽象的,用列表或畫線段圖分析能幫助學生弄清題里各數量間的關系。

(一)一般應用題中有關實際數與計劃數的問題可以藉助列表進行分析

例如,食堂買來280千克大米,計劃吃7天。實際每天比計劃少吃5千克,這批大米實際吃了多少天?可列下表加以分析

每天吃的千克數 天數 總千克數

計劃 2 8 0 ÷7 7 天 2 8 0 千克

實際 比計劃少吃5 千克 ? 天 2 8 0 千克

從表中很容易看出,要想求實際吃了多少天,就要先求計劃每天吃的,用計劃每天吃的減去實際比計劃每天少吃的5千克就可以求出實際每天吃的,從而求出實際每天吃的列式為:280÷(280÷7-5)。用這種方法分析這類應用題即使程度再差的學生都能解答,特別是中下生效果很好。

(二)分數、百分數應用題可以畫線段圖幫助分析

分數、百分數應用題藉助線段圖能夠幫助學生弄清有關數量和標准量的關系,找到解題的途徑。教學時,經常指導學生作線段圖訓練,使學生掌握作圖的基本方法:必須先畫表示單位「1」的線段,注意線段的規范性以及作圖的靈活性,運用補、截、移、疊等作圖技巧,講究作圖的科學性。同時引導學生認真看圖,分析思考,理解數量關系,使學生的思維與作圖同步進行。這樣就能充分發揮線段圖的直觀啟示性。

三、注重培養學生對比辨析的能力

對於易混、易錯的題目,有意識地設計一些似是

E. 淺談怎樣教好小學數學應用題

在小學數學的學習中,應用題的占的比率很大。而在現實生活中,我們也可以利用所學到的應用題來解決實際的問題。例如,費用的支出和收入、盈虧問題,行程問題,工程問題等等。因此,可以說應用題是生活的需要,無所不有,無處不在。其實應用題的學習是對小學生進行思維訓練,培養小學生的數學邏輯思維能力,提高其數學素質。因此,應用題教學是小學數學教學中的一個重點。以下是我的幾點看法:
一、引導學生怎樣解應用題
1、認真閱讀題目。很多學生一直認為只有語文才需要一遍遍地讀。數學是一門很省力的科目,不需要怎麼花時間讀題的。其實這是個很大的誤區。數學是一門綜合性非常強的科目,對語言的理解能力要求相當高。同時讀題也是解決應用題的重要環節,是學生自己感知信息數據的過程。讀,看起來是非常簡單的事。但數學應用題的讀不是泛泛而讀,要求的是讀通、讀透。很多學生之所以做錯,其中最主要原因之一就是由於讀題時走馬觀花,完全沒有看懂題目問了什麼,很隨意的就開始動筆,這樣的結果往往是做錯了題目,甚至有的題目錯的非常的離譜,讓老師無法理解你是如何做出來的。「書讀百遍,其義自見。」應用題也不例外。甚至可以這么說:「與其讓學生抄題目,不如讓學生認真讀題目。」這當中的道理,就像讓學生抄不認識的字一樣,不論抄多少遍,學生還是同樣不認識、不理解。認真的讀題,不僅能提高學生的數學意識,而且也使學生的感知能力得到了培養,同時也提高了學生捕捉信息數據的能力,為學生理解題意奠定了初步的基石。
2、圈重點。在做應用題的時候一定要把重點的詞圈下來。這里所謂的重點詞並不是指同一個詞語,因為每個學生的理解能力不同,所以在他們眼中重點的詞也是完全不一樣的,有多有少,但不管怎麼,圈出的詞一定要為你做題服務。例如:在教《分數加減法》時,經常會遇到這樣的題目,一塊地共多少公頃,其中多少種大豆,多少種棉花,其餘種玉米,玉米的種植面積占這塊地的幾分之幾?
這道題主要是讓你區別給你的分數是分率還是一個數。這個時候我就要求學生必須把有單位名稱的數字圈出來,這樣可以提醒自己,數和分率是不同的,不可以進行加減法。同時劃出「幾分之幾」明白的告訴學生求的是一個分率,和公頃無關。劃是一個很好的習慣,可以提醒學生在今後的思考中注意一些細小的地方,以免出現不該有的錯誤。
二、培養學生的想像能力。
在應用題教學中,必須採用「聯想法」引導學生進行推理、想像。可讓學生找出題中關鍵詞來引發聯想,由題中的一個詞語或數量想到與之有關的另一個詞語或數量,以弄清題中的數量關系。如:五年級同學要澆300棵樹,已經澆了180棵,剩下的分3次澆完,平均每次要澆多少棵?題中出現「要澆、已澆、剩下、3次、平均每次」等字眼,教學時可提示,引導學生進行推理想像,展開一個由「要澆」、「已澆」想到「剩下」,由「剩下」、「分3次」想到「平均每次」的合理想像過程。又如:一塊長方形的蘿卜地,長15米,寬6米。在這塊地里一共收蘿卜1350千克,平均每平方米收蘿卜多少千克? 解題時只要學生能從「長、寬」想到「周長」或「面積」,或由「平方米」想到「面積」(平方米是常用的面積單位),就能確定必須先求面積了。這樣,問題不就迎刃而解了嗎?
三、讓學生分析應用題常用的推理方法
教學過程中,教給學生分析應用題的推理方法,幫助學生明確解題思路至關重要。分析法和綜合法是常用的分析方法。所謂分析法,就是從應用題中欲求的問題出發進行分析,首先考慮,為了解題需要哪些條件,而這些條件哪些是已知的,哪些是未知的,直到未知條件都能在題目中找到為止。例如:甲車一次運煤300千克,乙車比甲車多運50千克,兩車一次共運煤多少千克?
指導學生口述,要求兩車一次共運煤多少千克?根據題意必須知道哪兩個條件(甲車運的和乙車運的)?題中列出的條件哪個是已知的(甲車運的),哪個是未知的(乙車運的),應先求什麼(乙車運的300+50=350)?然後再求什麼(兩車一共用煤多少千克,300+350=650)?
綜合法是從應用題的已知條件出發,通過分析推導出題中要求的問題。如上例,引導學生這樣想:知道甲車運煤300千克,乙車比甲車多用50千克,可以求出乙車運煤重量(300+50=350),有了這個條件就能求出兩車一共運煤多少千克?(300+350=650)。通過上面題的兩種解法可以看出,不論是用分析法還是用綜合法,都要把應用題的已知條件和所求問題結合起來考慮,所求問題是思考方向,已知條件是解題的依據。
四、培養學生多練習的習慣
多練即對學生進行多種形式的解應用題的訓練。練習中,教師要注意照顧全體,輔差培優,這樣既可穩定尖子生,又可提高中差等生。練習可分為課堂練習和課外練習。設計練習題時應恰當運用口答、板演、書面練習和動手操作等多種練習相結合的形式,注意「質」與「量」的有機統一,發揮每種練習的獨特作用,調動全體學生的積極性,培養學生的創新意識和實踐能力,從而達到開發學生智力,使練習收到實效。比如:既要設計一些選擇、改編、補充條件或問題等基本形式的練習,又要適當設計一些開放性練習。如答案不唯一,一題多變、一題多解、多餘條件、條件不夠等。讓他們在點點滴滴的進步中感受「成功」的喜悅,產生學習的成就感和自豪感,讓他們感受到學習數學的輕松與快樂。
五、引導學生學會「假設」
假設是指將題中的某一條件先假設為與其相近的另一條件,從而使問題的解答趨於簡單、明朗。如練習題:「一批煤,原計劃每天燒16噸,實際每天燒12噸,結果多燒5天。原計劃這批煤可以燒多少天?」假設實際燒煤的時間與原計劃燒煤的時間相同,則實際燒煤的總噸數要比原計劃燒煤的總噸數少12×5=60(噸)。總噸數差60噸的原因是什麼呢?因為實際比原計劃每天少燒16-12=4(噸),60噸里包含幾個4噸,就是原計劃燒煤的時間。根據實際少燒的噸數和實際少燒的時間,就能求出總噸數。
12×5÷(16-12)=15(天)
六、讓數學與生活相結合
我們應從課堂教學入手,聯系生活實際講數學,把孩子的生活經驗數學化,把數學問題生活化。如教學圖畫應用題時,可以編一道這樣的文字應用題:過春節了,爸爸買了一籃子又紅又大的蘋果共10個,給姥姥送去4個,還剩幾個?這樣似乎累贅,但很明顯學生感覺到四個蘋果是從籃子里拿出來的,拿出來即「去掉」,「去掉」就用減法,從10個里去掉4個,則用10減去4得6個。這比讓學生說籃子外面和裡面共有10個蘋果,籃子外有4個,求籃子里有幾個蘋果,讓學生列式計算效果要好得多。又如教學「小明要寫9個字,已經寫了6個,還要寫幾個?」這一道應用題時,教師就畫9個田字格,在6個格子中寫6個字,指著剩下的空田字格問學生「還要寫幾個」。寫一個字就相當於去掉了(手勢)一個格(因為這個格子寫過了就不能再寫了),寫6個字去掉了幾個格?去掉用什麼方法?這樣學生就很快地理解了,還要寫幾個用減法,用總數減去已經寫的個數。這樣的例子還很多,至於怎樣表述更有利於不同的學生理解,就在於教師對學生的了解程度及引導方式了。
總之,教無定法,作為一名數學老師,要從多方面引導學生,教導學生,學生的思路越清析,解題方法也就越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於學生的求知慾,使其在數學上得到更好的發展。

F. 怎麼教孩子學好數學應用題

鏈接: https://pan..com/s/1gnk709GDxbXkNuvVZZrw3g

提取碼: c7kc

G. 如何教小學生解應用題

萬寧市和樂鎮琉川小學 李中勇
在小學數學的學習中,應用題的占的比率很大。而在現實生活中,我們也可以利用所學到的應用題來解決實際的問題。例如,費用的支出和收入、盈虧問題,行程問題,工程問題等等。因此,可以說應用題是生活的需要,無所不有,無處不在。其實應用題的學習是對小學生進行思維訓練,培養小學生的數學邏輯思維能力,提高其數學素質。因此,應用題教學是小學數學教學中的一個重點。
我認為應用題的教授一定要加強其思維的訓練,語言的訓練,這樣才能提高學生靈活解決實際問題的能力。所以我總結了以下幾個步驟:讀劃思解,現分述如下,希望可以幫助學生更好的學習應用題。
1:讀應用題是用語言表述的一類題型,對語言的理解能力要求非常高。因此,讀題便成為解應用題的一個重要環節是學生自己感知信息數據的過程。讀看起來很簡單,但數學應用題的讀並非泛泛而讀,它要求講究一定的方式,數學中的讀不講究抑揚頓挫、優美動聽,但需要用心、用腦、集中注意的讀,一般來講要讀三遍:第一遍初讀,對題目有初步印象;第二遍應逐字逐句的讀,重點理解每個詞、術語的實際含義;第三遍連貫起來讀,重點掌握題目的已知條件和所求問題。
在讀這個題目時需要通過大腦反映弄清四個問題:
這道題主要是讓你區別給你的分數是分率還是一個數。這個時候我就要求學生必須把有單位名稱的數字圈出來,這樣可以提醒自己,數和分率是不同的,不可以進行加減法。同時劃出幾分之幾明白的告訴學生求的是一個分率,和 公頃無關。劃是一個很好的習慣,可以提醒學生在今後的思考中注意一些細小的地方,以免出現不該有的錯誤。
思:學生讀題後,獲取了一知和問題後,接下來就是在大腦中對這些信息進行加工,也就是思。一般來說,思有兩種思考方法:
(1)順著思考,即由已知結論,從已知中獲取信息,一步步推出過程量,慢慢靠近所求結果:
解:我們可以用圖把思考過程表示如下(順推)已知4行蘋果樹 2行梨樹
每行18棵每行12棵
蘋果樹總數 梨樹總數
同上例:執果溯因(倒推圖解)
4行蘋果樹 2行梨樹
每行18棵每行12棵已知綜上,思考應用題是培養學生思維能力的中心環節。因此,教學中教師要加強引導,切實做好學生的引導者,設法調動學生的大腦器官。要留給學生充分思考的餘地,為學生提供一個獨立思考的機會。
解,指的是學生的解答。或許學生認為這一部分他們是最會的。其實要把一道應用題完整的寫下來,讓老師給你滿分。同樣需要錘煉。學生需要把剛才思考的過程用數字的形式表示出來。在解應用題時,題目中沒有出現過的數學是不可以出現在題目中的,即使是顯而易見的數字也需要你進行一定的說明。這是數學的嚴謹性。所寫的式子,要讓別人看了也完全明白你的思路,這樣才是一個漂亮的式子。應用題寫的時候要注意:如果是方程,學生的解設就是不可或缺的。所列的方程未知數後面並不需要有單位名稱。但如果是一般的式子,單位名稱則需要寫上去。當然求比率、分率等是沒有單位名稱的。最後是寫上完整的答句。其實要完成一道應用題,每一個部分都不可以忽略。所以更需要學生通過前面的認真讀、仔細劃,努力想才能最終完整的寫完。
其實,要完成一道應用題,每一個部分都是不可忽略的,而做到以上步驟的前提是掌握基礎知識和各種基本用演算法則,這就需要教師在平時的教學中不斷訓練和督導,每講完一道題後,引導學生進行反思:對該類型題進行再分析、進一步解剖題干、挖掘其等量關系,並進一步總結;例如:相遇問題,題後思考總結:1、什麼樣的題目表述的是相遇問題?2、這類問題的等量關系是什麼?3、拿到這樣的題目該怎樣列式計算?4、它與追及問題有什麼異同等等?
總之,學生的思路越清析,解題方法也就越豐富靈活。因此,教學中教師不能僅僅滿足於得出正確的結果,而要進行必要的研究。只有這樣才能使學生能靈活運用不同的方法解決問題,做到活學活用,也只有這樣才能滿足於學生的求知慾,使其在數學上得到更好的發展。

閱讀全文

與怎麼給小學生講數學應用題相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1401
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070