導航:首頁 > 數字科學 > 七上數學書的內容是什麼

七上數學書的內容是什麼

發布時間:2022-07-22 04:39:18

Ⅰ 急求滬教版數學書七年級上冊所有概念啊啊啊啊啊啊啊!!!!!

三角形的面積=底×高÷2。 公式 S= a×h÷2 正方形的面積=邊長×邊長 公式 S= a×a 長方形的面積=長×寬 公式 S= a×b 平行四邊形的面積=底×高 公式 S= a×h 梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。 長方體的體積=長×寬×高 公式:V=abh 長方體(或正方體)的體積=底面積×高 公式:V=abh 正方體的體積=棱長×棱長×棱長 公式:V=aaa 圓的周長=直徑×π 公式:L=πd=2πr 圓的面積=半徑×半徑×π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh 圓錐的體積=1/3底面×積高。公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。 分數的乘法則:用分子的積做分子,用分母的積做分母。 分數的除法則:除以一個數等於乘以這個數的倒數。 讀懂理解會應用以下定義定理性質公式 一、算術方面 1、加法交換律:兩數相加交換加數的位置,和不變。 2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。 3、乘法交換律:兩數相乘,交換因數的位置,積不變。 4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。 5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。 如:(2+4)×5=2×5+4×5 6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。 7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子 叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數, 等式仍然成立。 8、什麼叫方程式?答:含有未知數的等式叫方程式。 9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。 學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。 10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。 11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。 12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。 13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。 14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。 15、分數除以整數(0除外),等於分數乘以這個整數的倒數。 16、真分數:分子比分母小的分數叫做真分數。 17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。 18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。 19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數 (0除外),分數的大小不變。 20、一個數除以分數,等於這個數乘以分數的倒數。 21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面 1、單價×數量=總價 2、單產量×數量=總產量 3、速度×時間=路程 4、工效×時間=工作總量 5、加數+加數=和 一個加數=和+另一個加數 被減數-減數=差 減數=被減數-差 被減數=減數+差 因數×因數=積 一個因數=積÷另一個因數 被除數÷除數=商 除數=被除數÷商 被除數=商×除數 有餘數的除法: 被除數=商×除數+余數 一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6) 6、 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1噸=1000千克 1千克= 1000克= 1公斤= 1市斤 1公頃=10000平方米。 1畝=666.666平方米。 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。 8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18 9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。 10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18 11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y 12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y 百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。 13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。 把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。 14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。 把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。 15、要學會把小數化成分數和把分數化成小數的化發。 16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。) 17、互質數: 公約數只有1的兩個數,叫做互質數。 18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。 19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數) 20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數) 21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。 分數計算到最後,得數必須化成最簡分數。 個位上是0、2、4、6、8的數,都能被2整除,即能用2進行 約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。 22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。 23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。 24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。 28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應) 29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。 30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。 31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414 32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。 如3. 141592654 33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654…… 34、什麼叫代數? 代數就是用字母代替數。 35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b )*c 初中數學知識點歸納.有理數的加法運算 同號兩數來相加,絕對值加不變號。 異號相加大減小,大數決定和符號。 互為相反數求和,結果是零須記好。 【注】「大」減「小」是指絕對值的大小。 有理數的減法運算 減正等於加負,減負等於加正。 有理數的乘法運算符號法則 同號得正異號負,一項為零積是零。 合並同類項說起合並同類項,法則千萬不能忘。 只求系數代數和,字母指數留原樣。 去、添括弧法則 去括弧或添括弧,關鍵要看連接號。 擴號前面是正號,去添括弧不變號。 括弧前面是負號,去添括弧都變號。 解方程 已知未知鬧分離,分離要靠移完成。 移加變減減變加,移乘變除除變乘。 平方差公式兩數和乘兩數差,等於兩數平方差。 積化和差變兩項,完全平方不是它。 完全平方公式二數和或差平方,展開式它共三項。 首平方與末平方,首末二倍中間放。 和的平方加聯結,先減後加差平方。 完全平方公式首平方又末平方,二倍首末在中央。 和的平方加再加,先減後加差平方。 解一元一次方程 先去分母再括弧,移項變號要記牢。 同類各項去合並,系數化「1」還沒好。 求得未知須檢驗,回代值等才算了。 解一元一次方程 先去分母再括弧,移項合並同類項。 系數化1還沒好,准確無誤不白忙。 因式分解與乘法 和差化積是乘法,乘法本身是運算。 積化和差是分解,因式分解非運算。 因式分解兩式平方符號異,因式分解你別怕。 兩底和乘兩底差,分解結果就是它。 兩式平方符號同,底積2倍坐中央。 因式分解能與否,符號上面有文章。 同和異差先平方,還要加上正負號。 同正則正負就負,異則需添冪符號。 因式分解 一提二套三分組,十字相乘也上數。 四種方法都不行,拆項添項去重組。 重組無望試求根,換元或者算余數。 多種方法靈活選,連乘結果是基礎。 同式相乘若出現,乘方表示要記住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分組,叉乘求根也上數。 五種方法都不行,拆項添項去重組。 對症下葯穩又准,連乘結果是基礎。 二次三項式的因式分解 先想完全平方式,十字相乘是其次。 兩種方法行不通,求根分解去嘗試。 比和比例 兩數相除也叫比,兩比相等叫比例。 外項積等內項積,等積可化八比例。 分別交換內外項,統統都要叫更比。 同時交換內外項,便要稱其為反比。 前後項和比後項,比值不變叫合比。 前後項差比後項,組成比例是分比。 兩項和比兩項差,比值相等合分比。 前項和比後項和,比值不變叫等比。 解比例 外項積等內項積,列出方程並解之。 求比值 由已知去求比值,多種途徑可利用。 活用比例七性質,變數替換也走紅。 消元也是好辦法,殊途同歸會變通。 正比例與反比例 商定變數成正比,積定變數成反比。 正比例與反比例 變化過程商一定,兩個變數成正比。 變化過程積一定,兩個變數成反比。 判斷四數成比例 四數是否成比例,遞增遞減先排序。 兩端積等中間積,四數一定成比例。 判斷四式成比例 四式是否成比例,生或降冪先排序。 兩端積等中間積,四式便可成比例。 比例中項成比例的四項中,外項相同會遇到。 有時內項會相同,比例中項少不了。 比例中項很重要,多種場合會碰到。 成比例的四項中,外項相同有不少。 有時內項會相同,比例中項出現了。 同數平方等異積,比例中項無處逃。 根式與無理式 表示方根代數式,都可稱其為根式。 根式異於無理式,被開方式無限制。 被開方式有字母,才能稱為無理式。 無理式都是根式,區分它們有標志。 被開方式有字母,又可稱為無理式。 求定義域 求定義域有講究,四項原則須留意。 負數不能開平方,分母為零無意義。 指是分數底正數,數零沒有零次冪。 限制條件不唯一,滿足多個不等式。 求定義域要過關,四項原則須注意。 負數不能開平方,分母為零無意義。 分數指數底正數,數零沒有零次冪。 限制條件不唯一,不等式組求解集。 解一元一次不等式 先去分母再括弧,移項合並同類項。 系數化「1」有講究,同乘除負要變向。 先去分母再括弧,移項別忘要變號。 同類各項去合並,系數化「1」注意了。 同乘除正無防礙,同乘除負也變號。 解一元一次不等式組 大於頭來小於尾,大小不一中間找。 大大小小沒有解,四種情況全來了。 同向取兩邊,異向取中間。 中間無元素,無解便出現。 幼兒園小鬼當家,(同小相對取較小) 敬老院以老為榮,(同大就要取較大) 軍營里沒老沒少。(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,構造函數第二站。 判別式值若非負,曲線橫軸有交點。 a正開口它向上,大於零則取兩邊。 代數式若小於零,解集交點數之間。 方程若無實數根,口上大零解為全。 小於零將沒有解,開口向下正相反。 用平方差公式因式分解 異號兩個平方項,因式分解有辦法。 兩底和乘兩底差,分解結果就是它。 用完全平方公式因式分解 兩平方項在兩端,底積2倍在中部。 同正兩底和平方,全負和方相反數。 分成兩底差平方,方正倍積要為負。 兩邊為負中間正,底差平方相反數。 一平方又一平方,底積2倍在中路。 三正兩底和平方,全負和方相反數。 分成兩底差平方,兩端為正倍積負。 兩邊若負中間正,底差平方相反數。 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 調整系數隨其後,使其成為最簡比。 確定參數abc,計算方程判別式。 判別式值與零比,有無實根便得知。 有實根可套公式,沒有實根要告之。 用常規配方法解一元二次方程 左未右已先分離,二系化「1」是其次。 一系折半再平方,兩邊同加沒問題。 左邊分解右合並,直接開方去解題。 該種解法叫配方,解方程時多練習。 用間接配方法解一元二次方程 已知未知先分離,因式分解是其次。 調整系數等互反,和差積套恆等式。 完全平方等常數,間接配方顯優勢 【注】 恆等式解一元二次方程 方程沒有一次項,直接開方最理想。 如果缺少常數項,因式分解沒商量。 b、c相等都為零,等根是零不要忘。 b、c同時不為零,因式分解或配方, 也可直接套公式,因題而異擇良方。 正比例函數的鑒別 判斷正比例函數,檢驗當分兩步走。 一量表示另一量, 有沒有。 若有再去看取值,全體實數都需要。 區分正比例函數,衡量可分兩步走。 一量表示另一量, 是與否。 若有還要看取值,全體實數都要有。 正比例函數的圖象與性質 正比函數圖直線,經過 和原點。 K正一三負二四,變化趨勢記心間。 K正左低右邊高,同大同小向爬山。 K負左高右邊低,一大另小下山巒。 一次函數一次函數圖直線,經過 點。 K正左低右邊高,越走越高向爬山。 K負左高右邊低,越來越低很明顯。 K稱斜率b截距,截距為零變正函。 反比例函數反比函數雙曲線,經過 點。 K正一三負二四,兩軸是它漸近線。 K正左高右邊低,一三象限滑下山。 K負左低右邊高,二四象限如爬山。 二次函數二次方程零換y,二次函數便出現。 全體實數定義域,圖像叫做拋物線。 拋物線有對稱軸,兩邊單調正相反。 A定開口及大小,線軸交點叫頂點。 頂點非高即最低。上低下高很顯眼。 如果要畫拋物線,平移也可去描點, 提取配方定頂點,兩條途徑再挑選。 列表描點後連線,平移規律記心間。 左加右減括弧內,號外上加下要減。 二次方程零換y,就得到二次函數。 圖像叫做拋物線,定義域全體實數。 A定開口及大小,開口向上是正數。 絕對值大開口小,開口向下A負數。 拋物線有對稱軸,增減特性可看圖。 線軸交點叫頂點,頂點縱標最值出。 如果要畫拋物線,描點平移兩條路。 提取配方定頂點,平移描點皆成圖。 列表描點後連線,三點大致定全圖。 若要平移也不難,先畫基礎拋物線, 頂點移到新位置,開口大小隨基礎。 【注】基礎拋物線 直線、射線與線段 直線射線與線段,形狀相似有關聯。 直線長短不確定,可向兩方無限延。 射線僅有一端點,反向延長成直線。 線段定長兩端點,雙向延伸變直線。 兩點定線是共性,組成圖形最常見。 角 一點出發兩射線,組成圖形叫做角。 共線反向是平角,平角之半叫直角。 平角兩倍成周角,小於直角叫銳角。 直平之間是鈍角,平周之間叫優角。 互余兩角和直角,和是平角互補角。 一點出發兩射線,組成圖形叫做角。 平角反向且共線,平角之半叫直角。 平角兩倍成周角,小於直角叫銳角。 鈍角界於直平間,平周之間叫優角。 和為直角叫互余,互為補角和平角。 證等積或比例線段 等積或比例線段,多種途徑可以證。 證等積要改等比,對照圖形看特徵。 共點共線線相交,平行截比把題證。 三點定型十分像,想法來把相似證。 圖形明顯不相似,等線段比替換證。 換後結論能成立,原來命題即得證。 實在不行用面積,射影角分線也成。 只要學習肯登攀,手腦並用無不勝。 解無理方程 一無一有各一邊,兩無也要放兩邊。 乘方根號無蹤跡,方程可解無負擔。 兩無一有相對難,兩次乘方也好辦。 特殊情況去換元,得解驗根是必然。 解分式方程 先約後乘公分母,整式方程轉化出。 特殊情況可換元,去掉分母是出路。 求得解後要驗根,原留增舍別含糊。 列方程解應用題 列方程解應用題,審設列解雙檢答。 審題弄清已未知,設元直間兩辦法。 列表畫圖造方程,解方程時守章法。 檢驗准且合題意,問求同一才作答。 添加輔助線 學習幾何體會深,成敗也許一線牽。 分散條件要集中,常要添加輔助線。 畏懼心理不要有,其次要把觀念變。 熟能生巧有規律,真知灼見靠實踐。 圖中已知有中線,倍長中線把線連。 旋轉構造全等形,等線段角可代換。 多條中線連中點,便可得到中位線。 倘若知角平分線,既可兩邊作垂線。 也可沿線去翻折,全等圖形立呈現。 角分線若加垂線,等腰三角形可見。 角分線加平行線,等線段角位置變。 已知線段中垂線,連接兩端等線段。 輔助線必畫虛線,便與原圖聯系看。 兩點間距離公式同軸兩點求距離,大減小數就為之。 與軸等距兩個點,間距求法亦如此。 平面任意兩個點,橫縱標差先求值。 差方相加開平方,距離公式要牢記。 矩形的判定 任意一個四邊形,三個直角成矩形; 對角線等互平分,四邊形它是矩形。 已知平行四邊形,一個直角叫矩形; 兩對角線若相等,理所當然為矩形。 菱形的判定 任意一個四邊形,四邊相等成菱形; 四邊形的對角線,垂直互分是菱形。 已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形。

Ⅱ 請問:初一數學學什麼有哪些

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

Ⅲ 七年級上冊數學書內容是什麼

有理數

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線 叫做數軸。

(3)相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

(4)絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(5)有理數的加減法

同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。

(6)有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0. 例:0×1=0

(7)有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把絕對值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當a?看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

Ⅳ 七年級上冊數學全部概念

書上都有,自己總結,比抄別人的,對概念的掌握更深刻、透徹。

Ⅳ 人教版七年級上冊數學概念

三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b
)*c
初中數學知識點歸納.

有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】「大」減「小」是指絕對值的大小。
有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則
同號得正異號負,一項為零積是零。
合並同類項
說起合並同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括弧法則
去括弧或添括弧,關鍵要看連接號。
擴號前面是正號,去添括弧不變號。
括弧前面是負號,去添括弧都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等於兩數平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減後加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減後加差平方。
解一元一次方程
先去分母再括弧,移項變號要記牢。
同類各項去合並,系數化「1」還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程
先去分母再括弧,移項合並同類項。
系數化1還沒好,准確無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。
因式分解
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對症下葯穩又准,連乘結果是基礎。
二次三項式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例
兩數相除也叫比,兩比相等叫比例。
外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。
同時交換內外項,便要稱其為反比。
前後項和比後項,比值不變叫合比。
前後項差比後項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比後項和,比值不變叫等比。
解比例
外項積等內項積,列出方程並解之。
求比值
由已知去求比值,多種途徑可利用。
活用比例七性質,變數替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例
商定變數成正比,積定變數成反比。
正比例與反比例
變化過程商一定,兩個變數成正比。
變化過程積一定,兩個變數成反比。
判斷四數成比例
四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。
判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項
成比例的四項中,外項相同會遇到。
有時內項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內項會相同,比例中項出現了。
同數平方等異積,比例中項無處逃。
根式與無理式
表示方根代數式,都可稱其為根式。
根式異於無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區分它們有標志。
被開方式有字母,又可稱為無理式。
求定義域
求定義域有講究,四項原則須留意。
負數不能開平方,分母為零無意義。
指是分數底正數,數零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數不能開平方,分母為零無意義。
分數指數底正數,數零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式
先去分母再括弧,移項合並同類項。
系數化「1」有講究,同乘除負要變向。
先去分母再括弧,移項別忘要變號。
同類各項去合並,系數化「1」注意了。
同乘除正無防礙,同乘除負也變號。
解一元一次不等式組
大於頭來小於尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現。
幼兒園小鬼當家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,構造函數第二站。
判別式值若非負,曲線橫軸有交點。
a正開口它向上,大於零則取兩邊。
代數式若小於零,解集交點數之間。
方程若無實數根,口上大零解為全。
小於零將沒有解,開口向下正相反。
用平方差公式因式分解
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數。
分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負和方相反數。
分成兩底差平方,兩端為正倍積負。
兩邊若負中間正,底差平方相反數。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數隨其後,使其成為最簡比。
確定參數abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規配方法解一元二次方程
左未右已先分離,二系化「1」是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合並,直接開方去解題。
該種解法叫配方,解方程時多練習。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調整系數等互反,和差積套恆等式。
完全平方等常數,間接配方顯優勢
【注】 恆等式
解一元二次方程
方程沒有一次項,直接開方最理想。
如果缺少常數項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量, 有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過 和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過 點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數
反比函數雙曲線,經過 點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
二次函數
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點後連線,平移規律記心間。
左加右減括弧內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點後連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
【注】基礎拋物線
直線、射線與線段
直線射線與線段,形狀相似有關聯。
直線長短不確定,可向兩方無限延。
射線僅有一端點,反向延長成直線。
線段定長兩端點,雙向延伸變直線。
兩點定線是共性,組成圖形最常見。

一點出發兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小於直角叫銳角。
直平之間是鈍角,平周之間叫優角。
互余兩角和直角,和是平角互補角。
一點出發兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小於直角叫銳角。
鈍角界於直平間,平周之間叫優角。
和為直角叫互余,互為補角和平角。
證等積或比例線段
等積或比例線段,多種途徑可以證。
證等積要改等比,對照圖形看特徵。
共點共線線相交,平行截比把題證。
三點定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換後結論能成立,原來命題即得證。
實在不行用面積,射影角分線也成。
只要學習肯登攀,手腦並用無不勝。
解無理方程
一無一有各一邊,兩無也要放兩邊。
乘方根號無蹤跡,方程可解無負擔。
兩無一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
解分式方程
先約後乘公分母,整式方程轉化出。
特殊情況可換元,去掉分母是出路。
求得解後要驗根,原留增舍別含糊。
列方程解應用題
列方程解應用題,審設列解雙檢答。
審題弄清已未知,設元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗准且合題意,問求同一才作答。
添加輔助線
學習幾何體會深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規律,真知灼見靠實踐。
圖中已知有中線,倍長中線把線連。
旋轉構造全等形,等線段角可代換。
多條中線連中點,便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯系看。
兩點間距離公式
同軸兩點求距離,大減小數就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定
任意一個四邊形,三個直角成矩形;
對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;
兩對角線若相等,理所當然為矩形。
菱形的判定
任意一個四邊形,四邊相等成菱形;
四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對角線若垂直,順理成章為菱形。
留著慢慢用,希望有幫助!

Ⅵ 誰知道七年級上冊數學第一章講的是什麼內容,有沒有正負數啊急,謝謝!

第一章是《有理數》,有正負數,包括加減乘除計算.

Ⅶ 七年級上冊數學書內容有哪些

七年級上冊數學書重要內容:

(一)有理數。

(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線 叫做數軸。

(3)相反數:相反數是一個數學術語,指值相等,正負號相反的兩個數互為相反數。

(4)值:值是指一個數在數軸上所對應點到原點的距離。正數的值是它本身,負數的值是它的相反數;0的值是0,兩個負數,值大的反而小。

(5)有理數的加減法。

同號相加,到相同符號,並把值相加。異號相加,取值大的加數的符號,並用較大的值減去較小的值。

(6)有理數的乘法。

兩數相乘,同號得正,異號得負,並把值相乘。

任何數與0相乘,積為0. 例:0×1=0

(7)有理數的除法。除以一個不為0的數,等於乘這個數的倒數。

兩數相除,同號得正,異號得負,並把值相除。0除

以任何一個不為0的數,都得0。

(8)有理數的乘方。求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當a?看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

(二)整式

(1)整式:是單項式和多項式的統稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數不能含有字母。

①單項式:由數或字母的積組成的代數式叫做單項式,單獨的一個數或一個字母也叫做單項式。

②多項式:由若干個單項式相加組成的代數式叫做多項式。

③系數:單項式中所有字母的指數的和叫做它的次數。

④次數:一個單項式中,所有變數字母的指數之和,叫做這個單項式的次數。

⑤項:組成多項式的每個單項式叫做多項式的項。

⑥多項式的次數:多項式中,次數比較高的項的次數叫做這個多項式的次數。

⑦同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

⑧合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

(2)整式加減。

整式的加減運算時,如果遇到括弧先去掉括弧,再合並同類項。

(三)一元一次方程

(1)定義:

一元一次方程指只含有一個未知數、未知數的比較高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。

(2)解一元一次方程的步驟:

①去分母:把系數化成整數。

②去括弧。

③移項:把等式一邊的某項變號後移到另一邊。

④合並同類項。

⑤系數化為1。

(四)幾何圖形。

(1)幾何圖形。

將從實物中抽象出的各種圖形統稱為幾何圖形。幾何圖形分為立體圖形和平面圖形。

(2)立體圖形。

立體圖形是各部分不在同一平面內的幾何圖形,由一個或多個面圍成的可以存在於現實生活中的三維圖形。點動成線,線動成面,面動成體。

分類:柱體、錐體、旋轉體、截面體等。

(3)平面圖形。

平面圖形是幾何圖形的一種,指所有點都在同一平面內的圖形,如直線、三角形、平形四邊形等都是基本的平面圖形。

分類:圓形、多邊形、弓形、多弧形。

(4)點、線、面、體。

點:點是比較簡單的形,是幾何圖形比較基本的組成部分。點是空間中只有位置,沒有大小的圖形。

線:線是由個點集合成的圖形。

面:在空間中,到兩點距離相同的點的軌跡。

體:多面體是指四個或四個以上多邊形所圍成的立體。

(5)直線、射線、線段。

直線:直線由個點構成。沒有端點,向兩端無限延長,長度無法度量。直線是軸對稱圖形。

射線:是指由線段的一端無限延長所形成的直的線,射線有且僅有一個端點,無法測量長度。

線段:是指直線上兩點間的有限部分(包括兩個端點) ,有別於直線、射線。

(6)角:在幾何學中,角是由兩條有公共端點的射線組成的幾何對象。這兩條射線叫做角的邊,它們的公共端點叫做角的頂點。

(7)餘角:兩角之和為90°則兩角互為餘角,等角的餘角相等。

(8)補角:兩角之和為180°則兩角互為補角,等角的補角相等。

《七年級數學》是2010年龍門書局出版的圖書,主編是洪林旺。本書收錄了全國各省高考狀元的各個學科的學習心得和方法技巧。

數學課本(mathematics textbook),數學學科教學用書。小學數學課本注意在加強基礎知識教學的同時,培養學生的計算能力、初步的邏輯思維能力和空間觀念,以及解決簡單實際問題的能力。中學數學課本包括代數、平面幾何、立體幾何等內容。

Ⅷ 七年級上冊數學書目錄

人教版
第一章 有理數
1.1 正數和負數
1.2 有理數
1.3 有理數的加減法
實驗與探究 填幻方
閱讀與思考 中國人最先使用負數 1.4 有理數的乘除法
觀察與猜想 翻牌游戲中的數學道理
1.5 有理數的乘方
數學活動
小結
復習題1
第二章 整式的加減
2.1 整式
閱讀與思考 數字1與字母X的對話 2.2 整式的加減
信息技術應用 電子表格與數據計算 數學活動
小結
復習題2
第三章 一元一次方程
3.1 從算式到方程
閱讀與思考 「方程」史話
3.2 解一元一次方程(一)——合並同類項與移項
實驗與探究 無限循環小數化分數 3.3 解一元一次方程(二)——去括弧與去分母
3.4 實際問題與一元一次方程
數學活動
小結
復習題3
第四章 幾何圖形初步
4.1 幾何圖形
閱讀與思考 幾何學的起源
4.2 直線、射線、線段
閱讀與思考 長度的測量
4.3 角
4.4 課題學習 設計製作長方體形狀的包裝紙盒
數學活動
小結
復習題4

Ⅸ 七年級上冊數學書內容是什麼

①單項式由數或字母的積組成的代數式叫做單項式,單獨的一個數或一個字母也叫做單項式。

②多項式由若干個單項式相加組成的代數式叫做多項式。

③系數:單項式中所有字母的指數的和叫做它的次數。

④次數:一個單項式中,所有變數字母的指數之和,叫做這個單項式的次數。

⑤項:組成多項式的每個單項式叫做多項式的項。

⑥多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。

⑦同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。

⑧合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。

Ⅹ 七年級數學上冊學的是什麼內容

七年級下冊

第五章 相交線與平行線
5.1 相交線
5.1.2 垂線
5.1.3 同位角、內錯角、同旁內角
觀察與猜想
5.2 平行線及其判定
5.2.1 平行線
5.3 平行線的性質
5.3.1 平行線的性質
5.3.2 命題、定理
5.4 平移
教學活動
小結
第六章 平面直角坐標系
6.1 平面直角坐標系
6.2 坐標方法的簡單應用
閱讀與思考
6.2 坐標方法的簡單應用
教學活動
小結
第七章 三角形
7.1 與三角形有關的線段
7.1.2 三角形的高、中線與角平分線
7.1.3 三角形的穩定性
信息技術應用
7.2 與三角形有關的角
7.2.2 三角形的外角
閱讀與思考
7.3 多變形及其內角和
閱讀與思考
7.4 課題學習 鑲嵌
教學活動
小結
第八章 二元一次方程組
8.1 二元一次方程組
8.2 消元——二元一次方程組的解法
8.3 實際問題與二元一次方程組
閱讀與思考
*8.4 三元一次方程組解法舉例
教學活動
小結
第九章 不等式與不等式組
9.1 不等式
閱讀與思考
9.2 實際問題與一元一次不等式
實驗與探究
9.3 一元一次不等式組
閱讀與思考
教學活動
小結
第十章 數據的收集、整理與描述
10.1 統計調查
實驗與探究
10.2 直方圖
10.3 課題學習從數據談節水
教學活動
小結

閱讀全文

與七上數學書的內容是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1401
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070