導航:首頁 > 數字科學 > 數學家阿達瑪的四階段是什麼

數學家阿達瑪的四階段是什麼

發布時間:2022-07-23 15:47:46

『壹』 hadamard transform是什麼意思

hadamard transform
哈達馬變換;阿達瑪變換;哈達瑪轉換
哈達瑪變換是利用哈達瑪矩陣作為變換矩陣新實施的遙感多光譜域變換。哈達瑪矩陣為一個對稱的正交矩陣。哈達變換實際是將坐標軸旋轉45°的正交變換。
Hadamard變換(hadamard transform,HT)光譜技術是近幾十年發展起來的一種新型的光譜調制技術,它實際是統計學中的稱重設計在光學中的應用,理論模型是法國數學家Hadamard提出的一種n階矩陣方程。如今,哈達瑪變換已經廣泛地用於光譜數據的獲取、目標識別及分類、弱信號探測等領域。哈達瑪變換成像光譜儀是以哈達瑪變換為基礎的一種光譜成像儀,是多通道探測技術在光學中的應用,它在攝取圖像二維信息的同時,對圖像的光譜信息進行編碼,可以通過逆變換的方法復原出光譜信息。由於光譜儀中CCD器件各探測器單元光譜響應的不一致性,使得採集的編碼圖像中疊加了因探測器像元響應非均勻性而產生的固定雜訊信號。

『貳』 函數的發展歷程是怎麼樣的

函數概念的發展歷史1.早期函數概念——幾何觀念下的函數
十七世紀伽俐略(G.Galileo,意,1564-1642)在《兩門新科學》一書中,幾乎全部包含函數或稱為變數關系的這一概念,用文字和比例的語言表達函數的關系。1673年前後笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已注意到一個變數對另一個變數的依賴關系,但因當時尚未意識到要提煉函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分時還沒有人明確函數的一般意義,大部分函數是被當作曲線來研究的。
1673年,萊布尼茲首次使用「function」 (函數)表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量。與此同時,牛頓在微積分的討論中,使用 「流量」來表示變數間的關系。
2.十八世紀函數概念──代數觀念下的函數
1718年約翰??貝努利(Bernoulli Johann,瑞,1667-1748)在萊布尼茲函數概念的基礎上對函數概念進行了定義:「由任一變數和常數的任一形式所構成的量。」他的意思是凡變數x和常量構成的式子都叫做x的函數,並強調函數要用公式來表示。
1755,歐拉(L.Euler,瑞士,1707-1783) 把函數定義為「如果某些變數,以某一種方式依賴於另一些變數,即當後面這些變數變化時,前面這些變數也隨著變化,我們把前面的變數稱為後面變數的函數。」
18世紀中葉歐拉(L.Euler,瑞,1707-1783)給出了定義:「一個變數的函數是由這個變數和一些數即常數以任何方式組成的解析表達式。」他把約翰??貝努利給出的函數定義稱為解析函數,並進一步把它區分為代數函數和超越函數,還考慮了「隨意函數」。不難看出,歐拉給出的函數定義比約翰??貝努利的定義更普遍、更具有廣泛意義。
3.十九世紀函數概念──對應關系下的函數
1821年,柯西(Cauchy,法,1789-1857) 從定義變數起給出了定義:「在某些變數間存在著一定的關系,當一經給定其中某一變數的值,其他變數的值可隨著而確定時,則將最初的變數叫自變數,其他各變數叫做函數。」在柯西的定義中,首先出現了自變數一詞,同時指出對函數來說不一定要有解析表達式。不過他仍然認為函數關系可以用多個解析式來表示,這是一個很大的局限。
1822年傅里葉(Fourier,法國,1768——1830)發現某些函數也已用曲線表示,也可以用一個式子表示,或用多個式子表示,從而結束了函數概念是否以唯一一個式子表示的爭論,把對函數的認識又推進了一個新層次。
1837年狄利克雷(Dirichlet,德,1805-1859) 突破了這一局限,認為怎樣去建立x與y之間的關系無關緊要,他拓廣了函數概念,指出:「對於在某區間上的每一個確定的x值,y都有一個或多個確定的值,那麼y叫做x的函數。」這個定義避免了函數定義中對依賴關系的描述,以清晰的方式被所有數學家接受。這就是人們常說的經典函數定義。
等到康托(Cantor,德,1845-1918)創立的集合論在數學中佔有重要地位之後,維布倫(Veblen,美,1880-1960)用「集合」和「對應」的概念給出了近代函數定義,通過集合概念把函數的對應關系、定義域及值域進一步具體化了,且打破了「變數是數」的極限,變數可以是數,也可以是其它對象。
4.現代函數概念──集合論下的函數
1914年豪斯道夫(F.Hausdorff)在《集合論綱要》中用不明確的概念「序偶」來定義函數,其避開了意義不明確的「變數」、「對應」概念。庫拉托夫斯基(Kuratowski)於1921年用集合概念來定義「序偶」使豪斯道夫的定義很嚴謹了。
1930 年新的現代函數定義為「若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x)。元素x稱為自變元,元素y稱為因變元。」
術語函數,映射,對應,變換通常都有同一個意思。
但函數只表示數與數之間的對應關系,映射還可表示點與點之間,圖形之間等的對應關系。可以說函數包含於映射。當然,映射也只是一部分。 [編輯本段]冪函數冪函數的一般形式為y=x^a。
如果a取非零的有理數是比較容易理解的,不過初學者對於a取無理數,則不太容易理解,在我們的課程里,不要求掌握如何理解指數為無理數的問題,因為這涉及到實數連續統的極為深刻的知識。因此我們只要接受它作為一個已知事實即可。
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那麼我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函數的定義域為大於0的所有實數;如果同時q為奇數,則函數的定義域為不等於0 的所有實數。
在x大於0時,函數的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大於0時,冪函數為單調遞增的,而a小於0時,冪函數為單調遞減函數。
(3)當a大於1時,冪函數圖形下凹;當a小於1大於0時,冪函數圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函數過(0,0);a小於0,函數不過(0,0)點。
(6)顯然冪函數無界。 [編輯本段]高斯函數設x∈R , 用 [x]或int(x)表示不超過x 的最大整數,並用表示x的非負純小數,則 y= [x] 稱為高斯(Guass)函數,也叫取整函數。
任意一個實數都能寫成整數與非負純小數之和,即:x= [x] + (0≤<1) [編輯本段]復變函數復變函數是定義域為復數集合的函數。
復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。
以復數作為自變數的函數就叫做復變函數,而與之相關的理論就是復變函數論。解析函數是復變函數中一類具有解析性質的函數,復變函數論主要就研究復數域上的解析函數,因此通常也稱復變函數論為解析函數論。
復變函數論的發展簡況
復變函數論產生於十八世紀。1774年,歐拉在他的一篇論文中考慮了由復變函數的積分導出的兩個方程。而比他更早時,法國數學家達朗貝爾在他的關於流體力學的論文中,就已經得到了它們。因此,後來人們提到這兩個方程,把它們叫做「達朗貝爾-歐拉方程」。到了十九世紀,上述兩個方程在柯西和黎曼研究流體力學時,作了更詳細的研究,所以這兩個方程也被叫做「柯西-黎曼條件」。
復變函數論的全面發展是在十九世紀,就像微積分的直接擴展統治了十八世紀的數學那樣,復變函數這個新的分支統治了十九世紀的數學。當時的數學家公認復變函數論是最豐饒的數學分支,並且稱為這個世紀的數學享受,也有人稱贊它是抽象科學中最和諧的理論之一。
為復變函數論的創建做了最早期工作的是歐拉、達朗貝爾,法國的拉普拉斯也隨後研究過復變函數的積分,他們都是創建這門學科的先驅。
後來為這門學科的發展作了大量奠基工作的要算是柯西、黎曼和德國數學家維爾斯特拉斯。二十世紀初,復變函數論又有了很大的進展,維爾斯特拉斯的學生,瑞典數學家列夫勒、法國數學家彭加勒、阿達瑪等都作了大量的研究工作,開拓了復變函數論更廣闊的研究領域,為這門學科的發展做出了貢獻。
復變函數論在應用方面,涉及的面很廣,有很多復雜的計算都是用它來解決的。比如物理學上有很多不同的穩定平面場,所謂場就是每點對應有物理量的一個區域,對它們的計算就是通過復變函數來解決的。
比如俄國的茹柯夫斯基在設計飛機的時候,就用復變函數論解決了飛機機翼的結構問題,他在運用復變函數論解決流體力學和航空力學方面的問題上也做出了貢獻。
復變函數論不但在其他學科得到了廣泛的應用,而且在數學領域的許多分支也都應用了它的理論。它已經深入到微分方程、積分方程、概率論和數論等學科,對它們的發展很有影響。
復變函數論的內容
復變函數論主要包括單值解析函數理論、黎曼曲面理論、幾何函數論、留數理論、廣義解析函數等方面的內容。
如果當函數的變數取某一定值的時候,函數就有一個唯一確定的值,那麼這個函數解就叫做單值解析函數,多項式就是這樣的函數。
復變函數也研究多值函數,黎曼曲面理論是研究多值函數的主要工具。由許多層面安放在一起而構成的一種曲面叫做黎曼曲面。利用這種曲面,可以使多值函數的單值枝和枝點概念在幾何上有非常直觀的表示和說明。對於某一個多值函數,如果能作出它的黎曼曲面,那麼,函數在離曼曲面上就變成單值函數。
黎曼曲面理論是復變函數域和幾何間的一座橋梁,能夠使我們把比較深奧的函數的解析性質和幾何聯系起來。近來,關於黎曼曲面的研究還對另一門數學分支拓撲學有比較大的影響,逐漸地趨向於討論它的拓撲性質。
復變函數論中用幾何方法來說明、解決問題的內容,一般叫做幾何函數論,復變函數可以通過共形映象理論為它的性質提供幾何說明。導數處處不是零的解析函數所實現的映像就都是共形映象,共形映像也叫做保角變換。共形映象在流體力學、空氣動力學、彈性理論、靜電場理論等方面都得到了廣泛的應用。
留數理論是復變函數論中一個重要的理論。留數也叫做殘數,它的定義比較復雜。應用留數理論對於復變函數積分的計算比起線積分計算方便。計算實變函數定積分,可以化為復變函數沿閉迴路曲線的積分後,再用留數基本定理化為被積分函數在閉合迴路曲線內部孤立奇點上求留數的計算,當奇點是極點的時候,計算更加簡潔。
把單值解析函數的一些條件適當地改變和補充,以滿足實際研究工作的需要,這種經過改變的解析函數叫做廣義解析函數。廣義解析函數所代表的幾何圖形的變化叫做擬保角變換。解析函數的一些基本性質,只要稍加改變後,同樣適用於廣義解析函數。
廣義解析函數的應用范圍很廣泛,不但應用在流體力學的研究方面,而且象薄殼理論這樣的固體力學部門也在應用。因此,近年來這方面的理論發展十分迅速。
從柯西算起,復變函數論已有170多年的歷史了。它以其完美的理論與精湛的技巧成為數學的一個重要組成部分。它曾經推動過一些學科的發展,並且常常作為一個有力的工具被應用在實際問題中,它的基礎內容已成為理工科很多專業的必修課程。現在,復變函數論中仍然有不少尚待研究的課題,所以它將繼續向前發展,並將取得更多應用。
upcase 字元型 使小寫英文字母變為大寫 字元型
downcase 字元型 使大寫英文字母變為小寫 字元型 [編輯本段]階梯函數形如階梯的具有無窮多個跳躍間斷點的函數. [編輯本段]反比例函數表達式為 y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。
反比例函數的其他形式:y=k/x=k·1/x=kx-1
反比例函數的特點:y=k/x→xy=k
自變數x的取值范圍是不等於0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
反比例函數關於原點中心對稱,關於坐標軸角平分線軸對稱,另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣,即k的絕對值。
如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。
當 k >0時,反比例函數圖像經過一,三象限,因為在同一支反比例函數圖像上,y隨x的增大而減小所以又稱為減函數
當k <0時,反比例函數圖像經過二,四象限,因為在同一支反比例函數圖像上,y隨x的增大而增大所以又稱為增函數
倘若不在同一象限,則剛好相反。
由於反比例函數的自變數和因變數都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。
知識點:
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。
2.對於雙曲線y= k/x,若在分母上加減任意一個實數m (即 y=k/x(x±m)m為常數),就相當於將雙曲線圖象向左或右平移m個單位。(加一個數時向左平移,減一個數時向右平移) [編輯本段]程序設計中的函數許多程序設計語言中,可以將一段經常需要使用的代碼封裝起來,在需要使用時可以直接調用,這就是程序中的函數。比如在C語言中:
int max(int x,int y)
{
return(x>y?x:y;);
}
就是一段比較兩數大小的函數,函數有參數與返回值。C++程序設計中的函數可以分為兩類:帶參數的函數和不帶參數的函數。這兩種參數的聲明、定義也不一樣。
帶有(一個)參數的函數的聲明:
類型名標示符+函數名+(類型標示符+參數)
{
}
不帶參數的函數的聲明:
void+函數名()
{
}
花括弧內為函數體。
帶參數的函數有返回值,不帶參數的沒有返回值。
C++中函數的調用:函數必須聲明後才可以被調用。調用格式為:函數名(實參)
調用時函數名後的小括弧中的實參必須和聲明函數時的函數括弧中的形參個數相同。
有返回值的函數可以進行計算,也可以做為右值進行賦值。
#include <iostream>
using namespace std;
int f1(int x, inty)
{int z;<br>return x+y;<br>}
void main()
{cout<<f1(50,660)<<endl<br>}
C語言中的部分函數
main(主函數)
max(求最大數的函數)
scanf(輸入函數)
printf(輸出函數)

『叄』 布拉里·福蒂把「集合」分為哪兩類

布拉里·福蒂本人認為,這個矛盾證明了「這個序數的自然順序只是一個偏序」,這與康托爾之前證明的「序數集合是全序」的結果相矛盾。事實上布拉里·福蒂的文章中給出了一個「良序集」的錯誤概念,而這個概念是康托爾1883年引進的,但一直沒有受到重視。

布拉里·福蒂的文章發表以後,阿達瑪在第一次國際數學家大會上仍然給出了一個錯誤的良序集的定義。布拉里·福蒂很快就認識到阿達瑪的錯誤,並在1897年10月的一篇文章中予以指出,但是他沒有重新檢查自己的證明。後來康托爾注意到布拉里·福蒂所提到的矛盾,然而這個矛盾並沒有使康托爾放棄集合的良序性,而是放棄了它的集合性。他把集合分為兩類:相容集合和不相容集合,而只把前者叫做集合。他的這種區分標准仍然是不精確的。

布拉里·福蒂的悖論揭示了康托爾集合論的矛盾。1902年6月16日,羅素又提出了集合論的又一個悖論,並以其簡單明確震驚了整個數學界,從而引發了數學史上的第三次數學危機。集合論悖論的出現,促進了康托爾樸素集合論的公理化進程,也促使數學家們對數學基礎的進一步探討。

『肆』 有什麼數學家的成長經歷,給點例文

康托爾
由康托爾首創的全新且具有劃時代意義的集合論,是自古希臘時代的二千多年以來,人類認識史上第一次給無窮建立起抽象的形式符號系統和確定的運算,它從本質上揭示了無窮的特性,使無窮的概念發生了一次革命性的變化,並滲透道所有的數學分支,從根本上改造了數學的結構,促進了數學的其他許多新的分支的建立和發展,成為實變函數論、代數拓撲、群論和泛函分析等理論的基礎,還給邏輯和哲學帶來了深遠的影響。不過康托爾的集合論並不是完美無缺的,一方面,康托爾對「連續統假設」和「良序性定理」始終束手無策;另一方面,19和20世紀之交發現的布拉利-福蒂悖論、康托爾悖論和羅素悖論,使人們對集合論的可靠性產生了嚴重的懷疑。加之集合論的出現確實沖擊了傳統的觀念,顛倒了許多前人的想法,很難為當時的數學家所接受,遭到了許多人的反對,其中反對的最激烈的是柏林學派的代表人物之一、構造主義者克羅內克。克羅內克認為,數學的對象必須是可構造出來的,不可用有限步驟構造出來的都是可疑的,不應作為數學的對象,他反對無理數和連續函數的理論,同樣嚴厲批評和惡毒攻擊康托爾的無窮集合和超限數理論不是數學而是神秘主義。他說康托爾的集合論空空洞洞毫無內容。除了克羅尼克之外,還有一些著名數學家也對集合論發表了反對意見。法國數學家龐加萊(Poincare,J ules Henri,1854.4.29-1912.7.17)說:「我個人,而且還不只我一人,認為重要之點在於,切勿引進一些不能用有限個文字去完全定義好的東西」。他把集合論當作一個有趣的「病理學的情形」來談,並且預測說:「後一代將把(Cantor)集合論當作一種疾病,而人們已經從中恢復過來了」。德國數學家魏爾(Wey1,Claude Hugo Hermann,1885.11.9-1955.12.8)認為,康托爾關於基數的等級觀點是「霧上之霧」。克萊因(Klein,Christian Felix,1849.4.25-1925.6.22)也不贊成集合論的思想。數學家H.A.施瓦茲原來是康托爾的好友,但他由於反對集合論而同康托爾斷交。集合論的悖論出現之後,他們開始認為集合論根本是一種病態,他們以不同的方式發展為經驗主義、半經驗主義、直覺主義、構造主義等學派,在基礎大戰中,構成反康托爾的陣營。 1884年,由於連續統假設長期得不到證明,再加上與克羅內克的尖銳對立,精神上屢遭打擊,5月底,他支持不住了,第一次精神崩潰。他的精神沮喪,不能很好地集中研究集合論,從此深深地捲入神學、哲學及文學的爭論而不能自拔。不過每當他恢復常態時,他的思想總變得超乎尋常的清晰,繼續他的集合論的工作。 康托爾的集合論得到公開的承認和熱情的稱贊應該說首先在瑞士蘇黎世召開的第一屆國際數學家大會上表現出來。瑞士蘇黎世理工大學教授胡爾維茨(Hurwitz,Adolf,1859.3.26-1919.11.18)在他的綜合報告中,明確地闡述康托爾集合論對函數論的進展所起的巨大推動作用,這破天荒第一次向國際數學界顯示康托爾的集合論不是可有可無的哲學,而是真正對數學發展起作用的理論工具。在分組會上,法國數學家阿達瑪(Hadamard Jacques,1865.12.8-1963.10.17),也報告康托爾對他的工作的重要作用。隨著時間的推移,人們逐漸認識到集合論的重要性。希爾伯特(Hilbert David,1862.1.23-1943.2.14)高度贊譽康托爾的集合論「是數學天才最優秀的作品」,「是人類純粹智力活動的最高成就之一」,「是這個時代所能誇耀的最巨大的工作」。在1900年第二屆國際數學家大會上,希爾伯特高度評價了康托爾工作的重要性,並把康托爾的連續統假設列入20世紀初有待解決的23個重要數學問題之首。當康托爾的樸素集合論出現一系列悖論時,克羅內克的後繼者布勞威爾(1881.2.27-1966.12.2)等人藉此大做文章,希爾伯特用堅定的語言向他的同代人宣布:「沒有任何人能將我們從康托爾所創造的伊甸園中驅趕出來」。

『伍』 布爾巴基學派的簡介


在1914年到1918年的大戰中,德國政府和法國政府對於關繫到科學的問題的看法並不一樣。德國人讓他們的學者去研究科學,通過他們的發現以及對發明或者方法的改進來提高軍隊的力量,結果這些都有助於德國戰鬥力的增長。而法國人,至少在戰爭初期一兩年間,認為人人應該上前線,因而年輕的科學家正如其他的法國人一樣也到前線服役。這表現一種民主和愛國主義精神,對此我們只能表示敬佩,但是其後果對於年輕的法國科學家來說卻是可怕的大屠殺。高等師范院校的優秀學生們有三分之二是被戰爭毀掉的。20世紀20年代,一些百里挑一的天才人物如魏伊、德爾薩特、嘉當、迪多涅、薛華荔等進入萬人競試的高等師范學校。但他們沒有碰到什麼年輕教師,而都是些著名的老頭子,基礎課就是由他們負責教授。這些老頭們的確很著名,不過他們只知道他們在20歲或30歲時學的數學,而 對20世紀的數學他們認識得相當模糊。
這個時期,德國數學突飛猛進,涌現了一批第一流的數學家:諾特、西格爾、阿廷、哈塞等等,而法國人還故步自封,對敵國的進展不甚了解,對新興的莫斯科拓撲學派和波蘭的拓撲和泛函分析學派就更是一無所知。而對其他象馮·諾依曼和黎茲的工作也不理解,只知道棲居在自己的函數論的小天地中。在這里,函數論是至尊無上的。不過,法國人中也有代表先進潮流的數學家如e·嘉當;但是,他超出他同時代人的水平20多年,誰也不理解他的工作。(在龐加萊之後,最先理解他的工作的是赫爾曼·外爾,在十年之中,他是唯一理解嘉當的人。)因此除嘉當之外,其他人完全封閉在 函數論當中了,雖然函數論是重要的,但畢竟只代表數學的一部分。
在進入高師的年輕人中,迪多涅,魏伊,亨·嘉當等人,不滿足於法蘭西數學界的現狀,把觸角伸向「函數論王國」之外他們深刻認識到了法國數學同世界先進水平的差距。他們痛切感覺到,如果還繼續搞這個方向,法國的數學就肯定要走進死胡同。當然,法國數學家在函數論方面仍然可以很出色,但是在數學的其他方面,人們就會忘掉法國的數學家了。這就會使法國的二百多年的傳統中斷,因為從費爾馬到龐加萊這些最偉大的數學家都總是具有博大全才的數學家的名聲,他們既能搞算術和代數,又能搞分析和幾何。恰恰是這些有遠見的青年人,在法國科學全面落後的情況下,使法國數學在第二次世界大戰之後又能保持先進水平,而且影響著整個現代數學的發展。可以說,當時打開那些年輕人通往外在世界的通道只有阿達瑪的討論班。阿達瑪是法蘭西學院的教授。在年初,他把他認為最重要的論著分配給打算在討論班上做報告的人。在當時這是件新鮮事,但對青年人的提高大有好處。在1934年阿達瑪退休之後,g·儒利雅以稍稍不同的方式繼續主持這個討論班。以更系統的方式去研究從所有方向上進來的偉大的思想。這批年輕人決心象范·德·瓦爾登整理代數學那樣,從頭來起,把整個數學重新整理一遍,以書的形式來概括現代數學的主要思想,而這也正是布爾巴基學派及其主要著作《數學原理》產生的起源。當時,布爾巴基的大多數成員還不到30歲,年紀稍大些的也不過才30出頭。假如他們年紀再大一些,知識再多一些,他們也就永遠不會開始這項偉大的事業了。布爾巴基的成員以高度的熱情開始進行工作。可是20世紀的數學已經發展到這樣一個程度,即每一位數學家都必須專業化。也許只有少數象龐加萊和希爾伯特這樣的大數學家才能掌握整個數學。而對於普通的數學家,要想對整個領域有一個全面的認識,並能抓住各個分支的內在關系,那是非常困難的。為了達到原來的目標—對數學所有分支中的基本概念加以闡明,然後在此基礎上再集中於專門學科,布爾巴基的成員應該對於他所聽到的所有東西都有興趣,並且在一旦需要時,能夠寫書中的一章,即便那不是他們的專長。因此他們必須從一開始就要忘掉自己的專業。假如他是位狂熱專迷的代數學家,說「我只對代數學有興趣對其它東西一概不感興趣」,那麼他將永遠不會成為布爾巴基的成員。布爾巴基所使用的工作方法極為冗長而且艱苦。他們一年舉行兩三次集會,一旦大家多多少少一致同意要寫一本書或者一章論述某種專題,起草的任務就交給布爾巴基中想要擔任的人。這樣,他就由一個相當泛泛的計劃中開始寫一章或幾章的初稿。一般來說,他可以自由的篩選材料,一兩年之後,將所完成的初稿提交大會,然後一頁不漏地大聲宣讀,接受大家對每個證明的仔細審查,並且受到無情的批評。如果哪一位有前途,有見解的青年被注意到並被邀請參加布爾巴基的一次大會,而且能經受住討論會上「火球般」的攻擊,積極參加討論,就自然而然被吸收為新成員,但如果他只是保持沉默,下次決不會受到邀請。布爾巴基的成員不定期更換,年齡限制在50歲以下。雖然一個過50歲的人仍然可以是一位非常好的並且極富有成果的數學家,但是他很難接受新思想,接受那些比他年輕25到30歲的人的思想。為了避免這種遲早會導致布爾巴基的分裂的緊張關系,因此一開始,就決定布爾巴基的成員都要在50歲退出。在討論會上,短兵相接的批判與反批判,不受年齡的限制,即便兩人相差20歲,也擋不住年輕的責備年紀大的,說他對這個問題什麼也不懂。大家都知道正確對待這種情況的方法是一笑置之。因此,在布爾巴基的成員面前,沒有人敢自誇自己是一貫正確的。有時一個題目要幾易作者,第一個人的原稿被否定,由第二個人重寫,下次大會上第二個人的原稿也許會被撕得粉碎,再由第三個人重新開始。從開始搞某一章到它成書在書店中發賣,其間平均需要經歷8到12年。

『陸』 《數學領域中的發明心理學》pdf下載在線閱讀全文,求百度網盤雲資源

《數學領域中的發明心理學》網路網盤txt 最新全集下載:

鏈接: https://pan..com/s/1zU-Yr9kxvIdYs2ST7-WFlw

提取碼:sunc

書名:數學領域中的發明心理學

作者:[法] 雅克·阿達瑪

譯者:陳植蔭

豆瓣評分:8.3

出版社:大連理工大學出版社

出版年份:2016-1-1

頁數:92

內容簡介:

《數學領域中的發明心理學》在1945年出版發行,後又經再版重印,並被譯為幾種文字,影響甚大,是一本數學方法論方面的經典著作。在該書中,阿達瑪追隨龐加萊在巴黎心理學學會上的講演的思想,著重論述了以「無意識思維」為核心的數學發明心理過程,給人以強烈印象。

作者簡介:

雅克·所羅門·阿達馬(Jacques Solomon Hadamard,1865.12—1963.10)是法國數學家。

『柒』 什麼是反證法

反證法,又稱歸謬法、背理法,是一種論證方式,他首先假設某命題不成立(即在原命題的條件下,結論不成立),然後推理出明顯矛盾的結果,從而下結論說原假設不成立,原命題得證。

反證法是「間接證明法」一類,是從反方向證明的證明方法,即:肯定題設而否定結論,從而得出矛盾。法國數學家阿達瑪對反證法的實質作過概括:「若肯定定理的假設而否定其結論,就會導致矛盾」。具體地講,反證法就是從反論題入手,把命題結論的否定當作條件,使之得到與條件相矛盾,肯定了命題的結論,從而使命題獲得了證明。
在應用反證法證題時,一定要用到「反設」,否則就不是反證法。用反證法證題時,如果欲證明的命題的方面情況只有一種,那麼只要將這種情況駁倒了就可以,這種反證法又叫「歸謬法」;如果結論的方面情況有多種,那麼必須將所有的反面情況一一駁倒,才能推斷原結論成立,這種證法又叫「窮舉法」。

反證法在數學中經常運用。當論題從正面不容易或不能得到證明時,就需要運用反證法,此即所謂"正難則反"。
牛頓曾經說過:「反證法是數學家最精當的武器之一」。一般來講,反證法常用來證明正面證明有困難,情況多或復雜,而逆否命題則比較淺顯的題目,問題可能解決得十分乾脆。
反證法的證題可以簡要的概括為「否定→得出矛盾→否定」。即從否定結論開始,得出矛盾,達到新的否定,可以認為反證法的基本思想就是辯證的「否定之否定」。應用反證法的是:
欲證「若P則Q」為真命題,從相反結論出發,得出矛盾,從而原命題為真命題。

反證法的證明主要用到「一個命題與其逆否命題同真假」的結論,為什麼?這個結論可以用窮舉法證明:
某命題:若A則B,則此命題有4種情況:
1.當A為真,B為真,則A→B為真,﹁B→﹁A為真;
2.當A為真,B為假,則A→B為假,﹁B→﹁A為假;
3.當A為假,B為真,則A→B為真,﹁B→﹁A為真;
4.當A為假,B為假,則A→B為真,﹁B→﹁A為真;
∴一個命題與其逆否命題同真假
即關於〉=〈的問題:
大於 -〉反義:小於或等於
都大於-〉反義:至少有一個不大於
小於 -〉反義:大於或等於
都小於-〉反義:至少有一個不小於
即反證法是正確的。
與若A則B先等價的是它的逆否命題若﹁B則﹁A
假設﹁B,推出﹁A,就說明逆否命題是真的,那麼原命題也是真的.
但實際推證的過程中,推出﹁A是相當困難的,所以就轉化為了推出與﹁A相同效果的內容即可,這個相同效果就是與A(已知條件)矛盾,或是與已知定義,定理,大家都知道的事實等矛盾.
步驟:
(1)假設命題結論不成立,即假設結論的反面成立。
(2)從這個命題出發,經過推理證明得出矛盾。
(3)由矛盾判斷假設不成立,從而肯定命題的結論正確。
反證法在簡易邏輯中適用題型:
(1)唯一性命題
(2)否定性題
(3)「至多」,「至少」型命題

『捌』 實變函數、泛函分析是講什麼的

實變函數的內容

以實數作為自變數的函數就做實變函數,以實變函數作為研究對象的數學分支就叫做實變函數論。它是微積分學的進一步發展,它的基礎是點集論。什麼是點集論呢?點集論是專門研究點所成的集合的性質的理論。也可以說實變函數論是在點集論的基礎上研究分析數學中的一些最基本的概念和性質的。比如,點集函數、序列、極限、連續性、可微性、積分等。實變函數論還要研究實變函數的分類問題、結構問題。

實變函數論的內容包括實值函數的連續性質、微分理論、積分理論和測度論等。這里我們只對它的一些重要的基本概念作簡要的介紹。

實變函數論的積分理論研究各種積分的推廣方法和它們的運算規則。由於積分歸根到底是數的運算,所以在進行積分的時候,必須給各種點集以一個數量的概念,這個概念叫做測度。

什麼實測度呢?簡單地說,一條線段的長度就是它的測度。測度的概念對於實變函數論十分重要。集合的測度這個概念實由法國數學家勒貝格提出來的。

為了推廣積分概念,1893年,約當在他所寫的《分析教程》中,提出了「約當容度」的概念並用來討論積分。1898年,法國數學家波萊爾把容度的概念作了改進,並把它叫做測度。波萊爾的學生勒貝格後來發表《積分、長度、面積》的論文,提出了「勒貝格測度」、「勒貝格積分」的概念。勒貝格還在他的論文《積分和圓函數的研究》中,證明了有界函數黎曼可積的充分必要條件是不連續點構成一個零測度集,這就完全解決了黎曼可積性的問題。

勒貝格積分可以推廣到無界函數的情形,這個時候所得積分是絕對收斂的,後來由推廣到積分可以不是絕對收斂的。從這些就可以看出,勒貝格積分比起由柯西給出後來又由黎曼發揚的老積分定義廣大多了。也可以看出,實變函數論所研究的是更為廣泛的函數類。

自從維爾斯特拉斯證明連續函數必定可以表示成一致收斂的多項式級數,人們就認清連續函數必定可以解析地表達出來,連續函數也必定可以用多項式來逼近。這樣,在實變函數論的領域里又出現了逼近論的理論。

什麼是逼近理論呢?舉例來說,如果能把 A類函數表示成 B類函數的極限,就說 A類函數能以 B類函數來逼近。如果已經掌握了 B類函數的某些性質,那麼往往可以由此推出 A類函數的相應性質。逼近論就是研究那一類函數可以用另一類函數來逼近、逼近的方法、逼近的程度和在逼近中出現的各種情況。

和逼近理論密切相關的有正交級數理論,三角級數就是一種正交級數。和逼近理論相關的還有一種理論,就是從某一類已知函數出發構造出新的函數類型的理論,這種理論叫做函數構造論。

總之,實變函數論和古典數學分析不同,它是一種比較高深精細的理論,是數學的一個重要分支,它的應用廣泛,它在數學各個分支的應用是現代數學的特徵。

實變函數論不僅應用廣泛,是某些數學分支的基本工具,而且它的觀念和方法以及它在各個數學分支的應用,對形成近代數學的一般拓撲學和泛涵分析兩個重要分支有著極為重要的影響。

泛函分析的產生

十九世紀以來,數學的發展進入了一個新的階段。這就是,由於對歐幾里得第五公設的研究,引出了非歐幾何這門新的學科;對於代數方程求解的一般思考,最後建立並發展了群論;對數學分析的研究又建立了集合論。這些新的理論都為用統一的觀點把古典分析的基本概念和方法一般化准備了條件。

本世紀初,瑞典數學家弗列特荷姆和法國數學家阿達瑪發表的著作中,出現了把分析學一般化的萌芽。隨後,希爾伯特和海令哲來創了「希爾伯特空間」的研究。到了二十年代,在數學界已經逐漸形成了一般分析學,也就是泛函分析的基本概念。

由於分析學中許多新部門的形成,揭示出分析、代數、集合的許多概念和方法常常存在相似的地方。比如,代數方程求根和微分方程求解都可以應用逐次逼近法,並且解的存在和唯一性條件也極其相似。這種相似在積分方程論中表現得就更為突出了。泛函分析的產生正是和這種情況有關,有些乍看起來很不相乾的東西,都存在著類似的地方。因此它啟發人們從這些類似的東西中探尋一般的真正屬於本質的東西。

非歐幾何的確立拓廣了人們對空間的認知,n維空間幾何的產生允許我們把多變函數用幾何學的語言解釋成多維空間的影響。這樣,就顯示出了分析和幾何之間的相似的地方,同時存在著把分析幾何化的一種可能性。這種可能性要求把幾何概念進一步推廣,以至最後把歐氏空間擴充成無窮維數的空間。

這時候,函數概念被賦予了更為一般的意義,古典分析中的函數概念是指兩個數集之間所建立的一種對應關系。現代數學的發展卻是要求建立兩個任意集合之間的某種對應關系。

這里我們先介紹一下運算元的概念。運算元也叫算符,在數學上,把無限維空間到無限維空間的變換叫做運算元。

研究無限維線性空間上的泛函數和運算元理論,就產生了一門新的分析數學,叫做泛函分析。在二十世紀三十年代,泛函分析就已經成為數學中一門獨立的學科了。

泛函分析的特點和內容

泛函分析的特點是它不但把古典分析的基本概念和方法一般化了,而且還把這些概念和方法幾何化了。比如,不同類型的函數可以看作是「函數空間」的點或矢量,這樣最後得到了「抽象空間」這個一般的概念。它既包含了以前討論過的幾何對象,也包括了不同的函數空間。

泛函分析對於研究現代物理學是一個有力的工具。n維空間可以用來描述具有n個自由度的力學系統的運動,實際上需要有新的數學工具來描述具有無窮多自由度的力學系統。比如梁的震動問題就是無窮多自由度力學系統的例子。一般來說,從質點力學過渡到連續介質力學,就要由有窮自由度系統過渡到無窮自由度系統。現代物理學中的量子場理論就屬於無窮自由度系統。

正如研究有窮自由度系統要求 n維空間的幾何學和微積分學作為工具一樣,研究無窮自由度的系統需要無窮維空間的幾何學和分析學,這正是泛函分析的基本內容。因襲,泛函分析也可以通俗的叫做無窮維空間的幾何學和微積分學。古典分析中的基本方法,也就是用線性的對象去逼近非線性的對象,完全可以運用到泛函分析這門學科中。

泛函分析是分析數學中最「年輕」的分支,它是古典分析觀點的推廣,它綜合函數論、幾何和代數的觀點研究無窮維向量空間上的函數、運算元、和極限理論。他在二十世紀四十到五十年代就已經成為一門理論完備、內容豐富的數學學科了。

半個多世紀來,泛函分析一方面以其他眾多學科所提供的素材來提取自己研究的對象,和某些研究手段,並形成了自己的許多重要分支,例如運算元譜理論、巴拿赫代數、拓撲線性空間理論、廣義函數論等等;另一方面,它也強有力地推動著其他不少分析學科的發展。它在微分方程、概率論、函數論、連續介質力學、量子物理、計算數學、控制論、最優化理論等學科中都有重要的應用,還是建立群上調和分析理論的基本工具,也是研究無限個自由度物理系統的重要而自然的工具之一。今天,它的觀點和方法已經滲入到不少工程技術性的學科之中,已成為近代分析的基礎之一。

泛函分析在數學物理方程、概率論、計算數學、連續介質力學、量子物理學等學科有著廣泛的應用。近十幾年來,泛函分析在工程技術方面有獲得更為有效的應用。它還滲透到數學內部的各個分支中去,起著重要的作用。

『玖』 什麼叫綜合法什麼叫分析法什麼叫綜合分析法什麼叫反證法

一,綜合法是把經濟現象的各個部分、各個方面和各種因素聯系起來,從總體上認識和把握經濟現象的方法。

以綜合法解應用題時,先選擇兩個已知數量,並通過這兩個已知數量解出一個問題,然後將這個解出的問題作為一個新的已知條件,與其它已知條件配合,再解出一個問題,一直到解出應用題所求解的未知數量。

二,分析法是把復雜的經濟現象分解成許多簡單組成部分,分別進行研究的方法。

1,從求解的問題出發,正確地選擇出兩個所需要的條件,依次推導,一直到問題得到解決的解題方法叫做分析法。

2,用分析法解題時如果解題所需要的兩個條件,(或其中一個條件)是未知的時候,就要分別求解找出這兩個(或一個)的條件,一直到問題都是已知的時候為止。

3,分析法指從要證的結論出發,逐步尋求使它成立的充分條件,直到歸結為判定一個顯然成立的條件(已知量、定義、公理、定理、性質、法則等)為止,從而證明論點的正確性、合理性的論證方法。也稱為因果分析、逆推證法或執果索因法。

三,綜合分析法是指運用各種統計綜合指標來反映和研究社會經濟現象總體的一般特徵和數量關系的研究方法。

1,要深入鑽研教材,剖析教學內容的邏輯層次。

2,分析要以對基本概念的正確理解為基礎。

3,要抓住主導因素來進行。

4,要靈活運用綜合與分析。

四,反證法是間接論證的方法之一。亦稱「逆證」。是通過斷定與論題相矛盾的判斷(即反論題)的虛假來確立論題的真實性的論證方法。

反證法的論證過程如下:

1,首先提出論題;然後設定反論題,並依據推理規則進行推演,證明反論題的虛假;

2,最後根據排中律,既然反論題為假,原論題便是真的。

在進行反證中,只有與論題相矛盾的判斷才能作為反論題,論題的反對判斷是不能作為反論題的,因為具有反對關系的兩個判斷可以同時為假。

反證法中的重要環節是確定反論題的虛假,常常要使用歸謬法。反證法是一種有效的解釋方法,特別是在進行正面的直接論證或反駁比較困難時,用反證法會收到更好的效果。

(9)數學家阿達瑪的四階段是什麼擴展閱讀

一,法國數學家阿達瑪(Hadamard)對反證法的實質作過概括:「若肯定定理的假設而否定其結論,就會導致矛盾」。具體地講,反證法就是從反論題入手,把命題結論的否定當作條件,使之得到與條件相矛盾,肯定了命題的結論,從而使命題獲得了證明。

二,事物都有自己的原因和結果。從結果來找原因,或從原因推導結果,就是找出事物產生、發展的來龍去脈和規律,這就起到了證明論點的合理性和正確性的作用。基本思想是:由未知探需知,逐步推向已知。

三,綜合法其實質在於: 抓住事物在總體上相互聯結的矛盾的特殊性,研究這一矛盾如何決定事物的各種屬性,如何在事物的運動中表現出整體的特性。它能夠克服分析法的局限性,能夠揭示事物在分割狀態下無法顯露出來的特性。

在認識事物的過程中,綜合與分析是辯證統一的。綜合必須以分析為基礎,分析也要以先前綜合的成果為指導,而且在一定條件下,綜合與分析可以互相轉化。

閱讀全文

與數學家阿達瑪的四階段是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1400
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070