『壹』 小學數學(說算理)
1*2*3*....*10末尾有2個0
11*12*13*....*20末尾有2個0
21*22*23*....*30末尾有3個0
31*32*33*....*40末尾有2個0
41*42*43*....*50末尾有4個0
2+2+3+2+4=13
把若干個自然數1,2,3......乘到一起,如果已知這個乘積的最末十三位恰好都是0,那麼最後出現的自然數最小應該是50
『貳』 什麼是小學數學算理
1.在低年級側重藉助實物圖來理解算理,通過實物圖的合並、分拆來理解加、減法,並知道它們之間的數量關系。2.在中年級側重藉助圖形來理解算理,通過圖形的排列來理解乘、除法,並懂得它們之間的數量關系。3.在高年級側重藉助線段圖來理解算理,通過作線段圖來理解數量之間的關系。總的來說,是從具體形象思維逐步過度到抽象思維。
『叄』 小學數學(說算理)
先吧總數加起來:166+172+170=508(千克)
你會發現有2個第1箱,2個第2箱,2個第3箱,呢把總數除以二:508/2=254(千克)
呢總數減去第2.3箱的總重就是地1箱的:254-166=88(千克)
呢總數減去第1.3箱的總重就是地2箱的:254-172=82(千克)
呢總數減去第1.2箱的總重就是地3箱的:254-170=84(千克)
那麼最重的當然是88千克
『肆』 在計算數學中,您認為如何讓學生既理算理,又掌握演算法,還能提高計算的准確性
針對上述原因,我從多方面學習借鑒,再結合自己的教學實踐談談在計算教學中對如何正確處理演算法與算理的關系,努力提高課堂教學時效的看法。
一、加強理論學習,提高自身理論素養。
教師在平常的工作中不斷加強理論學習,尤其要正確解讀新課標,科學的把握新教材,理念先到位,對算理與演算法的怎樣算、為什麼這樣算理解清楚,做到算理演算法互相滲透,合理安排教學時間,提高教學時效。
二、精心設計,正確處理演算法與算理的關系
由於第一年教學計算時沒有經驗,雖然教學設計中注意到了演算法與算理並重,可學生說算理時說不起來,教師只有慢慢引導,直至學生能說清楚算理,可待到學生說清算理後,還沒來得及練習演算法,下課鈴響了,一堂課的教學任務沒能完成。第二年再教時,我就重點注意了演算法與算理的正確處理。
1、算理應是學生在自主探索中建構
在計算碰到新問題時總有相當多的學生會應用已有的經驗想辦法解決問題,教師應為學生提供探索的空間,交流的平台,在交流中明白一個個算理,從而發展學生的思考能力,不但能提升認識,還能為新知的學習打下基礎,縮短教學的時間。
2、展現多種算理時要找到突破點。
葉瀾教授說過,沒有聚焦的發散是沒有價值的,聚焦的目的是為了發展。為此,在交流多種想法時,教師要善於抓住恰當的一種切入口,大部分學生容易理解的進行突破。這樣效率就提高了。
例如:教學十幾減9時,學生出現了好多種演算法,如果要一一解釋每個學生的算理確實要花好長時間,而且其他學生還會有一種雲里霧里的感覺,結果什麼都不清楚,因為每種計算都會有一般的演算法,為後續學習打基礎的。這時教師只有選擇其中最容易理解的破十法和想加算減這兩種方法講解,讓學生理解算理。這樣既能讓所有學生都能理解又提高了教學效率。
3、注重算理與演算法的溝通。
算理是演算法的基礎,當學生明白了算理後,教師及時落實演算法與算理的聯系,有利於對演算法的掌握。
4、基本演算法需要重點強化練習。
一節課有教學目標及教學重點,在多種演算法中有基本演算法,這種基本演算法對後續學習又有很大的影響。所以對基本的演算法有必要進行強化,努力使每一個學生都會。針對上述十幾減9的例子,破十法和想加算減的方法就是基本演算法,進行強化訓練,對後面的十幾減8、7、6、……都有很大的作用。
三、課堂上保證新演算法的練習時間和練習量
在新的計算方法教學的第一課時留有一定的時間完成一定的練習量,能從學生的反饋中了解學生的學習情況,對學生在計算方法上出現的錯誤及時糾正,這樣就能將學生的錯誤消滅在萌芽狀態。對掌握演算法,初步形成計算技能還是十分必要的。
例如:在教學兩位數加減兩位數筆算時。本課的難點是一位數加兩位數的豎式寫法,雖然學生已經通過擺小棒、在計數器上撥算珠知道了列豎式要注意相同數位對齊的算理,但是否完全理解呢?通過集體討論明白算理後,及時組織學生進行練習。首先指名板演,請兩個中下生上黑板做,其餘一起看。這時兩人的計算過程一覽無余,一人正確,另一人卻將一位數與兩位數的十位對齊了,顯然沒有理解相同數位對齊的意思,算理不清楚。經全班同學的點評,這位學生明白了自己的錯誤。在後來的課堂作業中就沒有發生類似的錯誤。如果單靠講算理,而沒有及時練習鞏固,這個錯誤就會延續到第二課,而到了第二課難道還要再演示、再講一遍?課堂的效益從何而來?
四、改變計算教學的模式,給予理解算理的空間。
計算教學常常藉助一定的情境作為一節課的引入,通過情境讓學生提出數學問題,列出算式,探索出結果。情景的創設,能撥動學生思維之弦,激活求知慾,喚起好奇心,使看似枯燥、抽象的數學知識充滿親和力和吸引力。而計算教學一定要藉助情境嗎?沒有情境,學生能夠自己尋找到解決問題的方法嗎?
總之,計算教學中理解算理與掌握演算法不可偏頗,「重算理、輕演算法」和「重演算法、輕算理」都不可取。正確地處理好他們之間的關系,才能有效的提高課堂教學效率。
『伍』 數學教學中應怎樣處理好算理和演算法的關系51
處理計算教學中算理與演算法的關系還應注意以下五點:一是算理與演算法是計算教學中有機統一的整體,形式上可分,實質上不可分,重演算法必須重算理,重算理也要重演算法;二是計算教學的問題情境既為引出新知服務,體現「學以致用」,也為理解算理、提煉
『陸』 什麼是「算理」 數學中的「算理」。
就是算術的另一種說法。比較書面化,比較生僻。
『柒』 什麼是數學的算理,能否舉些具體的例子
簡單說就是演算法。知道這個題如何計算。就像三位數成兩位數的算理,就是計算它的方法。
『捌』 數學算理 演算法
數學:怎樣提高運算能力
目前,中學生運算能力的狀況是很差的,不少老師埋怨:"學生的計算能力太差了,連簡單的運算都過不了關,甚至數學基礎好的學生運算結果也常出差錯。"這些狀況的出現原因是多方面的。有的學生不明算理,機械地照搬公式;有的則是不顧運算結果,盲目推演,缺乏合理選擇簡捷運算途徑的意識;也有的學生對提高運算能力缺乏足夠的重視,他們總是把"粗心""馬虎"作為借口;也有相當多的老師只著重解題方法和思路的引導,而忽視對運算過程的合理性、簡捷性的必要指導。這樣不僅影響了學生思維能力的發展,也必然影響教學質量的提高。本文就如何提高學生的運算能力,從以下幾個方面談談自己的粗淺看法。
一、影響學生運算能力的心理因素
1.固定的思維方法
固定的思維方法在運算中有積極的一面,也有消極的影響,當學生掌握了某一種知識(方法)往入習慣用類似的舊知識(方法)去思考問題,這樣必然會出現思維的惰性,影響運算的速度,使運算過程繁冗不堪。
2.缺乏比較意識
比較意識是解決問題的一個重要方向。解題時往往解決問題的途徑很多,這就要求我們善於選優而從。有的學生缺乏比較意識,做題時往往找到一種方法就抱著死做下去,即使繁冗,也不在乎,認為做對就行了。老師在講評試題時,忽略多種解法當中簡捷方法的優先性。
二、運算能力及其特點
運算能力的基本特點有兩個:
(1)運算能力的層次性
在數學發展的歷史上,不同類別的運算是由簡單到復雜、由具體到抽象、由低級到到高級逐步形成和發展起來的。因此對運算的認識和掌握也必須是逐步有序、有層次的,不掌握有理數的計算,就不可能掌握實數的計算;不掌握整式的計算,也就不可能掌握分式的計算。不掌握有限運算,就不可能掌握無限計算。沒有具體運算的基礎,抽象運算就難以實現。由此可見,運算能力是隨著知識面的逐步加寬、內容的不斷深化、抽象程序的不斷提高而逐步發展的。如果說數學內容的發展是無窮的,那麼運算能力的提高也是永遠不會終結的。
對於中學數學運算能力的要求大致可分為兩個層次:①計算的准確性--基本要求②計算的合理、簡捷、迅速--較高要求③計算的技巧性、靈活性--高標准要求。在思想上一定要充分認識提高運算能力的重要性,把運算技能上升到能力的層次上,把運算的技巧與發展思維融合在一起。
(2)運算能力的綜合性
運算能力既不能離開具體的數學知識而孤立存在,也不能離開其他能力而獨立發展,運算能力是和記憶能力、觀察能力、理解能力、聯想能力、表述能力等互相滲透的,它也和邏輯思維能力等數學能力相互支持著。因而提高運算能力的問題,是一個綜合問題,在中學各科的教學過程中,努力培養計算能力,不斷引導,逐漸積累、提高。
三、如何發展運算能力
培養和發展某一種運算的運算能力大致經歷以下幾個階段:
1.理解有關運算的基本知識到形成這種運算的技能的階段。
2.從運算技能上升到運算能力的階段。
3.在各種應用中,進一步提高運算能力的階段。
第一階段要完成從知識到技能的過渡,重點是准確理解有關知識,熟練有關運算的方法、步驟,應該本著"先慢後快"、"先死後活"的原則。隨著運算技能的形成,逐漸簡化運算步驟,靈活運用法則、公式。培養學生合理選擇簡捷運算途徑的意識和習慣。
計算能力的初步形成,還必須在今後應用中得到鞏固、發展和深化。在應用過程中,運算的目的不一定是追求一個簡化的結果,而且要為一定的推理、演繹、判斷服務。
『玖』 什麼是數學的算理,能否舉些具體的例子
算理是指計算中符合運算順序的要求,也可以改變運算順序,但結果正確.
如12-4+8
可以按順序計算:=8+8=16,
也可以先運用結合律,先算12+8
=12+8-4=20-4=16
『拾』 小學數學中的算理有哪些
一年級:加減運算。二年級:乘除加減混合運算。三年級:元、角、分、周長、計算,乘除加減混合運算。四年級:長方形正方形面積計算、小數加減乘除混合運算、簡便方法乘法分配率、結合律交換律。五年級:平行四邊形、梯形、三角形面積計算四則混合運算,分數小數混合運算。六年級:圓圓柱等面積計算