導航:首頁 > 數字科學 > 數學的方法有哪些內容

數學的方法有哪些內容

發布時間:2022-02-05 08:05:48

⑴ 快速學會數學的方法有什麼

數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:

一、課內重視聽講,課後及時復習。

新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。

二、適當多做題,養成良好的解題習慣。

要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

三、調整心態,正確對待考試。

首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
如何學好數學2

高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。
有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。
至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
參考資料:晴天Love貓

⑵ 數學的教學方法有哪些

有7種常用的數學教學方法:

1.講授法是一種教學方法,教師使用口語來描述情境,敘述事實,解釋概念,論證原則和澄清規則。

2..談話法又稱回答法,是通過教師和學生之間的對話傳播和學習知識的方法。其特點是教師指導學生利用現有的經驗和知識回答教師提出的問題,獲取新知識或鞏固和檢查所獲得的知識。

3.討論方法是一種方法,使整個班級或小組圍繞某個中心問題發表自己的意見和看法,共同探索,互相激勵,進行頭腦風暴和學習。

4.演示方法是一種教學方法,教師通過現代教學方法向學生展示物理或物理圖像進行觀察,或通過示範實驗,使學生獲得知識更新。它是一種輔助教學方法,通常與講座,對話,討論等結合使用。

5.練習法是學生在教師指導下鞏固知識,培養各種學習技能的基本方法。這也是學生學習過程中的一項重要實踐活動。

6.實驗法是一種教學方法,學生在教師的指導下使用某些設備和材料,通過操作引起實驗對象的某些變化,並通過觀察這些變化獲得新知識或驗證知識。一種常用於自然科學學科的方法。

7.實習是一種教學方法,學生可以使用某些實習場所,參加某些實習,掌握一定的技能和相關的直接知識,或者驗證間接知識並全面應用所學知識。

(2)數學的方法有哪些內容擴展閱讀:

數學教學方法(methods. of mathematics teach-ing)教學方法的一種.教師指導學生學好數學基礎知識,提高數學基本技能,發展數學才能,進行思品德教育的方式、方法.它既包括了教師教的方法,也包括了學生學的方法.數學教學方法對於激發學生學習數學的興趣,實現數學教學目的,提高數學教學質量,都起著重要的作用.

遠在中國春秋末期和古希臘時期,就有講解、問答、練習、復習等方法的記載.古代主要採用講授法,近代推行了演示、觀察、實驗、參觀等新方法,並改進了解、談話等方法.近些年來隨著現代科學技術的進步,現代化教學手段的使用,教育學與心理學新成就的出現,資訊理論、控制論與系統論新學科的建立與發展,為數學教學方法的改進與發展提供了良好條件。

常用的數學教學方法有:啟發、講解、談話、練習、討論、演示、實習、觀察、復習等,其中,啟發、講解、談話、練習等用的較多.當前國內外正在實驗的數學教學方法有:發現、研究、自學輔導、程序教學、最優化教學、演算法化教學、「讀讀、議議、講講、練練」等。

⑶ 數學思想·數學方法有哪些

1
、對應思想方法

對應是人們對兩個集合因素之間的聯系的一種思想方法,
小學數學一般
是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)
與表示具體的數是一一對應。

2
、假設思想方法

假設是先對題目中的已知條件或問題作出某種假設,
然後按照題中的已
知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確
答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可
以使要解決的問題更形象、具體,從而豐富解題思路。

3
、比較思想方法

比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手
段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量
變化前後的情況,可以幫助學生較快地找到解題途徑。

4
、符號化思想方法

用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數
學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量
之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表
達大量的信息。如定律、公式、等。

5
、類比思想方法

類比思想是指依據兩類數學對象的相似性,
有可能將已知的一類數學對
象的性質遷移到另一類數學對象上去的思想。
如加法交換律和乘法交換
小學各年級課件教案習題匯總
一年級二年級三年級四年級五年級
律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比
思想不僅使數學知識容易理解,
而且使公式的記憶變得順水推舟的自然
和簡潔。

6
、轉化思想方法

轉化思想是由一種形式變換成另一種形式的思想方法,
而其本身的大小

⑷ 數學有哪些分類就是有多少種不同的研究方法

數學物理方法即偏微分,圖論中的演算法,計算數學中的方法,運籌學中的,還有生命周期序列,時間序列,這些課程中都有案例和說明,方法很多,其實具體的題有具體的方法,有的題貌似很難,其實你數學學的好,一看題意就知道它的考點是什麼,小心陷井,一步可解

⑸ 數學常用的數學思想方法有哪些

數學常用的數學思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類思想,類比思想,函數的思想,方程的思想,無逼近思想等等。

1.用字母表示數的思想:這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。

2.數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。

3.轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。

4.分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。

5.類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發思考,不僅是解決日常生活中大量問題的基礎,而且是進行科學研究和發明創造的有力工具.

6.函數的思想 :辯證唯物主義認為,世界上一切事物都是處在運動、變化和發展的過程中,這就要求我們教學中重視函數的思想方法的教學。

7.方程:是初中代數的主要內容.初中階段主要學習了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關系,通過設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,

(5)數學的方法有哪些內容擴展閱讀:

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。

從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用。

⑹ 學好數學的方法有哪些

要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。
事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。

一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。

二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。

三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。

四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。

很多人在考試時總考不出自己的實際水平,拿不到理想的分數,究其原因,就是心理素質不過硬,考試時過於緊張的緣故,還有就是把考試的分數看得太重,所以才會導致考試失利,你要學會換一種方式來考慮問題,你要學會調整自己的心態,人們常說,考試考得三分是水平,七分是心理,過於地追求往往就會失去,就是這個緣故;不要把分數看得太重,即把考試當成一般的作業,理清自己的思路,認真對付每一道題,你就一定會考出好成績的;你要學會超越自我,這句話的意思就是,心裡不要總想著分數、總想著名次;只要我這次考試的成績比我上一次考試的成績有所提高,哪怕是只高一分,那我也是超越了自我;這也就是說,不與別人比成績,就與自己比,這樣你的心態就會平和許多,就會感到沒有那麼大的壓力,學習與考試時就會感到輕松自如的;你試著按照這種方式來調整自己,你就會發現,在不經意中,你的成績就會提高許多;
這就是我的經驗之談,媽媽教給我的道理,使我順利地度過了中學階段,也使我的成績從高一班上的30多名到高三時就進入了年級的前10名,並且沒有感到絲毫的壓力,學得很輕松自如,你不妨也試一試,但願我的經驗能使你的壓力有所減輕、成績有所提高,那我也就感到欣慰了;
最祝你學習進步!

⑺ 一般的數學思想方法有哪些

1 函數思想

把某一數學問題用函數表示出來,並且利用函數探究這個問題的一般規律。

2 數形結合思想

把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答。

3 整體思想

整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。

4 轉化思想

在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。

5 類比思想

把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼推斷它們在其他方面也可能有相同或類似之處。

(7)數學的方法有哪些內容擴展閱讀:

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。

笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。

函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。

它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題,經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。

在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系,構造出函數原型。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。

函數知識涉及的知識點多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點。

我們應用函數思想的幾種常見題型是:遇到變數,構造函數關系解題;有關的不等式、方程、最小值和最大值之類的問題,利用函數觀點加以分析;含有多個變數的數學問題中,選定合適的主變數,從而揭示其中的函數關系。

實際應用問題,翻譯成數學語言,建立數學模型和函數關系式,應用函數性質或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問題也可以用函數方法解決。

引起分類討論的原因主要是以下幾個方面:

① 問題所涉及到的數學概念是分類進行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類討論題型可以稱為概念型。

② 問題中涉及到的數學定理、公式和運算性質、法則有范圍或者條件限制,或者是分類給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類討論題型可以稱為性質型。

③ 解含有參數的題目時,必須根據參數的不同取值范圍進行討論。如解不等式ax>2時分a>0、a=0和a<0三種情況討論。這稱為含參型。

另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過分類討論,保證其完整性,使之具有確定性。

進行分類討論時,我們要遵循的原則是:分類的對象是確定的,標準是統一的,不遺漏、不重復,科學地劃分,分清主次,不越級討論。其中最重要的一條是「不漏不重」。

解答分類討論問題時,我們的基本方法和步驟是:首先要確定討論對象以及所討論對象的全體的范圍;其次確定分類標准,正確進行合理分類,即標准統一、不漏不重、分類互斥(沒有重復);再對所分類逐步進行討論,分級進行,獲取階段性結果;最後進行歸納小結,綜合得出結論。

⑻ 數學教學方法有哪些

一、傳統的數學教學方法

傳統的數學教學方法,是指在長期的數學教學實踐活動中形成的、至今仍行之有效的各種教學方法,其中包括講解法、談話法、演示法、討論法等。

1.講解法

講解法是由教師對教學內容進行有系統地講述的一種教學方法。其特點是以教師為主導,利用口頭語言作為傳遞知識的基本工具,學生是知識信息的接受者。

講解法的基本要求:

(1)科學性。講解的內容要准確無誤,即講概念要清楚,把握好概念的內涵與外延;闡述命題證明、推理要合乎邏輯,思路和方法要明確、清晰。

(2)系統性。講解要條理清楚、層次分明,重點突出,注意學生理解問題的認識規律,使講授內容系統化。

(3)啟發性。講授中要引起學生的求知慾,激發學生思維活動。運用講解法不等於「滿堂灌」、注入式。教師的講解要善於提出問題、創設問題情境,激發疑問,使學生與教師積極配合,主動參與學習活動。

(4)藝術性。講解的語言要清晰、洗煉、准確、生動,盡量做到深入淺出,通俗而不失嚴謹。講解語言音量適當,抑揚頓挫,富有情趣,快慢適當。

(5)情感性。講授課容易讓學生產生枯燥無味之感,因此,情感因素的注入和喧染是提高講授效果的最佳方法。

講解法的優點:能夠保持教師在教學中的主導地位,教學時間和進度便於教師控制,並且所授內容能保持流暢與連貫;便於重點內容的分析、難點的突破,易於幫助學生抓住問題的關鍵,節約教學時間。


講解法的缺點:教學中學生參與少,容易造成被動接受知識的狀態,不利於能力的培養;不易照顧學生中思維反應快與慢的兩端,只能面向中等學生。

2.談話法

談話法是教師根據教學內容和學生的實際情況,提出設計好的若干問題,用談話的方式啟發引導學生積極思考、探索,從而獲得知識的一種教學方法。

談話法的主要特點是師生之間不像講授法那樣,教師講,學生聽,信息單項交流,而是信息的雙向交流。在談話中,師生之間都可以獲得反饋信息,根據這些反饋信息可以及時地調整和改善教與學的活動。這種教學過程,既可以使學生融會貫通地掌握知識,又能發展學生的智力,而且,在經常問答的過程中還鍛煉了學生的表達芰Α?/P>

談話法的基本要求:對學生而言,要積極思維,主動參與;勇於發現,積極應答。對教師的要求有下面幾點。

(1)精心設計「問題系統」,對提問的對象及學生可能會怎樣回答等要做到心中有數。教師在備課時應擬出提問的提綱、對談話所需的時間、給學生能順利地回答創造哪些條件等,都要做好准備。

(2)提出的問題,要難易適度。對某些有困難的學生,要善於由淺入深、由易到難的逐步引導。提出的問題要明確,應是學生所能理解的。

(3)要善於引導探討、啟發發現。對所提出的談話內容,要具有啟發性,教師要引導學生積極思考,層層深入,逐步地獲得結論。

(4)要面向全體學生,因材施教。在談話中要面向全體學生提出問題,並給他們一定的思考時間,使全體學生都處於積極思維的參與狀態。要照顧優生和差生,鼓勵學生大膽回答問題。

(5)及時小結。談話中要對學生回答問題的情況及時小結,使學生明確是非,提高認識。

談話法的優點:突出課堂教學中師生的雙邊活動,有利於信息反饋;課堂氣氛活躍,有利於促進學生積極思維,有利於對學生能力的培養。

談話法的缺點:教學組織比較困難,教學時間不易控制。

3.演示法

演示法是教師將教材內容用實物或教具演示出來,或做示範性實驗來說明或印證所授知識的一種教學方法。在數學教學中,演示法主要用於概念(或部分命題)教學。

演示法大體可分為四種:①圖片、圖畫、掛圖的演示;②教具、實物模型的演示;③幻燈、錄音、錄像、教學電影的演示;④實驗演示。運用演示法教學,對教師有如下具體的要求。

(1)演示要突出主題內容,盡量排除在演示過程中對學習內容產生干擾的無關因素。

(2)在演示時要與教師的講解和談話相結合,通過教師語言的啟發,使學生不是停留在事物的外部表象上,而要使學生的認識上升到理性階段,形成概念。

(3)教具的演示要適時、適當和適度。演示的目的在於幫助理解概念、掌握知識,但最終要逐步離開教具,上升為理性認識。因此,教學中演示教具要恰到好處,過多地依賴教具不利於學生數學思維的發展。

演示法的優點:可以使學生獲得豐富的感性材料,加深對概念本質的理解,有利於培養學生的形象思維能力;能夠激發學生的學習興趣,調動學生的學習積極性和主動性。

演示法的缺點:實用范圍受教學內容、教學設施所限。

4.討論法

討論法是學生根據教師所提出的問題,在集體中,相互交流個人的看法,相互啟發、相互學習的一種教學方法。

討論法的主要特點是:信息交流既不同於講解法的單向交流,也不同於談話法的雙向交流,而是討論集體成員之間的多向信息交流。學生的發言可以及時獲得反饋信息,調節自己的觀點,課堂氣氛活躍。

討論法的基本要求:


(1)討論前師生都要做好充分准備。教師要向學生提出討論的課題,指出注意事項,布置一些閱讀的參考資料,每個學生都應按要求做好討論發言准備。

(2)討論題需簡要明確,有具體的目標,問題深淺適當。

(3)討論中要鼓勵學生大膽發言,勇於表達自己的觀點。

(4)每個問題討論結束時,教師要作小結。

討論法的教學程序:

(1)學生自學。教師指定自學內容,提出學習目標、並指出重、難點。

(2)自行講解。教師把要討論的內容,按概念、命題、例題、習題等分成若干單元,把學生分成小組或全班一起進行討論,討論時可選出主講人,以主講人講述為主,其餘成員補充為輔。

(3)相互討論。在教師啟發下,對主講的結果正確與否?有無不同解法等進行討論。

(4)單元結論。在相互討論之後,教師歸納出正確結論,進行單元小結。

(5)全課總結。待所設計的每個單元都討論結束後,教師對全課內容進行總結,布置相應的練習、作業。

討論法的優點:討論活動是以學生自己的活動為中心,每個學生都有發言的機會,這對於培養學生的語言表達能力是十分有益的;討論前需要學生自學並准備發言提綱,這既培養了學生的自學能力,又調動了學生學習的主動性和積極性;討論中的發言固然要圍繞討論的中心,但又可以不受教材的限制,因而有利於發揮學生的獨立思考和創造精神。

討論法的缺點:課堂組織教學不易控制;比較耗費教學時間。

討論法可使每個學生展示自己的思想,這樣的交流可以促使他們認知結構的完善。另外,也可以發揮每個人的個性特徵,增強他們的自信心和創造力。這種方法在國外是普遍採用的方法,而在我國卻用之甚少,很值得深入研究。

二、國外教改中的數學教學方法

1.發現法

發現法又稱探索法、研究法、現代啟發式或問題教學法。指教師在學生學習概念、命題時,只是給他一些事實(例)和問題,讓學生積極思考,獨立探究,自行發現並掌握相應的原理和結論的一種教學方法。它的指導思想是以學生為主體,獨立實現認識過程,即在教師的啟發下,使學生自覺地、主動地探索;科學認識解決問題的方法及步驟;研究對象的起因和內部聯系,從中找出規律,形成概念或解決問題。

發現法就其思想淵源來說,有著悠久歷史,但是引起人們對發現法的重新關注和研究,是由於20世紀60年代布魯納的大力倡導。布魯納認為,要培養具有發明創造才能的科技人才,不但要使學生掌握學科的基本概念、基本原理,而且要發展學生對待學習的探索性態度,從而大力提倡廣泛使用發現法。

使用發現法教學的一般步驟:

(1)創設問題情境,激發學生的興趣和學習的主動性。

(2)推測問題結論,探討問題解法。在教師的啟發下,學生積極思考,回憶有關知識和方法,進行分析、綜合、猜測結論,探索解決問題的途徑和方法。

(3)驗證結論。採用反駁或論證去驗證所得猜想。

(4)完善問題的解答,總結思路方法,並對獲得的知識用於應用和鞏固。

發現法的教學過程可概括為如下框圖模式。

發現法教學的基本要求:

(1)教師要發揮主導作用,精心創設情境,引導學生有目的、有步驟地去發現問題。

(2)學生要發揮主體作用,積極主動地參與發現過程,充分運用觀察、試驗、聯想、類比、分析、歸納等方法,積極提出猜想,進行論證。

(3)教師要突出強調發現問題的思維過程,使學生逐步掌握數學的思想方法。

發現法的優點:能使學生產生學習的內在動機,增強自信心;能使學生學會發現的試探方法,培養學生提出問題、解決問題的能力和創造發明的態度;利於學生自己將知識系統化和結構化,更好地理解和鞏固知識。

發現法的缺點:花費學時太多;受學生思維發展水平限制,很多內容不適宜發現法;對教師的要求較高,如果教師沒有較高水平,那麼採用發現法進行教學是難以取得好效果的。

2.程序教學法

程序教學法來源於美國的魯萊西設計的一種進行自動教學的機器,企圖利用這種機器,把教師從教學的具體事務中解脫出來,節省時間和精力。這種設想,當時沒有引起重視和推廣。直至1945年,美國心理學家斯金納重新提出,才引起廣大心理學和教育界人士的重視。

程序教學法是指依靠教學機器和程序教材,呈現學習程序,包括問題的顯示,學生的反映和將反映的正誤情況,反饋給學生,使學習者進行個別學習的一種教學方法。程序教學主要有兩類,即直線式的程序和分支式的程序。

直線式程序是斯金納首創的。其教學過程是:把學習材料由淺入深地分為若干「小單元」,以直線式的編排,每一個小單元內容寫在一張卡片上,依次呈現給學生。在呈現每一個單元時,要求學生進行對答反應,如果答對了,機器就呈現出正確答案,然後進入下一步,否則,繼續思考回答。其模式為:①→②→③→…→(n)。


分支式程序是美國心理學家克洛德創立的。它是直線式程序的發展,採用多重選擇反應,以適應個別差異的需要。其教學過程是:將教材內容依次分為若干單元呈現給學生,在學生閱讀了一個單元的教材之後,立即對他進行測驗(測驗題有正、誤的多項選擇答案),如果選對了,就引進新的內容,進入下一單元的學習;如果選錯了,便引向一個適宜的單元,再繼續學習,或者回到先前的單元再學習一遍,然後又進行問題回答,直到回答正確後進入下一單元的學習。其模式如圖5-1。

分支式程序的進一步發展,是利用計算機進行輔助教學(CAI),這部分內容將在§ 5.4中作介紹。

程序教學法的優點:由於要求學生自己動手、動腦去獨立完成學習任務,因此有利於培養自學能力和養成自學習慣;有利於因材施教;可以排除師資條件對教學的影響,保證教學質量的提高。

程序教學法的缺點:教學過程呆板、單調,缺乏靈活性,容易束縛學生創造思維的發展,不利於能力的培養;不利於發揮教師的主導作用,缺乏師生之間的情感交流;教師難以了解學生的學習心理過程,不能對學習障礙及時排除。

3.範例教學法

範例教學法是在德國教育家瓦·根舍於20世紀50年代創立的「範例教學」理論基礎上發展起來的教學方法,指用典型範例去達到對事物一般屬性認識和理解的教學方法。範例教學法要求教師在備課時對教學內容進行以下五個方面的分析。

(1)基本原理分析。分析教材中哪些是帶有普遍意義的內容,這些內容對今後教學起什麼作用,選擇哪些範例,通過探討範例使學生掌握哪些原理、規律和方法。

(2)智力作用分析。分析課題內容對學生智力活動所起的作用。

(3)未來意義分析。分析課題內容對學生未來學習的意義。

(4)內容結構分析。分析組成整個內容的基本要素,這些要素之間的關系在教材中所處的地位;分析課題內容的整個結構。

(5)內容特點分析。分析這個課題有哪些特點,哪些內容能引起學生的興趣,通過哪些直觀手段引發學生提出問題,布置什麼作業才能使學生有效地應用知識等。

範例教學法的教學步驟分為下面四個階段。

(1)以典型範例說明事物的特徵。

(2)通過對範例的認識,歸納出一類對象的普遍特徵和本質屬性。

(3)認識事物的發展規律,掌握方法。

(4)個體體會,即通過知識應用去進一步理解和掌握所學習的基本理論和方法。

範例教學法的優點:從個別到一般的認識過程,符合低年級學生的認知規律;能調動學生學習的主動性;有利於培養學生的概括能力。

範例教學法的缺點:思維方式單一,容易造成思維定勢,不利於學生思維能力的全面發展;過份強調歸納,會削弱對學生演繹推理的訓練。並不是所有內容都能通過「範例」去教學,因為要受具體的內容和教學時間限制。

其大意;細讀是對教材逐字句地讀,鑽研教材的內容、概念、公式和法則;精讀是要概括內容,在深入了解教材的基礎上記憶。領讀階段約需一至兩周的時間。

⑼ 數學方法包括哪些

所謂方法,是指人們為了達到某種目的而採取的手段、途徑和行為方式中所包含的可操作的規則或模式.人們通過長期的實踐,發現了許多運用數學思想的手段、門路或程序.同一手段、門路或程序被重復運用了多次,並且都達到了預期的目的,就成為數學方法.數學方法是以數學為工具進行科學研究的方法,即用數學語言表達事物的狀態、關系和過程,經過推導、運算與分析,以形成解釋、判斷和預言的方法.
數學方法具有以下三個基本特徵:一是高度的抽象性和概括性;二是精確性,即邏輯的嚴密性及結論的確定性;三是應用的普遍性和可操作性.
數學方法在科學技術研究中具有舉足輕重的地位和作用:一是提供簡潔精確的形式化語言,二是提供數量分析及計算的方法,三是提供邏輯推理的工具.現代科學技術特別是電子計算機的發展,與數學方法的地位和作用的強化正好是相輔相成.
在中學數學中經常用到的基本數學方法,大致可以分為以下三類:
(1)邏輯學中的方法.例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等.這些方法既要遵從邏輯學中的基本規律和法則,又因為運用於數學之中而具有數學的特色.
(2)數學中的一般方法.例如建模法、消元法、降次法、代入法、圖象法(也稱坐標法,在代數中常稱圖象法,在我們今後要學習的解析幾何中常稱坐標法)、比較法(數學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法,以及將來要學習的向量法、數學歸納法(這與邏輯學中的不完全歸納法不同)等.這些方法極為重要,應用也很廣泛.
(3)數學中的特殊方法.例如配方法、待定系數法、加減(消元)法、公式法、換元法(也稱之為中間變數法)、拆項補項法(含有添加輔助元素實現化歸的數學思想)、因式分解諸方法,以及平行移動法、翻折法等.這些方法在解決某些數學問題時也起著重要作用,我們不可等閑視之.

⑽ 學習數學的方法有哪些

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

閱讀全文

與數學的方法有哪些內容相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:702
乙酸乙酯化學式怎麼算 瀏覽:1370
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1008
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1367
中考初中地理如何補 瀏覽:1257
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:669
數學奧數卡怎麼辦 瀏覽:1347
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1446
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:821
武大的分析化學怎麼樣 瀏覽:1210
ige電化學發光偏高怎麼辦 瀏覽:1299
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1386
化學理學哪些專業好 瀏覽:1450
數學中的棱的意思是什麼 瀏覽:1015