Ⅰ 江西數學高一數學學必修幾
高中數學必修的順序一般是一二四五三
或者是一四二五三
題主的學校應該是上學期學一四,下學期學二五,進度快的話會講必修三
進度稍微慢必修三就會留到高二上學期和選修一起學
Ⅱ 高一下數學上下學期教的內容,按順序
整個高一要學習的內容:
第一章 集合與簡易邏輯
◇ 1.1 集合 教案
◇ 1.1 集合 教案2
◇ 1.1 集合 教案3
◇ 1.2 子集、全集、補集教案
◇ 1.2 子集、全集、補集教案2
◇ 1.2 子集、全集、補集教案3
◇ 1.3 交集、並集 教案
◇ 1.3 交集、並集 教案2
◇ 1.3 交集、並集 教案3
◇ 集合小結 教案
◇ 1.4 含絕對值的不等式解法
◇ 1.4 含絕對值的不等式解法2
◇ 1.5 一元一次不等式解法
◇ 1.5 一元一次不等式解法2
◇ 1.6 邏輯聯結詞教案
◇ 1.6 邏輯聯結詞教案2
◇ 1.7 四種命題 教案
◇ 1.7 四種命題 教案2
◇ 1.8 充分條件與必要條件
◇ 1.8 充分條件與必要條件2
第二章 函數
◇ 2.1 函數 教案
◇ 2.1 函數的定義域與區間
◇ 2.2 函數的表示法教案
◇ 2.2 函數的表示法教案2
◇ 2.3 函數的單調性教案
◇ 2.3 函數的單調性教案2
◇ 2.4 反函數 教案
◇ 2.4 反函數 教案2
◇ 2.4 反函數 教案3
◇ 2.5 指數 教案
◇ 2.5 指數 教案2
◇ 2.5 指數 教案
◇ 2.6 指數函數 教案
◇ 2.6 指數函數 教案2
◇ 2.6 指數函數 教案3
◇ 2.7 對數 教案1
◇ 2.7 對數 教案2
◇ 2.7 對數 教案3
◇ 2.8 對數函數 教案
◇ 2.8 對數函數 教案2
◇ 2.8 對數函數 教案3
◇ 2.9 函數的應用舉例
◇ 2.9 函數的應用舉例2
◇ 2.9 函數的應用舉例3
◇ 函數小結教案
第三章 數列
◇ 3.1 數列 教案
◇ 3.1 數列 教案2
◇ 3.2 等差數列 教案
◇ 3.2 等差數列 教案2
◇ 3.3 等差數列的前n項和
◇ 3.3 等差數列的前n項和2
◇ 3.4 等比數列 教案
◇ 3.4 等比數列 教案2
◇ 3.5 等比數列的前n項和
◇ 3.5 等比數列的前n項和2
◇ 數列在分期付款中的應用
◇ 數列在分期付款中的應用2
◇ 數列復習小結教案
高一數學教案
第四章 三角函數
◇ 4.1 角的概念的推廣
◇ 4.1 角的概念的推廣2
◇ 4.2 弧度制 教案
◇ 4.2 弧度制 教案2
◇ 4.3 任意角的三角函數
◇ 4.3 任意角的三角函數2
◇ 4.4同角三角函數的基本關系式
◇ 4.4同角三角函數的基本關系式2
◇ 4.5 正弦、餘弦的誘導公式
◇ 4.5 正弦、餘弦的誘導公式2
◇ 4.5 正弦、餘弦的誘導公式3
◇ 4.6 兩角和與差的正弦餘弦正切
◇ 4.6 兩角和與差的正弦餘弦正切2
◇ 4.6 兩角和與差的正弦餘弦正切3
◇ 4.6 兩角和與差的正弦餘弦正切4
◇ 4.7 二倍角的正弦、餘弦、正切
◇ 4.7 二倍角的正弦、餘弦、正切2
◇ 4.7 二倍角的正弦、餘弦、正切3
◇ 正弦函數、餘弦函數的圖象和性質
◇ 正弦函數、餘弦函數的圖象和性質2
◇ 正弦函數、餘弦函數的圖象和性質3
◇ 4.9 函數的圖象 教案
◇ 4.9 函數的圖象 教案2
◇ 4.9 函數的圖象 教案3
◇ 4.10 正切函數的圖象和性質
◇ 4.10 正切函數的圖象和性質2
◇ 4.11 已知三角函數值求角
◇ 4.11 已知三角函數值求角2
第五章 平面向量
◇ 5.1 向量 教案
◇ 5.2 向量的加法與減法
◇ 5.2 向量的加法與減法2
◇ 5.3 實數與向量的積
◇ 5.3 實數與向量的積2
◇ 5.4 平面向量的坐標運算
◇ 5.4 平面向量的坐標運算2
◇ 5.5 線段的定比分點
◇ 5.6 平面向量的數量積及運算律
◇ 5.6 平面向量的數量積及運算律2
◇ 5.7 平面向量數量積的坐標表示
◇ 5.8 平移 教案
◇ 5.9 正弦定理、餘弦定理
◇ 5.9 正弦定理、餘弦定理2
◇ 5.9 正弦定理、餘弦定理3
◇ 5.10 解斜三角形應用舉例
◇ 5.10 解斜三角形應用舉例2
◇ 向量在物理中的應用
Ⅲ 高一下學期數學內容有哪些
1、集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
2、集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
3、集合中的元素具有確定性(a.a和a:a,二者必居其一)、互異性(若a:a,b:a,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
4、集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素,只要是它的元素就必須符號條件。
5、集合的表示方法:常用的有列舉法、描述法和圖文法。
《集合與函數》
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數
正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸
以上內容參考:網路-高中數學
Ⅳ 南昌十五中高一下語文、數學、英語、歷史、政治、地理學必修幾的書
語文5本必修+2本選修(史記選讀,唐詩宋詞)
英語5本必修+5本選修(時間很緊,所以一般來講選修會講的很粗,而且選修10可能不講)
數學5本必修+選修1-1和1-2
政治3本必修+2本選修 (國家和國際組織常識,公民道德與倫理常識。一般學校都會出於進度和高考拿更高分的考慮,選其中一本,文科都是這樣)
地理3本必修+選修(地理選修好像比較多,具體我也記不是很清楚了。總之有自然災害與防治,旅遊地理)
歷史3本必修+選修(歷史重大改革回眸)
Ⅳ 高一下學期數學學哪些內容
上冊主要學集合、函數和數列
下冊主要學三角函數和平面向量
沒有重點可言,因為全是重點。
函數和三角函數一定要學好,這是高二學二次函數圖象和立體幾何的基礎,可以這么說,學不好函數和三角函數的話就肯定學不好函數圖象和立體幾何。
(5)南昌高一下學期數學講哪些擴展閱讀:
三角函數
①藉助單位圓理解任意角三角函數(正弦、餘弦、正切)的定義。
②藉助單位圓中的三角函數線推導出誘導公式( 的正弦、餘弦、正切),能畫出 的圖象,了解三角函數的周期性。
③藉助圖象理解正弦函數、餘弦函數在 ,正切函數在 上的性質(如單調性、最大和最小值、圖象與x軸交點等)。
④理解同角三角函數的基本關系式:
⑤結合具體實例,了解 的實際意義;能藉助計算器或計算機畫出 的圖象,觀察參數A,ω, 對函數圖象變化的影響。
⑥會用三角函數解決一些簡單實際問題,體會三角函數是描述周期變化現象的重要函數模型。
Ⅵ 數學高一下學期學了什麼內容
數學學的是必修3 4 英語就是接著學兩本 必修 34 然後生物是 必修2 化學是 把必修1剩的解決了 然後學完必修2 語文就是必修 3 4 都是接著學 到二年級分科後才開始亂學.
Ⅶ 高一下學期數學學哪幾本書,哪些單元
一般是必修4,必修2,必修4有三角函數的兩章(一,三),平面向量,必修2有簡單幾何體,直線和圓。
Ⅷ 人教版高一下學期數學學什麼
人教版高一下學期數學學集合與函數概念,基本初等函數(Ⅰ),函數的應用
人教版高一下學期數學目錄如下:
第一章、集合與函數概念
集合
閱讀與思考,集合中元素的個數
1.2函數及其表示
閱讀與思考,函數概念的發展歷程
1.3函數的基本性質
信息技術應用,用計算機繪制函數圖象
實習作業
小結
第二章、基本初等函數(Ⅰ)
2.1指數函數
信息技術應用,藉助信息技術探究指數函數的性質
2.2對數函數
閱讀與思考,對數的發明
探究也發現,互為反函數的兩個函數圖象之間的關系
2.3冪函數
小結
復習參考題
第三章、函數的應用
3.1函數與方程
閱讀與思考,中外歷史上的方程求解
信息技術應用,藉助信息技術方程的近似解
3.2函數模型及其應用
信息技術應用,收集數據並建立函數模型
實習作業
小結
(8)南昌高一下學期數學講哪些擴展閱讀:
高一數學學習方法
1、把握教材去理解
要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習高一數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化尤其是當老師注重能力教學的時候,教材是反映不出來的。
數學能力是隨著知識的
發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題, 都應該從不同的能力角度來培養和提高。
課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。
2、認真聽課做筆記
在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。
聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。
科學的記筆記可以提高45分鍾課堂 效益。
3、提高思維敏捷力
如果數學課沒有一定的速度,那是一種無效學習。
慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高。
4、避免遺留問題
在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。
對於那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結症遺留下來,甚至沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
Ⅸ 高一下學期數學知識點總結
我也剛在學高一,找到很多知識總結,摘一些我覺得比較有用的給你吧——
第一章 集合與函數概念
一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性;3.元素的無序性 .第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A
2.「相等」關系(5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-11} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A
A∪φ= A A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
§1.2.1、函數的概念
1、 設A、B是非空的數集,如果按照某種確定的對應關系,使對於集合A中的任意一個數,在集合B中都有惟一確定的數和它對應,那麼就稱為集合A到集合B的一個函數,記作:.
2、 一個函數的構成要素為:定義域、對應關系、值域.如果兩個函數的定義域相同,並且對應關系完全一致,則稱這兩個函數相等.
§1.2.2、函數的表示法
1、 函數的三種表示方法:解析法、圖象法、列表法.
§1.3.1、單調性與最大(小)值
1、 注意函數單調性證明的一般格式:
§1.3.2、奇偶性
1、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為偶函數.偶函數圖象關於軸對稱.
2、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為奇函數.奇函數圖象關於原點對稱.