1. 如何培養學生良好的數學思維品質
一、培養思維的靈活性
思維的靈活性是指能隨事物的變化而隨機應變的及時性,以及不過多地受思維定勢的影響,善於從舊的模式或通常的制約條件中擺脫出來。養成學生數學思維的嚴謹性、深刻性和廣闊性,但是沒有發展思維的靈活性,就有可能使思維傾向於某種具體的方法和方式,片面地追求分析問題和解決問題的程式化或模式化,產生思維的惰性。
靈活的思維表現為針對知識的運用自如,善於變通和調整思路,善於運用辨讓思想進行具體問題具體分析是思維靈活性的重要表現。
二、培養數學思維的嚴謹性
思維的嚴謹性是指考慮問題的嚴密、有據。要提高學生思維的嚴謹性,必須嚴格要求,加強訓練。
首先要求學生要按步思維,思路清晰,就是要按照一定的邏輯順序進行思考問題。特別在學習新的知識與方法時,應從基本步驟開始,一步一步深入。
其次要求學生要全面、周密地思考問題,做到推理論證要有充分的理由作根據。運用直觀的力量,但不停留在直觀的認識上;運用類比,但不輕信類比的結果;審題時不但注意明顯的條件,而且留意發現那些隱蔽的條件;應用結論時注意結論成立的條件;仔細區分概念間的差別,弄清概念的內涵和外延,正確地使用概念;給出問題的全部解答,不使之遺漏。
三、培養數學思維的深刻性
思維深刻性是指思維活動的抽象程度和邏輯水平,以及思維活動的深度和難度。在數學學習中經常有學生對結論不求甚解,做練習時照葫蘆畫瓢,根本無法領會解題方法的實質,離開書本和老師就無法獨立解題。這種現象正是學生在長期的學習中缺乏思維深刻性的表現。要克服這一現象,必須有意識地經常進行思維的深刻性訓練。
1、透過現象看數學本質 能否透過表面現象,洞察數學對象的本質及聯系,是思維深刻與否的主要表現。很多的數學問題,條件關系比較隱蔽,如果只看問題的表面,是無從下手的。因此在數學學習中,要進行由表及裡的思索,抓住問題的本質和規律。
2、注意審題認真和防止思維定勢 學生在用某種思維模式多次解決同類問題而形成思維定勢之後,再遇到相類似的新問題時,往往會表現出機械套用以前思維模式的傾向,而且同一方法使用次數越多,這種傾向就越明顯。
四、培養思維的廣闊性
思維的廣闊性是指對一個問題能從多方面考慮。具體表現為對一個事實能作多方面的解釋,對一個對象能用多種方式表達,對一個題目能想出各種不同的解法。在數學學習中,注重多方位、多角度的思考方式,拓廣解題思路,可以促進學生思維的廣闊性。
五、培養思維的批判性 思維的批判性是指思維活動中善於嚴格地估計思維材料和精細地檢查思維過程。在數學教學中,學生思維的批判性表現為願意進行各種方式的檢驗和反思,對己有的數學表述或論證能提出自己的看法,不是一味盲從,思想上完全接受了東西,也要謀改善,提出新的想法和見解。
2. 小學數學如何培養學生的數學思維能力
孩子對數學的學習並不是為了擁有多少數學知識,而是在數學學習的過程中,讓孩子可以發散思維,提高數學素養,用數學思維去分析、解決實際問題。家長需要幫助孩子從小就開始鍛煉數學思維能力,這有助於孩子在學齡前後的智力開發,並且能夠影響孩子在今後的數學學習能力,直接影響孩子的數學成績。那麼怎樣提高小孩子的數學思維能力呢?
1、從實際需求出發:比如說家人去買菜用哪種方式比較快捷到達目的地,又運用哪些方法可以省錢。這些實際的生活非常能夠讓孩子思考,孩子也容易理解,往往數學思維在不知不覺中形成了 。
2、從問題的突破口出發:比如說方程類的解答,孩子遇到某個題目覺得很繁瑣,利用方程就會很簡單,當孩子遇到某些難題難以解決的時候,總會需要找到突破口,比如逆向思維、對比思維等,這些突破口的過程,本身就是一場數學思維。
3、從實際的案例出發:有很多實際的典型案例,這些案例在課本上都有,利用這些案例,看看書本上是怎麼分析的,哪怕孩子不能獨立去完成,背會本身也有好處,可惜很多人只會說束手無策,導致越來越惡化。
4、結合邏輯思維來做訓練。事實上數學思維本身就是一種邏輯思維,並且兩者相輔相成。家長可以幫助孩子選擇一些書籍,亦或是相關的邏輯訓練工具,並且總結邏輯給孩子帶來的好處等等, 用這些來指導數學思考方式。
5、鼓勵孩子多提問:不要抑制孩子在學習過程的提問,這種提問和好奇是孩子學習的動力,將知識點與孩子年齡段能接受的方法告訴孩子才是最重要的,需要多加以引導。
3. 如何培養學生數學思維
一、增強自信是解題的關鍵
在數學解題中,自信心是相當重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總能用自己所學過的知識把它解出來。要敢於做題,善於做題。這就叫做在「在戰略上藐視敵人,在戰術上重視敵人」。具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學題幾乎沒有相同的,總有一個或幾個條件不相同,因此思路和解題過程也不盡相同。
二、培養「方程」的思維能力
數學是研究事物的空間形式和數量關系的,最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關的等式:速度×時間=路程。在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學已經接觸過簡易方程,而在七年級則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一元一次方程都能順利地解出來。到了八年級、九年級還將學習解一元二次方程、二元二次方程組、分式方程,到了高中還將學習指數方程、對數方程、線性方程、參數方程、極坐標方程等。解這些方程的思想方法幾乎一致,都是通過一定的方法將它們轉化一元一次方程或是一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際運用,都需要建立方程,通過解方程求出結果。因此我們一定要將解一元一次方程和解一元二次方程教好,讓學生學好這部分內容,進而學好其他形式的方程。所謂「方程」思維就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點構建有關的方程,進而用解方程的方法解決。
三、培養「對應」的思維能力
「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」。隨著學習的深入,我們將對應擴展到對應一種關系、對應一種形式等。比如我們在計算或化簡中,在分解因式時,要用到平方差公式,公式左邊的a對應x+2,b對應y,再利用公式的右邊直接得出分解的結果(x+2+y)(x+2-y)。這就是運用「對應」的思想和方法解題。在中學數學中我們將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖像之間的對應。「對應」思想在今後的學習中將會發揮越來越大的作用。
四、培養數學「轉化」思維能力
解數學題最根本的途徑是「化難為易,化繁為簡,化未知為已知」,也就是把復雜繁難的數學問題通過一定的數學思維、方法和手段,逐漸將它轉變為一個大家熟知的簡單的數學形式,然後通過大家所熟悉的數學運算把它解決。比如,我校要擴大校園面積,需要向鎮上征地。鎮上給了一塊形狀不規則的地,如何丈量的它的面積呢?首先使用小平板儀(有條件的話,可使用水準儀或經緯儀)依據一定的比例,將實際地形繪製成紙上圖形,然後將紙上圖形分割成若干塊梯形、長方形、三角形,利用學過的面積計算方法,計算出這些圖形的面積之和,也就得到了這塊不規則地形的總面積。在這里,我們把無法計算的不規則圖形轉化成了可以計算的規則圖形面積的和或差,從而解決了土地丈量問題。另外,我們前面提到的各種多元方程、高次方程,利用「消元」、「降次」等方法,最終都可以把它們轉化為一元一次方程或一元二次方程,然後用已知的步驟或公式解決。
五、培養「數形結合」的能力
「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小兩個屬性,就可以交給數學去研究了。初中數學兩個分支——代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分。到了高中就出現了專門用代數方法研究幾何問題的一門課,叫做「解析幾何」。在建立平面直角坐標系後,研究函數的問題就離不開圖像了。往往藉助圖像能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在數學學習中,要重視「數形結合」的思維訓練,任何一道題,只要與「形」沾上了一點邊,就應該根據題意畫出草圖分析一番。這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人就會慢慢養成「數形結合」的好習慣。
4. 如何培養孩子的數學思維能力
思維是一個過程,這個過程要通過語言來完成,因而提高學生數學思維能力,首先必須訓練其數學語言表達能力。對於一道題,你是怎麼想的,把你的思考過程說出來,而且要說得正確、有條理。 第二,培養學生思考問題的方法。 1,在計算教學中,教會學生思維的程序性、方向性,即從哪裡算起,接著想什麼,再想什麼。 2,在應用題教學中,培養學生思維的有序性,即如何分析數量關系,找出題中已知條件和未知問題,並建立它們之間的聯系,利用已知條件求出未知問題。 具體做法:列表法、畫流程圖、線段圖,通過這些方法來理清思維順序,突出思維過程。 第三,加強變式教學,培養發散思維。有的學生對見過的問題會解決,但問題稍一變化就不知所措,針對這種狀況可以採用以下方法: 1,一題多解(一道問題多種解法) 2,一題多變(一道問題多種變化形式,即一道題變化成多種不同的題型) 3,一圖多畫(一個圖形抓住其本質特徵,採用不同的畫法) 4,一題多問(一個問題多種不同的說法) 5,敢於質疑(有不同意見敢於發問) 6,多設計一些開放性的題目。
5. 如何培養學生的數學思維能力
小學的應用題是培養學生思維能力的主要途徑,講好應用題、讓學生喜歡應用題,就會收到很好的效果。在講解中,嚴密的邏輯推理,舉一反三的思維擴散,都會使學生思維發生變化。給學生選擇好練習題、特別是和他們的生活學習息息相關的數學問題,都會引起他們思維的注意,引起他們學習數學的興趣,對他們的思維能力培養有非常好的作用。
6. 如何培養小學生的數學思維能力
真實的,有趣的數學故事
具體到3-6歲孩子的數學啟蒙操作層面,首先是我們選取了20個主題,主要有兩類,一類是貼近兒童日常生活的,比如食物運動汽車等;另一類是兒童感興趣的好奇的神秘的,比如恐龍宇宙科學等。然後每個主題下創作了不同的數學故事,通過故事來了解真實的世界,用數學的眼光看世界。這些故事不僅僅包含數學知識,還包含了通識教育知識,比如在《可以吃的地球》這個故事中,通過製作蛋糕來了解地球的結構組成,將球體結構和地球的知識融合在了一起。在《世界上有多少只虎鯨》中,將神秘的虎鯨與對數量的認知結合在一起。所有的數學故事都來自於真實的世界,在不同的情境中使用數學。
進階的,開放式問題
而且在每個故事後面設計了六個開放式問題,分成三個難度等級,分別對應不同的年齡段,保證3-6歲的孩子都能參與進來。其中三個問題屬於數學層面,包含了數量、計算、幾何、推理方面的核心概念;三個問題屬於語言層面,從獲取信息,解釋概念,給出觀點三個層次鍛煉批判性思維,語言類的問題也是與數學相關的,兩者相輔相成,比如有個問題是:「內部「這個詞是什麼意思,任何物體都有內部嗎,為什麼。
系統的,游戲化課程
但光有骨架還不行,還要有相應的基礎知識和能力。所以我們接下來還會設計相應的課程,每個數學知識點是一課,對應於故事問題背後的核心概念。力求簡單有效,內容包括游戲素材,游戲玩法,精選習題,生活擴展。哪個問題沒有思路了,不會了,可以快速找到對應的這節課程,然後通過游戲的方式學習,爭取下次再遇到同類問題時能夠舉一反三。
7. 如何培養數學思維能力
數學教學是數學活動的教學,即思維活動的教學。如何在數學教學中培養學生的思維能力,養成良好思維品質是教學改革的一個重要課題。孔子說:「學而不思則罔,思而不學則殆」。在數學學習中要使學生思維活躍,就要教會學生分析問題的基本方法,這樣有利於培養學生的正確思維方式。要學生善於思維,必須重視基礎知識和基本技能的學習,沒有扎實的雙基,思維能力是得不到提高的。,本文就是談談學生數學思維的培養的幾點嘗試。 1.找准數學思維能力培養的突破口。 心理學家認為,培養學生的數學思維品質是培養和發展數學能力的突破口。思維品質包括思維的深刻性、敏捷性、靈活性、批判性和創造性,它們反映了思維的不同方面的特徵,因此在教學過程中應該有不同的培養手段。 思維的深刻性既是數學的性質決定了數學教學既要以學生為基礎,又要培養學生的思維深刻性。數學思維的深刻性品質的差異集中體現了學生數學能力的差異,教學中培養學生數學思維的深刻性,實際上就是培養學生的數學能力。數學教學中應當教育學生學會透過現象看本質,學會全面地思考問題,養成追根究底的習慣。 數學思維的敏捷性主要反映了正確前提下的速度問題。因此,數學教學中,一方面可以考慮訓練學生的運算速度,另一方面要盡量使學生掌握數學概念、原理的本質,提高所掌握的數學知識的抽象程度。因為所掌握的知識越本質、抽象程度越高,其適應的范圍就越廣泛,檢索的速度也就越快。另外,運算速度不僅僅是對數學知識理解程度的差異,而且還有運算習慣以及思維概括能力的差異。因此,數學教學中,應當時刻向學生提出速度方面的要求,使學生掌握速算的要領。為了培養學生的思維靈活性,應當增強數學教學的變化性,為學生提供思維的廣泛聯想空間,使學生在面臨問題時能夠從多種角度進行考慮,並迅速地建立起自己的思路,真正做到「舉一反三」。教學實踐表明,變式教學對於培養學生思維的靈活性有很大作用。如在概念教學中,使學生用等值語言敘述概念;數學公式教學中,要求學生掌握公式的各種變形等,都有利於培養思維的靈活性。 創造性思維品質的培養,首先應當使學生融會貫通地學習知識,養成獨立思考的習慣。在獨立思考的基礎上,還要啟發學生積極思考,使學生多思善問。能夠提出高質量的問題是創新的開始。數學教學中應當鼓勵學生提出不同看法,並引導學生積極思考和自我鑒別。新的課程標准和教材為我們培養學生的創造性思維開辟了廣闊的空間。 批判性思維品質的培養,可以把重點放在引導學生檢查和調節自己的思維活動過程上。要引導學生剖析自己發現和解決問題的過程;學習中運用了哪些基本的思考方法、技能和技巧,它們的合理性如何,效果如何,有沒有更好的方法;學習中走過哪些彎路,犯過哪些錯誤,原因何在。 2.教會學生思維的方法 要學生善於思維,必須重視基礎知識和基本技能的學習,沒有扎實的雙基,思維能力是得不到提高的。數學概念、定理是推理論證和運算的基礎,准確地理解概念、定理是學好數學的前提。在教學過程中要提高學生觀察分析、由表及裡、由此及彼的認識能力。 數學概念、定理是推理論證和運算的基礎。在教學過程中要提高學生觀察分析、由表及裡、由此及彼的認識能力;在例題課中要把解(證)題思路的發現過程作為重要的教學環節,僅要學生知道該怎樣做,還要讓學生知道為什麼要這樣做,是什麼促使你這樣做,這樣想的;在數學練習中,要認真審題,細致觀察,對解題起關鍵作用的隱含條件要有挖掘的能力,會運用綜合法和分析法,並在解(證)題過程中盡量要學會用數學語言、數學符號進行表達。此外,還應加強分析、綜合、類比等方法的訓練,提高學生的邏輯思維能力;加強逆向應用公式和逆向思考的訓練,提高逆向思維能力;通過解題錯、漏的剖析,提高辨識思維能力;通過一題多解(證)的訓練,提高發散思維能力等。 3.善於調動學生內在的思維能力 一要培養興趣,讓學生迸發思維。教師要精心設計,使每節課形象、生動,並有意創造動人情境,設置誘人懸念,激發學生思維的火花和求知的慾望,還要經常指導學生運用已學的數學知識和方法解釋自己所熟悉的實際問題。 二要分散難點,讓學生樂於思維。對於較難的問題或教學內容,教師應根據學生的實際情況,適當分解,減緩坡度,分散難點,創造條件讓學生樂於思維。 三要鼓勵創新,讓學生獨立思維。鼓勵學生從不同的角度去觀察問題,分析問題,養成良好的思維習慣和品質;鼓勵學生敢於發表不同的見解,多贊揚、肯定,促進學生思維的廣闊性發展。 當然,良好的思維品質不是一朝一夕就能形成的,但只要根據學生實際情況,通過各種手段,堅持不懈,持之以恆,就必定會有所成效。
8. 如何培養學生的數學思維方式
一、注重說的過程,做到思維有形
要使學生建立清晰而又深刻的數學概念,教學時人們常常採用直觀演示、動手操作等活動,為學生形成抽象的概念提供大量的感性材料。學生形成概念的過程,一般按「實踐操作―形成表象―語言內化―抽象概括」的思維程序進行。
二、歸納說的方法,做到思維有路
教師在傳授知識的同時,有必要對思維方法進行指導,這樣不僅學生能牢固掌握知識,而且也能開拓分析問題、解決問題的思路,提高思維水平。
三、總結說的規律,做到思維有序
教學時通過創設類比遷移的情境,引導學生通過知識的同化,讓學生把所學的知識與認知結構中已有的相關知識進行聯系和辨別,讓新知識在頭腦里精確明晰,實現知識的遷移。
9. 在小學數學教學中如何培養學生的思維能力
(一)運用多媒體教學手段滲透數學思想:在小學階段,數學思維能力的培養,要堅持寓教於樂的原則。通過多媒體和網路平台收集並呈現有趣的數學解決實際問題的內容。例如,將動畫片中的有關數學的內容剪輯下來,在課前或者課間播放,既能夠讓學生的精神得到放鬆,又能夠讓學生在觀看動畫的時候感受數學的實用性。
(二)套構的方式強化數學模型:套構的方式與類比的方法類同,是根據兩類或兩個對象的相似或相同點,推斷他們其他方面也相似或相同的思想方法是自特殊至特殊的方法在解決數學問題時。利用類比思想可發現新問題,所得結論雖具有一定的偶然性但卻可為該問題的深入研究提供線索為思維指明方向這對於問題的最終解決極為有利放而類比是數學發現中最基本、最重要方法在小學數學教學中教師應在結構特徵上、數量關繫上、算理思路與思想內容上進行類比思想的滲透教學。例如,在加法交換律的學習中,可以充分利用類比的方式。算式1+2+3+4+5+6+7+8+9+10=?這個題的解法有很多種,可以將各個加數依次相加,最終得出結構。也可以用加法交換率將算式進行加數上的調整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套構加法交換率在連加算式中的應用,能夠使得計算更加簡便。套構既定數學定律或者定律,不但有利於學生鞏固所學的知識,而且能夠讓學生養成用數學模型來解決實際問題的意識。這樣有利於學生後續數學建模思想的學習和研究。
(三)逆向思維的方法:逆向思維是發散式思維的一種其基本特徵是從已有思路的反方向去思索問題這種思維形式反映了思維過程的間斷性、突變性、反聯結性是對思維慣性的克服其優點在於首先有利於克服慣常思維的保守性,開拓新的數學領域其次有利於糾正慣常思維所造成的錯誤認識,開辟數學新方向最後有利於排除慣常思維過程中。逆向思維的方法多用於應用題的解答。例如,張蘭在暑假閱讀文學名著《三國演義》,在第一周,他閱讀了一本書的一半少40頁,在第二周,他閱讀了剩下的一半多10頁,第三周他閱讀了30頁,至此全部看完。問題是《三國演義》這本書一共多少頁?利用逆向思維來解答,第二周閱讀了剩下的一半多10頁,第三周閱讀了30頁看完,即30頁加10頁正好是剩下的一半,也就是40頁;剩下的書頁數是80頁;第一周閱讀了書的一半少40頁,即比80頁少40頁,也就是第一周閱讀了40頁。所以這本書總共是80頁加上40頁,等於120頁。逆向思維這種數學思維的好處在於可以根據問題和題中已知的部分條件來還原出潛在的條件,運用還原出的條件可以繼續向前堆。如此這般環環相扣,最終就能解決問題。
(四)聯系生活創設情境:人們在學習比較難的知識時,其最大的動力是能夠解決自己的實際問題。為了培養學生的數學思維,可以通過將數學內容與學生日常生活相聯系的方法。這樣學生在情境中可以意識到如果解決這個問題會給其生活帶來益處,所以要努力學生,最終養成用數學思維解決問題的好習慣。相反,在數學課堂上,聯系生活情景,能夠讓孩子們利用生活常識和生活經驗更好地去理解數學解題方法。例如,關於三角形具有穩定性的教學內容中,教師可以讓學生用三個磁扣將掛圖固定在黑板上,為了配合教學活動,可以增加掛圖的重量,這樣可以使得三個磁扣平行放置無法穩定住掛圖。學生通過實驗發現,只有三個磁扣組成三角形時才能夠穩定掛圖。教學內容講授結束後,還要引導學生聯系生活實際。比如,用三個釘子來固定一個鏡框,釘子的位置怎麼安排最合理。
10. 如何培養學生良好的數學思維習慣
一、培養良好的思維習慣
據調查研究,良好的思維習慣一般包括四大塊:深刻性、敏捷性、靈活性和獨創性,當然,這些良好的思維習慣養成要經過反復的練習而形成,它們是條件反射的長期積累,是反復強化的產物,因此,家長在平時引導孩子學習時,要注重培養孩子這四方面的能力。
家長們也許會問了,怎樣培養孩子們良好的思維習慣呢?首先,要引導孩子在做題時養成全神貫注、心無旁騖的專注力,不難發現,孩子們回家做作業時總不能專注於眼下的作業,更多的可能是一邊做作業,一邊看手機或聽歌,這樣對於思考數學來說是非常不利的,家長要及時制止孩子這樣的做法。當然,在孩子全身心投入學習以後,家長一定不能去中斷他的投入思考狀態。
二、學會質疑,勇於提問
問題是所有答案的來源,在每一次考試試卷發放下來之後,家長除開根據情況分析和激勵孩子之外,更別忘了讓孩子自己去分析自己的錯題,可以通過提問的方式來逐步引導孩子分析錯題,歸納總結出一些解題技巧,這還不算,我們都知道,一道題目不止一種解題方法,
要想讓孩子學會提問,父母首先要做到善於向孩子提問,經常和孩子談論一些他們感興趣的話題,從而引導孩子學會思考和提問。在提問孩子的過程中,內容要符合孩子的年齡和知識范圍,不能提得過難或過易,不然會挫傷孩子思考的積極性。孩子經常處於提問和思考的環境之中,自然會慢慢學會提出自己的疑問,進而養成質疑的習慣。
父母要掌握和孩子說話的技巧,啟發、引導孩子的好奇心,比如不馬上為孩子提供答案,而是進一步提出疑問和懸念等方式,激起孩子更強的求知慾。
孩子對事物提出自己的質疑時,父母要給予適當的賞識,讓孩子更加大膽地去質疑。父母千萬不要否定孩子的意見,要站在孩子的角度,從他們的年齡特點和思考方式出發,積極肯定他們的想法。