『壹』 初中數學史的相關內容,應該講些什麼
在課標中要求適當地加入數學文化,如在講解函數時可以適當的引入函數的發展歷史,增加學生的學習興趣。
『貳』 世界數學史分為哪四個時期
學術界通常將數學發展劃分為以下四個時期:數學形成時期、初等數學時期、變數數學時期、近現代數學時期。
一、數學形成時期;萌芽時期是最初的數學知識積累時期,是數學發展過程中的漸變階段。這一時期的數學知識是零散的、初步的、非系統的,但是這是數學發展史的源頭,為數學後續的發展奠定了基礎。
這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
中國歷史悠久,發掘出來的大量石器、陶器、青銅器、龜甲以及獸骨上面的圖形和銘文表明: 幾何觀念遠在舊石器時代就已經在中國逐步形成。早在五六千年前,古中國就有了數學符號,到三千多年前的商朝,刻在甲骨或陶器上的數字已十分常見。
這時,自然數記數都採用了十進位制。甲骨文中就有從一到十再到百、千、萬的十三個記數單位。這說明古中國也形成了數學的基本概念。
二、初等數學時期(公元前600年至17世紀中葉);初等數學時期從公元前五世紀到公元十七世紀,延續了兩千多年、由於高等數學的建立而結束。
這個時期最明顯的結果就是系統地創立了初等數學,也就是現在中小學課程中的算術、初等代數、初等幾何(平面幾何和立體幾何)和平面三角等內容。
初等數學時期可以根據內容的不同分成兩部分,幾何發展的時期(到公元二世紀)和代數優先發展時期(從二世紀到十七進紀)。又可以按照歷史條件的不同把它分成「希臘時期」、「東方時期」和「歐洲文藝復興時期」。
希臘時期正好和希臘文化普遍繁榮的時代一致。希臘是一個文明古國,但是,和四大文明古國巴比倫、埃及、印度、中國相比,在文明史上,希臘文明要晚一段時間。
三、變數數學時期(17世紀中葉至19世紀20年代);變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。它是數學的一個基礎學科。
內容主要包括極限、微分學、積分學、方程及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。
積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
四、近現代數學時期(19世紀20年代);現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎。代數、幾何、分析中的深刻變化為特徵。近代數學是研究數量、結構、變化、空間以及信息等概念的一門學科。
17世紀,數學的發展突飛猛進,實現了從常量數學到變數數學的轉折。中國近代數學的研究是從1919年五四運動以後才真正開始的。
(2)初中數學數學史有哪些擴展閱讀:
歷史介紹:
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。
史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。
當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。
『叄』 有關初中數學史上的數學成就和數學家及其著作
1.數學著作《周髀算經》
《周髀算經》應該算是我國更早的一部數學著作,距今已經有兩千年左右的歷史了。在當時社會的發展經濟低下的條件下,人們都是採用用抄寫的方式進行學習並且把數學知識傳授給下一代的。由此可見《周髀算經》中勾股定理的的問世對人們在進行計算等方式方法上有很大的幫助。那麼我國古代有哪些知名的數學著作流傳至今呢《周髀算經》可以算的上其中的一部。
2.《九章算數》
《九章算數》也是我國古代有哪些知名的數學著作流傳至今中的很重要的一部。其對於我過古代數學以後的發展有著很深遠的影響,自從《九章算術》問世以後,一千幾百年間以來一直被直接用在數學教育的教科書本里。在一些與中國臨近的國家中也都曾經拿它當教科書來教授學生學習數學所以《九章算術》在我國古代數學著作中有著很重要的地位。
3.《宋元算書》
經過從漢到唐一千多年的發展已經形成了獨有的特點,在這個基礎上到了宋元時期問世的《宋元算書》給了更好的詮釋。《宋元算書》其實是一直流傳的四大家的數學著作,因其同一個時期出現取得的成就又很高可以在中國古代算是很輝煌的時刻。那麼我國古代有哪些知名的數學著作流傳至今呢?《宋元算書》也是其中的一個部分。
數學家:
1.賈憲,北宋人,約於1050年左右完成〈〈黃帝九章算經細草〉〉,原書佚失,但其主要內容被楊輝(約13世紀中)著作所抄錄,因能傳世。楊輝〈〈詳解九章演算法〉〉(1261)載有「開方作法本源」圖,註明「賈憲用此術」。這就是著名的「賈憲三角」,或稱「楊輝三角」。〈〈詳解九章演算法〉〉同時錄有賈憲進行高次冪開方的「增乘開方法」。
2.秦九韶:〈〈數書九章〉〉
3.李冶:《測圓海鏡》——開元術
4.朱世傑:《四元玉鑒》
5.祖沖之是我國傑出的數學家,其主要貢獻在數學、天文歷法和機械三方面。
『肆』 數學史研究的內容包括哪些
數學史是研究數學科學發生發展及其規律的科學,簡單地說就是研究數學的歷史。它不僅追溯數學內容、思想和方法的演變、發展過程,而且還探索影響這種過程的各種因素,以及歷史上數學科學的發展對人類文明所帶來的影響。因此,數學史研究對象不僅包括具體的數學內容,而且涉及歷史學、哲學、文化學、宗教等社會科學與人文科學內容,是一門交叉性學科。
數學史既屬史學領域,又屬數學科學領域,因此數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段,在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。
『伍』 初中數學中的數學史
最早是起源於希臘的,高斯阿,歐幾里德的幾何原本阿…
到了大學就熟悉咯
『陸』 數學史的發展大致可以分為幾個時期分別有哪些代表人物
1 (前3500-前500)數學起源與早期發展:古埃及數學、美索不達米亞(古巴比倫)數學
2(前600-5世紀)古代希臘數學:論證數學的發端、歐式幾何
3(3世紀-14世紀)中世紀的中國數學、印度數學、阿拉伯數學:實用數學的輝煌
4(12世紀-17世紀)近代數學的興起:代數學的發展、解析幾何的誕生
5(14世紀-18世紀)微積分的建立:牛頓與萊布尼茨的微積分建立
6(18世紀-19世紀)分析時代:微積分的各領域應用
7(19世紀)代數的新生:抽象代數產生(近世代數)
8(19世紀)幾何學的變革:非歐幾何
9(19世紀)分析的嚴密化:微積分的基礎的嚴密化
10二十世紀的純粹數學的趨勢
11二十一世紀應用數學的天下
以上是按數學發展的脈絡進行劃分的,不是按時間順序,時代也都標注了.
如果在簡單說就是 1古代數學 希臘的論證數學與中國的實用數學的起源發展
2近代數學 微積分的發現、應用、嚴密化
3現代數學 對數學的基礎的思考
其他的都是這三個大的數學發展脈絡的附屬品,貫穿數學發展的思想只有2個,就是希臘貴族式的論證數學與中國平民是的實用數學的思想的起源、發展、相互影響.(其中貴族數學是說希臘貴族人研究數學,平民不接觸)
『柒』 初中數學中涉及到的數學史,如勾骨定理運用趙爽炫圖
數學界第一次危機,無理數的出現。
歐幾里得《幾何原本》關於三角之類的知識
三角函數最早是天文學的分支,由阿拉伯數字家提出
方程思想在我國古代的《算經》中已有涉及