導航:首頁 > 數字科學 > 關於什麼是數學的論文

關於什麼是數學的論文

發布時間:2022-07-25 18:30:23

⑴ 數學小論文 500字左右

數學小論文一
關於「0」

0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」

「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。

「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……

愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。

數學小論文二
各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.

數學小論文三
數學是什麼
什麼是數學?有人說:「數學,不就是數的學問嗎?」

這樣的說法可不對。因為數學不光研究「數」,也研究「形」,大家都很熟悉的三角形、正方形,也都是數學研究的對象。

歷史上,關於什麼是數學的說法更是五花八門。有人說,數學就是關聯;也有人說,數學就是邏輯,「邏輯是數學的青年時代,數學是邏輯的壯年時代。」

那麼,究竟什麼是數學呢?

偉大的革命導師恩格斯,站在辯證唯物主義的理論高度,通過深刻分析數學的起源和本質,精闢地作出了一系列科學的論斷。恩格斯指出:「數學是數量的科學」,「純數學的對象是現實世界的空間形式和數量關系」。根據恩格斯的觀點,較確切的說法就是:數學——研究現實世界的數量關系和空間形式的科學。

數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學。

純粹數學也叫基礎數學,專門研究數學本身的內部規律。中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學。純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式。例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系。

應用數學則是一個龐大的系統,有人說,它是我們的全部知識中,凡是能用數學語言來表示的那一部分。應用數學著限於說明自然現象,解決實際問題,是純粹數學與科學技術之間的橋梁。大家常說現在是信息社會,專門研究信息的「資訊理論」,就是應用數學中一門重要的分支學科, 數學有3個最顯著的特徵。

高度的抽象性是數學的顯著特徵之一。數學理論都算有非常抽象的形式,這種抽象是經過一系列的階段形成的,所以大大超過了自然科學中的一般抽象,而且不僅概念是抽象的,連數學方法本身也是抽象的。例如,物理學家可以通過實驗來證明自己的理論,而數學家則不能用實驗的方法來證明定理,非得用邏輯推理和計算不可。現在,連數學中過去被認為是比較「直觀」的幾何學,也在朝著抽象的方向發展。根據公理化思想,幾何圖形不再是必須知道的內容,它是圓的也好,方的也好,都無關緊要,甚至用桌子、椅子和啤酒杯去代替點、線、面也未嘗不可,只要它們滿足結合關系、順序關系、合同關系,具備有相容性、獨立性和完備性,就能夠構成一門幾何學。

體系的嚴謹性是數學的另一個顯著特徵。數學思維的正確性表現在邏輯的嚴謹性上。早在2000多年前,數學家就從幾個最基本的結論出發,運用邏輯推理的方法,將豐富的幾何學知識整理成一門嚴密系統的理論,它像一根精美的邏輯鏈條,每一個環節都銜接得絲絲入扣。所以,數學一直被譽為是「精確科學的典範」。

廣泛的應用性也是數學的一個顯著特徵。宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。20世紀里,隨著應用數學分支的大量涌現,數學已經滲透到幾乎所有的科學部門。不僅物理學、化學等學科仍在廣泛地享用數學的成果,連過去很少使用數學的生物學、語言學、歷史學等等,也與數學結合形成了內容豐富的生物數學、數理經濟學、數學心理學、數理語言學、數學歷史學等邊緣學科。

各門科學的「數學化」,是現代科學發展的一大趨勢。

⑵ 關於數學論文

大家通常會認為小學數學只是加減乘除的累積,是一門理性的學科,只重視了表面的數字運算,卻很容易就忽視了數學與其他科目之間的聯系,以及小學數學對孩子邏輯思維能力的訓練。邏輯思維能力並不像人們想像的那樣固化,它是可以通過後期培養的,並且會逐漸成為幫助人們理清思路解決問題的法寶之一。

一、什麼是數學思維能力?

思維是人腦對客觀事物的一般特殊性和規律性的一種間接的、概括的反映過程。數學思維是對數學對象(空間形式、數量關系、結構關系等)的本質屬性和內部規律的間接反映,並按照一般思維規律認識數學內容的理性活動。

二、培養數學思維能力的各種好處

首先,對孩子來講,良好的數學思維能力可以幫助他們快速獲取新知識、更好地進行創造性學習,也屬於智力發展的核心;對教師來講,培養孩子的數學思維能力能夠有效提高教學效益。為了教師和學生之間實現更加高水平的教、學平衡,提高學生數學思維能力刻不容緩。當然,習慣不是三兩天就能養成的,更何況數學思維習慣,它的養成需要落實到平時的學習生活中去,從思維品質的形成開始。

4、培養思維的廣闊性

思維的廣闊性是指對一個問題能從多方面考慮。具體表現為對一個事實能作多方面的解釋,對一個對象能用多種方式表達,對一個題目能想出各種不同的解法。在數學學習中,注重多方位、多角度的思考方式,拓廣解題思路,可以促進學生思維的廣闊性。

5、培養思維的批判性

思維的批判性是指思維活動中善於嚴格地估計思維材料和精細地檢查思維過程。在數學學習的過程中,學生要善於從已有的答案和解題過程中提煉出自己想要的東西,發表自己的見解。不能一味盲從,要學會用批判性的思路去進行各種方式的反思和檢驗。就算思想上完全接受了東西,也要謀改善,提出新的想法和見解。

以上五種思維品質是提高數學思維能力的必要途徑,但大家切勿忽視了一點,就是這五大思維品質之間的緊密聯系,不可分一而行,否則會很被思維定勢所牽制,出現機械套用之前思維模式的傾向,並且同一種方法使用的次數越多,這種傾向就會越明顯。

我們就如何養成學生良好的數學思維習慣,討論了五種主要的思維品質及培養方法。而這五種思維品質是最為重要的。它們之間互相聯系,密不可分。除了嚴謹性、廣闊性、靈活性、批判性,還有探討性、獨創性、目的性等。

⑶ 數學的重要性(論文1000字)

數學在人類文明的發展中起著非常重要的作用,數學推動了重大的科學技術進步。但在歷史上, 限於技術條件,依據數學推理和推算所作的預見,往往要多年之後才能實現。數學為人類生產和生活 帶來的效益容易被忽視。進入二十世紀,尤其是到了二十世紀中葉以後,科學技術發展到這一步:數 學理論研究與實際應用之間的時間差已大大縮短,特別是當前,隨著電腦應用的普及,信息的數字化 和信息通道的大規模聯網,依據數學所作的創造設想已經達到可即時試驗、即時實施的地步。數學技 術將是一種應用最廣泛、最直接、最及時、最富創造力和重要的實用技術,
一、數學與科學技術進步
二十世紀科學技術進步給人類生產和生活帶來的巨大變化確實令人贊嘆不已。從遠古時代 起一直是人們幻想的「順風耳」,「千里眼」,「空中飛行」和「飛向太空」都在這一世紀成為現實。回 顧二十世紀的重大科學技術進步,以下幾個項目元疑是影響最大的,而數學的預見和推動作用是 非常關鍵。
(1)先有了麥克斯韋方程人們從數學上論證了電磁波,其後赫茲才有可能做發射電磁波的實 驗,接著才會有電磁波聲光信息傳遞技術的發展。
(2)愛因斯但相對論的質能公式首先從數學上論證了原子反應將釋放出的巨大能量,預示了 原子能時代的來臨.隨後人們才在技術上實現了這一預見,到了今天,原子能已成為發達國家電 力能源的主要組成部分。
(3)牛頓當年已經通過數學計算預見了發射人造天體的可能性,差不多過了將近三個世紀, 人們才實現了這一預見。
(4)電子數字計算機的誕生和發展完全是在數學理論的指導下進行的。數學家圖靈和馮諾依 曼的研究對這一重大科學技術進步起了關鍵性的推動作用。
(5)遺傳與變異現象雖然早就為人們所注意。生產和生活中也曾培養過動植物新品種。遺傳 的機制卻很長時間得不到合理解釋,十九世紀60年代,孟德爾以組合數學模型來解釋他通過長 達8年的實驗觀察得到的遺傳統計資料,從而預見了遺傳基因的存在性。多年以後,人們才發現 了遺傳基因的實際承載體,到了本世紀50年代沃森和克里發現了DNA分子的雙螺旋結構。這以 後,數學更深刻地進入遺傳密碼的破譯研究。
數學是人類理性思維的重要方式,數學模型,數學研究和數學推斷往往能作出先於具體經驗 的預見。這種預見並非出於幻想而是出於對以數學方式表現出來的自然規律和必然性的認識,隨 著科學技術的發展,數學、預見的精確性和可檢驗性日益顯示其重意義。
二、時代大潮的潮頭
我們面臨一個科學技術迅猛發展的時代。信息的數字化和信息的數學處理已經成為幾乎所 有高科技項目共同的核心技術。從事先設計、制定方案,到試驗探索、不斷改進,到指揮控制、具體 操作,處處倚重於數學技術。眾多新聞報道反映出這一時代大潮洶涌澎湃的勢頭。下面列舉的僅 僅是其中一小部分。
(1)數學技術已經成為工業新產品研製設計的重要關鍵技術。1994年4月9日,被稱為「百 分之百數字化確定」的波音777型飛機舉行盛大隆重的出廠典禮.在過去,進行新機型設計,必須 對模型構件和樣機反復作強度試驗和空氣動力學性。:試驗。稍有不妥,就必須改變設計再來一輪 試驗。新機種的研製周期長達十餘年,消耗大量原材料和能源,採用了數學技術以後,所有的試驗 可以通過精確設定的數學模型在計算機中進行,探索和修改都可以通過數學指令去實現。新機種 的研製周期從十多年縮短到三年半,大幅度節約了原材料和能源。
(2)許多國家認識到,發展高清晰度電視是未來經濟技術競爭的主戰場之一。日本和美國都 投入大量資金和人力進行有關研究,日本起步最早,但所研究的是模擬式的;美國雖然起步稍晚, 但所研究的是數字式的。經過多年的較量,數字式研究以其高度優越性取得關鍵性勝利。1994年 2月24日《人民日報》報道:日本政府正式宣布,轉向研究數字式高清晰度電視,承認數字式因其 優越性而得到世界多數國家贊同,很可能成為未來的國際標准。
應該指出,電視屏幕不僅是現代人們日常生活所不可缺少的,而且可能通過聯網成為信息傳 遞處理的工作面。幾乎所有重要的工作崗位都將與之有關。數學技術在如此重要項目的激烈較量 中起了決定作用。
(3)199=年的海灣戰爭是一場現代高科技戰爭,其核心技術竟然也是數學技術。這一事實引 起人們不小的驚訝。美國總結海灣戰爭經驗得出結論是:「未來的戰場是數字化的戰爭」。
干擾和失真是電磁波通信的一大難題。早在六十年代太空開發競爭的初期,美國施行。『阿波羅登登月計劃時,就已經意識到:由於太空中過強的干擾,無論依靠怎樣精密的電子硬體設備 ,也 無法收到任何有用的信息,更不用說操縱控制了,採用了信息數字化、糾錯編碼、數字濾波等一整套數學通訊技術和數學控制技術之後,送人登月的計劃才得以順利完成,二十年後,在海灣戰爭 中,多國部隊方面使用這一套技術把對方干擾得既聾又瞎,卻能讓自己方面的信息暢通無阻。采 用精密酌數學技術,可以在短短數十秒的時間內准確攔截對方發射的導彈,又可以引導對方發射 導彈准確擊中對方的目標。也正是這一套信息數字化的數學技術,在開發高清晰度電視的競爭中 取得壓倒性的勝利。開發一種數學技術可以在,。此眾多方面施展效用,足見數學的廣泛適用性。
(4)1995年1月,在販神大地震之後,美國利用數學模型進行地震預測,預告本世紀末加州南部可能發生大地震。
(5)1995年3月,我國中央人民廣播電台宣布啟用數字式轉播方式,指出以前的模擬式轉播 方式效果差,所以改用新的轉播方式。
(6)1995年6月,歐州聯盟開會研討未來數字化通信的統一制式。
(7)1996年2月,我國電子工業部宣布「九五計劃」開發重點:數字化信息技術。所訂的兩個重 點研製項目是:數字式高清晰度電視接受機樣機和數字式激光碟。
(8)1996年4月,我國國家科委發布招標公告,正式宣布數字式高清晰度電視開發項目。
三、當代與未來的發展倚重數學
僅以幾件事為例就能清楚地看到數學對當代人們的生產和生活所起的重要作用。當代的生 產和生活離不開石油,石油勘探和生產需要了解地層結構。多年以來已經發展了一整套數學模型 和數學程序。人們發射地震波,然後將各個層面反射回來的信息收集起來力。以數學處理,就能將 地層各個剖面的圖像和地層結構的全貌展現出來。這已是目前石油勘探與生產普遍採用的數學 技術。無獨有偶,涉及到人的生命也有類似的情況,醫生需要了解病人軀體內部和器官內部的狀 況與變異,以前的調光片將骨骼和各種器官全都重疊在一起,往往難以辨認)現在也有了一整套 數學方案。藉助了精密設備收集射線穿透人體或核磁共振帶出的信息力。以數學處理就能將人體各個削麵的狀況清晰地層現出來,需要了解哪個層面就可以調出哪個層面的圖片來,關繫到人們 的生產與生活,這樣的例證很多很多。
在涉及生存與發展的關鍵時刻,特別是在涉及人類命運的緊要關頭,數學也起著非常重要的 作用。在進入本世紀最後十年的時候,美國國家研究委員會公布了兩份重要報告《人人關心數學 教育的未來》和《振興美國數學—— 90 年代的計劃》.兩份報告都提到:近半個世紀以來,有三個時 期數學的應用受到特別重視,促進了數學的爆炸性發展,「第二次世界大戰促成了許多新的強有 力數學方法的發展……「由於蘇聯人造衛星發射的刺激,美國政府增加投入促進了數學研究與數 學教育的發展」,「計算機的使用擴大了對數學的需求」.在二次世界大戰太平洋戰場的關鍵時刻, 由於採用數學方法破譯日軍密碼,美國海軍才能在艦只力量對比絕對劣勢的情況下,贏得中途島 海戰的勝利,殲滅日本聯合艦隊的主力,扭轉整個太平洋戰局。在關系人類命運的二次世界大戰 中,美國幾乎是整個反法西斯戰線的後勤補給基地。到了反攻階段,要組織跨越兩個大洋的大規 模行動,物資調運和後勤支援成了非常關鍵的問題,這刺激了有關數學方法的迅速發展。這期間 發展起來並且在戰後迅速普及到各個方面的線性規劃實用數學技術,為人類帶來了數以千億計 的巨大效益。到了1957年,蘇聯將第一顆人造衛星迭人太空,震撼了美國朝野。意識到有關數學 應用方面的差距,美國政府加大投入,促進了數學研究與數學教育的迅速發展,隨著計算機的發 展,對數學有了空前的需求,刺激數學進入了第三個大發展的時期。
已經有了很多很多極有說服力的例證,說明無論在日常的生產和生活中,還是在涉及生存和 發展的關鍵時刻,數學都起著非常重要的作用,在新世紀即將到來之前科學技術和生產的發展對 數學提出了空前的需求,我們必須把握時機增大投入,加強數學研究與數學教育,提高全民族的 數學素質,才能更好地迎接未來的挑戰。

⑷ 數學論文是什麼

現代建構主義的學習理論認為,知識並不能簡單地由教師或其他人傳授給學生,而只能由每個學生依據自身已有的知識和經驗主動地加以建構;同時,讓學生有更多的機會去論及自己的思想,與同學進行充分的交流,學會如何去聆聽別人的意見並作出適當的評價,有利於促進學生的自我意識和自我反省。從而,數學素質教育中教師的作用就不應被看成「知識

_blank>數學素質教育中教師的作用就不應被看成「知識的授予者」,而應成為學生學習活動的促進者、啟發者、質疑者和示範者,充分發揮「導向」作用,真正體現「學生是主體,教師是主導」的教育思想。

全面推進數學素質教育,使學生成為積極的探索者、思考者,必須重視學生「學」的過程,抓好學生數學學習中的「讀、聽、講、寫、用」。

1.學習中的「讀」

現代社會已進入信息化時代,要求人們不僅要「學會」,更要「會學」。「會學」的基礎當是會「讀」,包括:
1.1讀教材是學生學習數學的主要材料,它是數學課程教材編制專家在充分考慮學生生理心理特徵、教育教學質量、數學學科特點等眾多因素的基礎上精心編寫而成的,具有極高的閱讀價值。讀教材包括課前、課堂、課後三個環節。課前讀教材屬於了解教材內容,發現疑難問題;課堂讀教材則能更深刻地理解教材內容,掌握有關知識點;課後讀教材是對前面兩個環節的深化和拓展,達到對教材內容的全面、系統的理解和掌握。
1.2讀書刊 除讀教材外,學生應廣泛閱讀課外讀物,如上海教育出版社出版的「初、高中學生數學課外閱讀系列」叢書、《中學生數學》雜志等。即如讀報也不僅能使學生關心國內外大事,也能使學生關注我們日常生活中的數學,捕捉身邊的數學信息,體會數學的價值,了解數學研究的動態。然而,與各種各樣的復習資料、習題集相比,滲透現代科技的高質量的數學課外讀物實在太少了。
數學學習中的「讀」,不同於讀小說書,常需紙筆演算推理來「架橋鋪路」,還需大腦建起靈活的語言轉化機制。

2. 數學學習中的「聽」

數學學習中的「聽」,主要指聽課,它是學生獲取知識的重要環節,也是學
生系統學習知識的基本方法。聽課不僅指聽老師上課,而且包括聽同學的發言。
2.1 聽老師上課主要是聽老師上課的思路,即發現問題、明確問題、提出假設、檢驗假設的思維過程。既要聽老師講解、分析、發揮時的每一句話,更要抓住重點,聽好關鍵性的步驟,概括性的敘述。特別是自己讀教材時發現或產生的疑難問題。
2.2 聽同學發言 傾聽和接受他人的數學思想和方法,不僅是聽老師上課,也包括聽同學的發言。同學間的思想交流更能引起共鳴。從中可以了解其他同學學習數學和思考問題的方法,加之老師適時的點撥和評價,有利於自己開闊思路、激發思考、澄清思維、引起反思。學會傾聽老師和同學的意見,反思自己的想法,有助於發展學生良好的個性,培養團結協作的精神,增強群體凝聚力。

⑸ 關於數學小論文

數學小論文今天,在我們數學俱樂部里,老師給我們研究了一道有趣的題目,其實是一道有些復雜的找規律題目,題目是這樣的:「有一列數:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。這列數字中前240個數字的和是多少?」我一拿到題目,心裡想到,這題目肯定要按照規律來做。開始我便先試著先3個一組來求和,6,5,10,9,12,15,14……。這樣一看,這些數字各有特徵,關鍵就是找不出合適的規律。於是,我又找4個一組來求和,8,10,12,16,20……。仔細一看,好像也沒什麼規律,我只好再試著找5個一組來求和,9,14,19,24……,這樣一來就非常明顯的看出它們是等數列,我非常高興,再把240÷5=48(組),5個一組,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那麼就可以求出末項的和,9+47×5=244,把首項加末項的和乘項數除以2,(9+244)×48÷2=6072。這樣就完成了! 然後,我又發現每組開頭第一個數字恰好分別是1,2,3,4……48,那麼另一種方法就產生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。這樣想也合乎情理,也是一個理得清楚而且又實用的方法! 後來,我又發現有N組時,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N組數的和,比如(1+2+3+4+……+48)×5+4×48=6072。這個規律也是要通過不斷來細心觀察與研究得來的,這個規律雖然有些抽象,但如果是自己弄明白了,那還要比其他兩種方法更容易些。 我做的只是其中的三種解法,其實方法還有很多,但是只要靠自己來尋找其中的規律,解其中的奧秘,你會發現樂趣無窮。 生活中的數學「對我來說什麼都可以變成數學。」數學家笛卡兒曾這樣說過。「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,日用之繁,無處不用數學。」我國家喻戶曉的數學家華羅庚也曾下過這樣的結論。的確,正如兩位前輩所說,數學與我們的生活息息相關,數學的腳步無處不在。 2006年已經接近尾聲了,迎面而來的是新的一年——2007年。行走在繁華的大街上,隨處可見商家打出的「滿400送400」,「滿300送300」的促銷招牌。「這真實惠!」消費者們蜂擁而至,商場里人山人海,搶購成風。此情此景,真讓人以為回到了物資短缺的年代。實際上商家心裡早打好了如意算盤。俗話說:只有買虧,沒有賣虧,「滿400送400元券」只是商家的一種促銷手段,其中暗藏著數學問題,暗藏著商業機密,暗藏著許多玄機。 去年,我們一家三口,也在新年之際在商場里「血拚」,當時是滿400送400元券。我們先用980元買了一件蘋果牌的皮夾克給爸爸,送來了800元購物券。我們並沒有過分浪費,花了300元券買了一件298元藏青色的李寧牌棉襖,又用剩下的500元券中的488買了一件太子龍男裝(由於是購物券,不設找零)。到底便宜了多少?298+488+980=1766(元)——這是原來不打折時需要花的錢。980/1776,所打的折扣大約是五五折。 我的姑姑和姑夫從前也做過服裝生意,我對服裝的進貨成本與銷售價的關系也有些了解。服裝的進價一般只佔建議零售價的20%~30%。隨著競爭的加劇和商場促銷力度越來越大,為了保持利潤,商家或廠家還不斷地把衣服的建議零售價標高。就如前幾天在電視中看見的一位消費者所說,某一品牌同一款式的一條尼料的褲子,三年前建議零售價還只是299元,今年標價變成了999元。這么一算,進價大概只有商場里售價的10%~20%。就算打了五五折,商家還穩賺三至五成的毛利。 廣告,廣告,便是廣而告之。許多人一窩蜂似的趕來搶購、血拚,商場的人流量多了,商品銷售量也快速增長。就按人流量是平時的三倍算,這里又出現了一個數學問題。假設平時人流量少時,一件商品按8折銷售。8折減去進價2折,標價部分的6成就成了毛利。雖然現在「滿400送400元券」時同一件商品可能只賺三至五成,但銷量起碼是平時的三倍以上。就按三成毛利和三倍銷量來計算,3×3=9,與平時的6成毛利相比,一天能多賺50%。雖說這樣賣每件單位毛利率有所下降,毛利額卻因銷售量的增加而增長,更因大量銷售而加快了資金周轉,帶來額外的收益。 商品標價和促銷中有數學,購物消費中有數學,裝修房子有數學,織毛衣中有數學……總而言之,數學在現實生活中無處不在!黃金分割 對於「黃金分割」大家應該都不陌生吧!由於公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。 公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。 公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。 中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。 到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。也許,0.618在科學藝術上的表現我們已了解了很多,但是,你有沒有聽說過,0.618還與炮火連天、硝煙彌漫、血肉橫飛的慘烈、殘酷的戰場也有著不解之緣,在軍事上也顯示出它巨大而神秘的力量?一代梟雄的的拿破崙大帝可能怎麼也不會想到,他的命運會與0.618緊緊地聯系在一起。1812年6月,正是莫斯科一年中氣候最為涼爽宜人的夏季,在未能消滅俄軍有生力量的博羅金諾戰役後,拿破崙於此時率領著他的大軍進入了莫斯科。這時的他可是躊躇滿志、不可一世。他並未意識到,天才和運氣此時也正從他身上一點點地消失,他一生事業的頂峰和轉折點正在同時到來。後來,法軍便在大雪紛揚、寒風呼嘯中灰溜溜地撤離了莫斯科。三個月的勝利進軍加上兩個月的盛極而衰,從時間軸上看,法蘭西皇帝透過熊熊烈焰俯瞰莫斯科城時,腳下正好就踩著黃金分割線。古希臘帕提儂神廟是舉世聞名的完美建築,它的高和寬的比是0.618。建築師們發現,按這樣的比例來設計殿堂,殿堂更加雄偉、美麗;去設計別墅,別墅將更加舒適、漂亮.連一扇門窗若設計為黃金矩形都會顯得更加協調和令人賞心悅目.有趣的是,這個數字在自然界和人們生活中到處可見:人們的肚臍是人體總長的黃金分割點,人的膝蓋是肚臍到腳跟的黃金分割點。大多數門窗的寬長之比也是0.618…;有些植莖上,兩張相鄰葉柄的夾角是137度28',這恰好是把圓周分成1:0.618……的兩條半徑的夾角。據研究發現,這種角度對植物通風和採光效果最佳。黃金分割與人的關系相當密切。地球表面的緯度范圍是0——90°,對其進行黃金分割,則34.38°——55.62°正是地球的黃金地帶。無論從平均氣溫、年日照時數、年降水量、相對濕度等方面都是具備適於人類生活的最佳地區。說來也巧,這一地區幾乎囊括了世界上所有的發達國家。多去觀察生活,你就會發現生活中奇妙的數學!

⑹ 寫一篇關於生活中的數學的小論文

生活中的數學「對我來說什麼都可以變成數學。」數學家笛卡兒曾這樣說過。「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,日用之繁,無處不用數學。」我國家喻戶曉的數學家華羅庚也曾下過這樣的結論。的確,正如兩位前輩所說,數學與我們的生活息息相關,數學的腳步無處不在。 2006年已經接近尾聲了,迎面而來的是新的一年——2007年。行走在繁華的大街上,隨處可見商家打出的「滿400送400」,「滿300送300」的促銷招牌。「這真實惠!」消費者們蜂擁而至,商場里人山人海,搶購成風。此情此景,真讓人以為回到了物資短缺的年代。實際上商家心裡早打好了如意算盤。俗話說:只有買虧,沒有賣虧,「滿400送400元券」只是商家的一種促銷手段,其中暗藏著數學問題,暗藏著商業機密,暗藏著許多玄機。 去年,我們一家三口,也在新年之際在商場里「血拚」,當時是滿400送400元券。我們先用980元買了一件蘋果牌的皮夾克給爸爸,送來了800元購物券。我們並沒有過分浪費,花了300元券買了一件298元藏青色的李寧牌棉襖,又用剩下的500元券中的488買了一件太子龍男裝(由於是購物券,不設找零)。到底便宜了多少?298+488+980=1766(元)——這是原來不打折時需要花的錢。980/1776,所打的折扣大約是五五折。 我的姑姑和姑夫從前也做過服裝生意,我對服裝的進貨成本與銷售價的關系也有些了解。服裝的進價一般只佔建議零售價的20%~30%。隨著競爭的加劇和商場促銷力度越來越大,為了保持利潤,商家或廠家還不斷地把衣服的建議零售價標高。就如前幾天在電視中看見的一位消費者所說,某一品牌同一款式的一條尼料的褲子,三年前建議零售價還只是299元,今年標價變成了999元。這么一算,進價大概只有商場里售價的10%~20%。就算打了五五折,商家還穩賺三至五成的毛利。 廣告,廣告,便是廣而告之。許多人一窩蜂似的趕來搶購、血拚,商場的人流量多了,商品銷售量也快速增長。就按人流量是平時的三倍算,這里又出現了一個數學問題。假設平時人流量少時,一件商品按8折銷售。8折減去進價2折,標價部分的6成就成了毛利。雖然現在「滿400送400元券」時同一件商品可能只賺三至五成,但銷量起碼是平時的三倍以上。就按三成毛利和三倍銷量來計算,3×3=9,與平時的6成毛利相比,一天能多賺50%。雖說這樣賣每件單位毛利率有所下降,毛利額卻因銷售量的增加而增長,更因大量銷售而加快了資金周轉,帶來額外的收益。 商品標價和促銷中有數學,購物消費中有數學,裝修房子有數學,織毛衣中有數學……總而言之,數學在現實生活中無處不在!

⑺ 什麼是數學論文

數學小論文
關於「0」

0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」

「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。

「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……

愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。

⑻ 數學論文:數學是什麼

數學【shù xué】(希臘語:μαθηματικ?),源自於古希臘語的μ?θημα(máthēma),其有學習、學問、科學,以及另外還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義和與學習有關的,亦會被用來指數學的。其在英語的復數形式,及在法語中的復數形式+es成 mathématiques,可溯至拉丁文的中性復數mathematica,由西塞hjt數學(math)。以前我國古代把數學叫算術,又稱算學,最後才改為數學。 數學的意義數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。 數學史基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。 今日,數學被使用在世界不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然許多以純數學開始的研究,但之後會發現許多應用。 創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域,格……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。 三維立體結構圖編輯本段數學研究的各領域數學主要的學科首要產生於商業上計算的需要、了解數與數之間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。 數量數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括了如費馬最後定理之著名的結果。 當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成復數。數的進一步廣義化可以持續至包含四元數及八元數。自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較。 結構許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。向量分析則將其擴展至第四個基本的領域內,即變化。 空間空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及 數,且包含有非常著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。 基礎與邏輯為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。德國數學家康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,Pioncare也把集合論比作有趣的「病理情形」,Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」。對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」 集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。 數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關聯性。

⑼ 什麼叫數學小論文 怎麼寫

「數學小論文」是讓學生以日記的形式描述他們發現的數學問題及其解決,是學生數學學習經歷的一種書面寫作記錄。它可以是學生對某一個數學問題的理解、評價,可以是數學活動中的真實心態和想法,可以是進行數學綜合實踐活動遇到的問題,也可以是利用所學的數學知識解決生活中數學問題的經過等。

怎麼寫數學小論文
每個學寫數學小論文的同學都會遇到這樣的幾個問題:1,數學是什麼2,生活中的數學3,提出論點4,進行論證5,點明中心
一篇優秀的數學小論文的誕生,對於它的創作者來說都是一次創造性的勞動,其創作的素材、水平,乃至創作的靈感……絕不是輕易可以得到的,它們需要作者在自己的學習與生活實踐中,去進行長期的積累與思考。創造性的勞動對創作者的要求很高。有的是在平時十分注意對課本知識進行歸納整理、拓展延伸,學習中有許多意想不到的收獲;有的是從課外閱讀中得到收獲與啟發後,獲得靈感、得以選題;……更有甚者是,有的作者在生活中發現問題注意觀察、探究,並與自己的數學學習相聯系,對觀察、探究的結果進行思考、歸納、總結,升華為理論,寫出了令人叫絕的好論文。綜觀獲獎論文的小作者們,他們大多是數學學習的有心人。好論文的作者不僅要有較好的數學感悟,還要有良好的文學修養、綜合素養。
寫什麼
數學小論文的選材時關鍵,同學們受年齡、知識、生活閱歷的局限,選材受到限制,因此,大家的選題要從自己最熟悉的、最想寫的內容入手。論文按內容分類,大概有以下幾種:
①勤於實踐,學以致用,對實際問題建立數學模型,再利用模型對問題進行分析、預測:「探究大橋的熱脹冷縮度」
②對生活中普遍存在而又擾人心煩的小事,提出了巧妙的數學方法來解決它:「一台飲水機創造的意想不到的實惠」
③對數學問題本身進行研究,探索規律,得出了解決問題的一般方法:」分式「家族」中的親緣探究」,」紙飛機里的數學」
④對自己數學學習的某個章節、或某個內容的體會與反思:「沒有條件」的推理,小議「黃金分割」,奇妙的正五角星
怎麼寫
一篇優秀的數學小論文怎麼寫?三個要點請注意:①課題要小而集中,要有針對性;②見解要真實、獨特,有感而發,富有新意;③要用自己的語言表述自己要表達的內容
同學們,把握好以上幾個要點,相信你們能創造出優秀的數學小論文,加油哦!

閱讀全文

與關於什麼是數學的論文相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1362
華為手機家人共享如何查看地理位置 瀏覽:1053
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1420
中考初中地理如何補 瀏覽:1311
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:711
數學奧數卡怎麼辦 瀏覽:1400
如何回答地理是什麼 瀏覽:1034
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1493
二年級上冊數學框框怎麼填 瀏覽:1712
西安瑞禧生物科技有限公司怎麼樣 瀏覽:999
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1665
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1070