⑴ *在數學是什麼符號
它在數學是乘號的意思。
星形標示號*通常置於有關的詞句的左上角或右上角,作為劃分文章不同部分的符號成組使用時單獨佔一行。在電腦中,由於「×」容易和未知數x混淆,且不方便打字,所以使用*來代替乘號。
例如:3*4=12,4*(3+6)=36,而在c和c++中表示間接運算符。如:long* p,表示long類型的指針p。在c語言中,為了表示指針變數和它所指向變數之間的聯系,用「*」表示指向。
此時應當注意的是,在變數聲明中的「*」和表達式中的「*」意義是不一樣的,變數聲明中的「*」意味著定義一個存放地址的指針變數,而表達式中的「*」表示間接存取指針變數所指向變數的值。在編程序是經常用到。
(1)它在數學中代表什麼擴展閱讀:
整數的乘法:
1、從個位乘起,依次用第二個因數每位上的數去乘第一個因數;
2、用第二個因數那一位上的數去乘,得數的末位就和第二個因數的那一位對齊;
3、再把幾次乘得的數加起來。
乘法運算性質
1、幾個數的積乘一個數,可以讓積里的任意一個因數乘這個數,再和其他數相乘。
例如:(25×3 × 9)×4=25×4×3×9=2700。
2、兩個數的差與一個數相乘,可以讓被減數和減數分別與這個數相乘,再把所得的積相減。
例如: (137-125)×8=137×8-125×8=96。
⑵ e在數學中代表的是什麼數
e是自然對數的底數,是一個無限不循環小數,其值是2.71828...,它是這樣定義的:
當n→∞時,(1+1/n)^n的極限
註:x^y表示x的y次方。
對於數列{ ( 1 + 1/n )^n },當n趨於正無窮時該數列所取得的極限就是e,即e = lim (1+1/n)^n。
數e的某些性質使得它作為對數系統的底時有特殊的便利。以e為底的對數稱為自然對數。用不標出底的記號ln來表示它;在理論的研究中,總是用自然對數。
自然底數的來源
歷史上誤稱自然對數為納皮爾對數,取名於對數的發明者——蘇格蘭數學家納皮爾(J.Napier A.D.16-17)。納皮爾本人並不曾有過對數系統的底的概念,但他的對數相當於底數接近1/e的對數。與他同時代的比爾吉(J.Burgi)則創底數接近e的對數。
e = 1 + 1 + 1/2! + 1/3! + 1/4! + ... + 1/n!,n越大,越接近的真值。
其中最後一項為余項,它控制計算所需達到的任意精度。
參考資料來源:網路-無理數e
參考資料來源:網路-自然底數
⑶ 在數學中,每個字母分別代表什麼意思
周長c,環繞有限面積的區域邊緣的長度積分,叫做周長,也就是圖形一周的長度。多邊形的周長的長度也相等於圖形所有邊的和,圓的周長=πd=2πr (d為直徑,r為半徑,π),扇形的周長 = 2R+nπR÷180˚ (n=圓心角角度) = 2R+kR (k=弧度)。
面積s。當物體占據的空間是二維空間時,所佔空間的大小叫做該物體的面積,面積可以是平面的也可以是曲面的。平方米,平方分米,平方厘米,是公認的面積單位,用字母可以表示為(m²,dm²,cm²)。
面積是表示平面中二維圖形或形狀或平面層的程度的數量。表面積是三維物體的二維表面上的模擬物。面積可以理解為具有給定厚度的材料的量,面積是形成形狀的模型所必需的。
(3)它在數學中代表什麼擴展閱讀:
面積平分線
對三角形面積進行平分的線條無窮無盡。 其中三個是三角形的中位數(將兩邊的中點連接到相反的頂點),並且它們在三角形的重心處並發;
事實上,他們是唯一通過重心的面積平分線。 通過三角形將三角形面積和周邊分成兩半的任何線條都可以穿過三角形的入口(其圓周的中心)。 對於任何給定的三角形,它們中有一個,兩個或三個。
任何通過平行四邊形中點的線將該面積平分。圓或其他橢圓的所有面積平分線穿過中心,任何通過中心的和弦將面積平分。 在圓的情況下,它們是圓的直徑。
參考資料來源:網路-周長
參考資料來源:網路-面積
⑷ 「∧」它在數學中表示什麼2的63次是什麼結果
在有些時候 冪數 或者說什麼的多少次就用那個符號表示
在電腦上輸入左邊的那個式子需要用到數學符號編輯器 簡便起見就寫右邊的那個形式咯
⑸ 數學中代表什麼意思
數學中代表,表示特定的意思,一般情況下不太會用到,但用在數學題中一般都是求這個數。
數學中代表一種定義新運算符號,它可以是加,減,乘,除,乘方,開方等運算符號。事實上,數學所鍛煉的是人的思維,邏輯思維,抽象能力,而數學的一步一步發展,就是從有實際作用變得越來越脫離實際的過程。
古時候中國的九章算術,其中內容都是有價值的,比如說分田,比如說建造城牆所用的土的體積。所以說古代數學僅僅停留在算學上,計算系統是一天比一天強,但是整體卻進步不大。
⑹ 26個英文字母在數學中都代表什麼意思
1、a:表示數列,圓錐曲線里用(如橢圓的半長軸長度等)
2、b:直線中是y的系數
3、c:圓錐曲線用,二次函數表達式中常數項
4、d:表示兩點之間或點與直線之間等的距離,等差數列中的公差
5、e:自然對數的底數
6、f,g,h:一般表示一個函數
7、i:復數(虛數)
8、j:不怎麼用到
9、k:直線的斜率
10、l:表示一條直線
11、m:設出來的未知常數
12、n:數列中的項數
13、o:坐標系中的原點
14、p:概率
15、q:等比數列中的公比
16、r:圓半徑
17、s:面積,一個數列的和
18、t:(不太清楚)
19、u,v:表示一個函數,v還可以表示體積
20、w:復數中用,表示一個特殊的復數
21、x,y,z:未知數
(6)它在數學中代表什麼擴展閱讀:
英文字母由來
英文字母淵源於拉丁字母,拉丁字母淵源於希臘字母,而希臘字母則是由腓尼基字母演變而來的,腓尼基字母又深受古埃及聖書體文字影響,古埃及新王國時期,腓尼基地區大部分時間是在埃及統治之下,腓尼基人深受埃及文化的影響。
實際上在,在腓尼基字母出現之前,在迦南或西奈半島地區就已存在所謂的原始字母,這種「字母」基本還是古埃及象形符號。維基網路網頁列出了十個埃及符號與原始西奈半島字母、腓尼基字母、古希伯來字母、亞拉姆字母、
在腓尼基字母出現之前,在迦南或西奈半島地區就已存在早期字母,這種「字母」基本還是古埃及聖書體符號。維基網路網頁列出了十個埃及符號與原始西奈半島字母、腓尼基字母、古希伯來字母、亞拉姆字母、希臘/義大利字母的對應關系:
腓尼基是地中海東岸的文明古國,其地理位置大約相當於今天黎巴嫩和敘利亞的沿海一帶。「腓尼基」是希臘人對這一地區的稱謂,意思是「紫色之國」,因該地盛產紫色染料而得名。羅馬人則稱之為「布匿」。
大約公元前13世紀,腓尼基人創造了人類歷史上第一批字母文字,共22個字母(無母音)。這是腓尼基人對人類文化的偉大貢獻。腓尼基字母是世界字母文字的開端。在西方,它派生出古希臘字母,後者又發展為拉丁字母和斯拉夫字母。而希臘字母和拉丁字母是所有西方國家字母的基礎。在東方,它派生出阿拉美亞字母,由此又演化出印度、阿拉伯、希伯萊、波斯等民族字母。中國的維吾爾、蒙古、滿文字母也是由此演化而來。
1066年諾曼征服之後,當時許多文書是法國人,他們拋棄了一些他們看不慣的拼寫規則,又從法語中引進了一些新的規則,針對不同情況,又制定了一些新的例外。這使得當時的英文在拼寫形式和用詞上有了巨大的改變。有的字母被廢除,有的被改造,逐漸演變為現代英語的26個字母。
參考資料來源:
網路-英文字母
⑺ E在數學中代表什麼意思
(1)自然常數。
e在數學中是代表一個數的符號,其實還不限於數學領域。在大自然中,建構,呈現的形狀,利率或者雙曲線面積及微積分教科書、伯努利家族等。現e已經被算到小數點後面兩千位了。
e是自然對數的底數,是一個無限不循環小數,其值是2.71828...,它是這樣定義的:當n→∞時,(1+1/n)^n的極限註:x^y表示x的y次方。
(2)e(科學計數法符號)
在科學計數法中,為了使公式簡便,可以用帶「E」的格式表示。例如1.03乘10的8次方,可簡寫為「1.03E+08」的形式。
(7)它在數學中代表什麼擴展閱讀:
科學計數法相關的表達形式:
(1)3×10^4+4×10^4=7×10^4,即aEc±bEc=﹙a±b﹚Ec
(2)3E6×6E5=18E11=1.8E12,即aEM×bEN=abE(M+N)
(3)-6E4÷3E3=-2E1,即aEM÷bEN=a/bE(M-N)
相關的一些推導
(aEc)^2=(aEc)(aEc)=a^2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a^3E3c
⑻ 數學θ是什麼意思
θ是希臘字母,數學中θ就是一個符號,它多用在表示角。
0<θ<π/4 時,sinθ,tanθ都大於0,而tanθ=sinθ/cosθ,cosθ<1,所以sinθ<tanθ。
小寫的θ在不同的領域表示不同的意思。
1、在數學上常代表平面的角。
2、在國際音標中表示輔音無聲齒摩擦音。
3、西里爾字母的Ѳ 是從Theta 變來。
4、它還是世界地球日的標志。
(8)它在數學中代表什麼擴展閱讀
表示角度的希臘字母還有很多,比如:
1、Α α alpha a:lf(阿爾法):角度;系數。
2、Β β beta bet(貝塔):磁通系數;角度;系數。
3、Φ φ phi fai(佛愛):磁通;角。
4、Ψ ψ psi psai(普西):角速;介質電通量(靜電力線);角。
5、Θ θ thet θit(西塔):溫度;相位角。
希臘字母對希臘文明乃至西方文化影響深遠。《新約》里,神說:「我是阿爾法,我是歐米伽,我是首先的,我是最後的,我是初,我是終。」(聖經啟示錄22:13)。
在希臘字母表裡,第一個字母是 「Α,α 」(Alpha),代表開始,最後一個字母是 「Ω, ω」 歐米伽(Omega),代表終了。
⑼ 在數學中,N、Z、Q、R 分別代表什麼呢
N全體非負整數(或自然數)組成的集合;R是實數集;Z是整數集;Q是有理數集;Z*是正整數集;N*是正整數集。
集合及運算的概念
集合:一般的,一定范圍內某些確定的,不同的對象的全體構成一個集合。
子集:對於兩個集合A和B,如果集合A中的任意一個元素都是集合B中的元素,我們就說這兩個集合有包含關系,稱集合A是集合B的子集,記作A⊆B讀作A包含於B。
空集:不含任何元素的集合叫做空集。記為Φ。
集合的三要素:確定性、互異性、無序性。
集合的表示方法:列舉法、描述法、視圖法、區間法。
集合的分類:(按集合中元素個數多少分為:)有限集、無限集、空集。
(9)它在數學中代表什麼擴展閱讀:
集合的運算性質
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,則A=B,A⊇B,B⊇C,則A⊇C。
常用結論
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。