1. 數學基本思想方法有哪些
1、數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
2、轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
3、分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
4、整體思想
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。
5、類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
2. 數學思想方法有哪些
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師要善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。
3. 數學思維和方法有哪些內容
1、數學思維方法有哪些
一、轉化方法:
轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、更清晰。
二、邏輯方法:
邏輯是一切思考的基礎。羅輯思維,是人們在認識過程中藉助於概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。羅輯思維,在解決邏輯推理問題時使用廣泛。
三、逆向方法:
逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式。敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。
四、對應方法:
對應思維是在數量關系之間(包括量差、量倍、量率)建立一種直接聯系的思維方法。比較常見的是一般對應(如兩個量或多個量的和差倍之間的對應關系)和量率對應。
五、創新方法:
創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,提得出與眾不同的解決方案。可分為差異性、探索式、優化式及否定性四種。
六、系統方法:
系統思維也叫整體思維,系統思維法是指在解題時對具體題目所涉及到的知識點有一個系統的認識,即拿到題目先分析、判斷屬於什麼知識點,然後回憶這類問題分為哪幾種類型,以及對應的解決方法。
七、類比方法:
類比思維是指根據事物之間某些相似性質,將陌生的、不熟悉的問題與熟悉問題或其他事物進行比較,發現知識的共性,找到其本質,從而解決問題的思維方法。
八、形象方法:
形象思維,主要是指人們在認識世界的過程中,對事物表象進行取捨時形成的,是指用直觀形象的表象,解決問題的思維方法。想像是形象思維的高級形式也是其一種基本方法。
如何鍛煉自己的數學思維?
一、做出來不如講出來,聽得懂不如說得通。
做10道題,不如講一道題。孩子做完家庭作業後,家長不妨鼓勵孩子開口講解一下數學作業中的難題,我也在群里會經常發一些比較好的訓練題,您也可以鼓勵去想一想說一說,如果講得好,家長還可進行小獎勵,讓孩子更有成就感。
二、舉一反三,學會變通。
舉一反三出自孔子的《論語·述而》:「舉一隅,不以三隅反,則不復也。」意思是說:我舉出一個牆角,你們應該要能靈活的推想到另外三個牆角,如果不能的話,我也不會再教你們了。後來,大家就把孔子說的這段話變成了「舉一反三」這句成語,意思是說,學一件東西,可以靈活的思考,運用到其他相類似的東西上!
在數學的訓練中,一定要給孩子舉一反三訓練。一道題看似理解了,但他的思維可能比較直線,不多做幾道舉一反三或在此基礎上變式的題,他還是轉不過玩了。
舉一反三其實就是「師傅領進門,學藝在自身」這句話的執行行為。
三、建立錯題本,培養正確的思維習慣
每上第一次課,我所講的課程內容都和學生的錯題有關。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學生的反應,或是像沒有見過,或是對題目非常熟悉,但沒有思路。這些現象的發生,都是學生沒有及時總結的原因。所以第一次課後我都建議我的學生做一個錯題本,像寫日記一樣,記錄下自己的錯題和錯因分析。
一般來說,錯題分為三種類型:第一種是特別愚蠢的錯誤、特別簡單的錯誤;第二種就是拿到題目時一點思路都沒有,不知道解題該從何下手,但是一看到答案卻恍然大悟;第三種就是題目難度中等,按道理有能力做對,但是卻做錯了。
尤其第二種、第三種,必須放到錯題本上。建立錯題本的好處就是掌握了自己所犯錯的類型,為防範一類錯誤成為習慣性的思維。
四、圖形推理是培養邏輯思維能力最好的工具
假是真時真亦假,真是假時假亦真;邏輯思維是在規則的確定下而進行的思維,如果聯系生活就屬於非常規思維。一切看似與生活毫無聯系卻自在法則約束規范的范圍內。邏輯推理的「瞞天過海」可謂五花八門,好似一個萬花筒,百變無窮,樂趣無窮。
幾何圖形是助其鍛煉邏輯思維的好工具,經典的圖形推理題總有其構思、思路、巧妙的思維;經典在於其看似變態,而實際解法卻簡而又簡單。
因此,多訓練一些圖形推理題,對其邏輯思維很有幫助。
4. 數學思想方法有哪幾種
數學思想方法有以下5種:
一、方程思想
當一個問題可能與某個等式建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。
二、分類討論思想
當一個問題因為某種量或圖形的情況不同而有可能引起問題的結果不同時,需要對這個量或圖形的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要分類討論a的取值情況。
三、隱含條件思想
沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。例如一個等腰三角形,一條過頂點的線段垂直於底邊,那麼這條線段所在的直線也平分底邊和頂角。
四、類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
五、極限思想
極限思想是微積分的基本思想,數學分析中的一系列重要概念,如函數的連續性、導數以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?」那麼可以概括地說:「數學分析就是用極限思想來研究函數的一門學科」。
5. 數學四大思想八大方法是什麼
數學四大思想:數形結合思想,轉化思想,分類討論思想,整體思想。八大數學方法:配方法,因式分解法,待定系數法,換元法,構造法,等積法,反證法,判別式法。
以上是學習中常用的思想方法。這些都是學習數學的過程中,經常運用的。不同學習階段,數學思想方法的運用也不同,側重點各有差異。思想方法分類也不盡相同。
方法概述
函數的思想,就是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決的數學思想。
方程的思想,就是分析數學問題中變數間的等量關系,建立方程或方程組,或者構造方程,通過解方程或方程組,或者運用方程的性質去分析、轉化問題,使問題獲得解決的數學思想。
6. 數學思想方法有哪幾種
數學思想方法有:
1、數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。
2、轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
3、分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
4、整體思想
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。
5、類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
6、配方法
將一個式子設法構成平方式,然後再進行所需要的轉化。當在求二次函數最值問題、解決實際問題最省錢、盈利最大化等問題時,經常要用到此方法。
7、待定系數法法
當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待定的字母的值就可以了,為此,需要把已知的條件代入到這個待定的式子中,往往會得到含待定字母的方程或者方程組,然後解這個方程或者方程組就可以使問題得到解決。
7. 數學四大思想八大方法是什麼
如下:
代數思想
這是基本的數學思想之一,小學階段的設未知數x,初中階段的一系列的用字母代表數,這都是代數思想,也是代數這門學科最基礎的根!
數形結合
是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。初高中階段有很多題都涉及到數形結合,比如說解題通過作幾何圖形標上數據,藉助於函數圖象等等都是數形給的體現。
轉化思想
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
極限思想方法
事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
8. 小學數學思想方法有哪些
1、符號化思想方法:指用符號化的語言包括字母、數字、圖形和各種特定的符號來描述數學內容的思想方法。
2、類比思想方法 :指依據兩類數學對象的相似性,將已知的一類數學對象的性質遷移到另一類數學對象上去的思想方法,如加法交換律和乘法交換律。
3、轉化思想方法 :指由一種形式變換成另一種形式的思想方法,如公式的變形等。
4、數形結合思想方法:數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形可使之直觀化、形象化、簡單化;另一方面復雜的形體可以用簡單的數量關系表示。
5、分類思想方法;指按照一定的分類標准,對數學對象進行分類的思想方法,如自然數的分類。
9. 小學數學思想方法是什麼
1、對應思想方法:對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、比較思想方法:比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
3、符號化思想方法:用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式等。
轉化型:
這是解決問題遇到障礙受阻時把問題由一種形式轉換成另一種形式,使問題變得更簡單、更清楚,以利解決的思維形式。在教學中,通過該項訓練,可以大幅度地提高學生解題能力。如:某一賣魚者規定,凡買魚的人必須買筐中魚的一半再加半條。
照這樣賣法,4 人買了後,筐中魚盡,問筐中原有魚多少條?該題對一些沒有受過轉化思維訓練的學生來說,會感到一籌莫展。即使基礎較好的學生也只能復雜的方程。
10. 一般的數學思想方法有哪些
1 函數思想
把某一數學問題用函數表示出來,並且利用函數探究這個問題的一般規律。
2 數形結合思想
把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答。
3 整體思想
整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。
4 轉化思想
在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。
5 類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼推斷它們在其他方面也可能有相同或類似之處。
(10)簡述數學的思想方法有哪些內容是什麼擴展閱讀:
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。
笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。
函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。
它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題,經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。
在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系,構造出函數原型。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。
函數知識涉及的知識點多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點。
我們應用函數思想的幾種常見題型是:遇到變數,構造函數關系解題;有關的不等式、方程、最小值和最大值之類的問題,利用函數觀點加以分析;含有多個變數的數學問題中,選定合適的主變數,從而揭示其中的函數關系。
實際應用問題,翻譯成數學語言,建立數學模型和函數關系式,應用函數性質或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問題也可以用函數方法解決。
引起分類討論的原因主要是以下幾個方面:
① 問題所涉及到的數學概念是分類進行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類討論題型可以稱為概念型。
② 問題中涉及到的數學定理、公式和運算性質、法則有范圍或者條件限制,或者是分類給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類討論題型可以稱為性質型。
③ 解含有參數的題目時,必須根據參數的不同取值范圍進行討論。如解不等式ax>2時分a>0、a=0和a<0三種情況討論。這稱為含參型。
另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過分類討論,保證其完整性,使之具有確定性。
進行分類討論時,我們要遵循的原則是:分類的對象是確定的,標準是統一的,不遺漏、不重復,科學地劃分,分清主次,不越級討論。其中最重要的一條是「不漏不重」。
解答分類討論問題時,我們的基本方法和步驟是:首先要確定討論對象以及所討論對象的全體的范圍;其次確定分類標准,正確進行合理分類,即標准統一、不漏不重、分類互斥(沒有重復);再對所分類逐步進行討論,分級進行,獲取階段性結果;最後進行歸納小結,綜合得出結論。