導航:首頁 > 數字科學 > 數學的學怎麼標

數學的學怎麼標

發布時間:2022-07-29 00:02:03

① 數學的學的筆順怎麼寫

學的筆順:點、點、撇、點、橫撇/橫鉤、橫撇/橫鉤、豎鉤、橫、

② 數學到底如何學

怎樣才能學好數學
★怎樣才能學好數學?
要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。
事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。

一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。

二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。

三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。

四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。

③ 數學上圖形怎麼用字母標

不用困惑,應該是怎麼標都行的,而且不見得一定要用ABCD來標,也可以用MNOP來標,反正是個字母就行了。具體到證明,應該是怎麼做題方便怎麼標,數學一定要靈活呀,祝順利。

④ 數學的向量怎麼學A和a上加個箭頭有什麼區別向量的作標怎麼寫

這這里寫向量實在不好寫,如果用A表示,教材上一般用黑體字母表示
還可以用2個大寫字母表示向量,比如AB(上面加箭頭)
常用的是用一個小寫字母(上面加箭頭)表示
向量的坐標,比如a=(1,2)或b={1,1,1}等就是向量的坐標形式
b=(1,1,1)還可以寫作:b=i+j+k,這些都可以,如有問題,可繼續問.

⑤ 數學怎麼學

一、該記的記,該背的背,不要以為理解了就行
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9*9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的「整式乘法三個公式」,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鍾,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
二、幾個重要的數學思想
1、「方程」的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、「數形結合」的思想
大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究「數」的,幾何是研究「形」的。但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視「數形結合」的思維訓練,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣。
3、「對應」的思想
「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。比如我們在計算或化簡中,將對應公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果即。這就是運用「對應」的思想和方法來解題。初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應。「對應」的思想在今後的學習中將會發揮越來越大的作用。
三、自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學思維習慣,逐漸地培養起自己對數學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班裡幾十個學生,同一個老師教,差異那麼大,這就是學習主動性問題了。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結合新課中的新規定去分析、理解新的學習內容。由於數學知識的無矛盾性,你所學過的數學知識永遠都是有用的,都是正確的,數學的進一步學習只是加深拓廣而已。因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什麼聽老師講新課時總有一種似懂非懂的感覺,或者是「一聽就懂、一做就錯」,就是因為沒有預習,沒有帶著問題學,沒有將「要我學」真正變為「我要學」,力求把知識變為自己的。學來學去,知識還是別人的。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解題、解對題才是學好數學的標志。
四、自信才能自強
在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。要去分析、探索、比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,才顯露出條件和結論之間的某種聯系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎麼知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復你。也同樣要先分析、研究,找到正確的思路後才向你講授。不敢去做稍為復雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現。在數學解題中,自信心是相當重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學過的知識把它解出來。要敢於去做題,要善於去做題。這就叫做「在戰略上藐視敵人,在戰術上重視敵人」。
具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數學的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就乾瞪眼,無從下手。當然,做題先從哪兒下手是一件棘手的事,不一定找得准。但是,做題一定要抓住其特殊性則絕對沒錯。選擇一個或幾個條件作為解題的突破口,看由這個條件能得出什麼,得出的越多越好,然後從中選擇與其它條件有關的、或與結論有關的、或與題目中的隱含條件有關的,進行推理或演算。一般難題都有多種解法,條條大路通北京。要相信利用這道題的條件,加上自己學過的那些知識,一定能推出正確的結論。
數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。當然,題目做得多也有若干好處:一是「熟能生巧」,加快速度,節省時間,這一點在考試時間有限時顯得很重要;一是利用做題來鞏固、記憶所學的定義、定理、法則、公式,形成良性循環。
解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。

⑥ 高中數學應該怎麼學

高中數學怎麼學?高中數學難學嗎?

數學這個科目,不管是對於文科學生還是對於理科學生.都是比較重要的,因為他是三大主課之一,它占的分值比較大.要是數學學不好,你可能會影響到物理化學的學習,因為那些學科都是要通過計算.然而,這些計算也都是在數學裡面.高中數學怎麼學?有哪些好的方法?

老師讓孩子上黑板做題

數學擔負著培養孩子的運算能力,還有孩子應用知識的能力.高中數學怎樣學?還是要看學生對數學的理解程度.學生要有自己的學習方法,你不光要掌握老師上課的內容,在下課之後還要及時鞏固,加深.

⑦ 小學數學如何備課標

課標乃是參照物,是我文藉助來參照教學的,備課標,我建議要結合本校實際情況和本班學生差異來理解,不能囫圇吞棗的吃下去,更不能照搬照用。

⑧ 數學要怎麼學啊

我們都知道,人腦最主要的功能是思維,而數學恰好是培養人的思維能力的一門學科。一顆會思維的頭腦是金不換的,它使你在紛繁復雜的世事面前不會迷失自我,它使你能夠有條理地處理復雜的問題而顯示出你的智慧與力量。 那麼,學好數學是不是很難呢?現在讓你們再回去學習小學數學,會有困難嗎?當然沒有。這就對了。一方面,是因為小學數學確實不難;另一方面,你們現在是初中學生了,站在了人生的又一個高度,你們是用俯視(也可能是藐視)的眼光看待你們學過的小學數學內容,首先在心理上你就是一個勝利者。其實,我們學習數學就需要這樣一種心理。不妨設想一下,假如你是高中學生,你又會如何看待初中數學的內容呢? 世上無難事,只怕有心人。進入中學,要盡快適應初中數學的教學,要在理解上下功夫。數學是最講理的一門學科,數學語言又是最嚴密的語言。要力求改變被動學習的現狀,積極主動地去學習,盡快把學習成績趕上去。根據我多年的教學經驗,我認為同學們掌握正確的數學思想和方法是至關重要的,是事半功倍的關鍵所在。 所謂「數學學習,一步跟不上,則步步跟不上」,是不是說反正你已拉下了好多內容沒有學會,就學不好新知識了呢?完全不是這么回事。我經常給同學們講:你們學習好的希望只有兩個,一是課堂,二是你自己。課堂上要專心聽講,聽不懂的地方,那是因為涉及到這個知識點的舊知識你沒學好,以至於你的思維在某一個地方卡住了,這時你要做的只是把以前和這個知識點有關的知識好好補一補。其實最好的方法是養成預習的好習慣,提前預習新課,發現問題,認真思索問題的原因,看看是不是因為過去某個知識點沒有掌握的緣故,缺什麼補什麼,這樣就可以保證新課能聽懂了。當然,人無毅力,將一事無成,如果你自己沒有解決問題的毅力和決心,那是誰也沒有辦法的,所謂天作孽,猶可活,自作孽,不可活,就是這個道理。 要學好初中數學,必須從以下幾個方面入手: 一、把自信貫穿於解題過程的始終。 在平常學習過程中,許多同學自我感覺掌握得很好,而一做題,卻往往做不出來。老師稍微點拔一下,卻又馬上豁然開朗。也就是說,這些題並不是絕對做不出來。只要認真地去思考,通過分析、綜合,運用各種數學思想和方法,去比比畫畫、寫寫算算,經過迂迴曲折的推理或演算,就能逐漸發現題目的條件和結論之間的本質聯系。自信是成功的秘訣,這並不是一句空話。面對稍為復雜一點的題,要充滿自信,要知道,這些題目一般情況下不會超出自己的知識范疇,是能夠用自己所學過的知識把它解出來的。要敢於去思考,並善於去思考,這是一種很重要的思維品質。具體解題時,一定要認真審題,正確區分條件和結論,並抓住兩個主要環節:一是緊緊抓住這一道題和一類題之間的共性,想想這一類題的一般思路和一般解法;二是緊緊抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。選擇一個或幾個條件作為解題的突破口,看由這些條件能得出什麼過渡結論,得出的越多越好,然後篩選出有用的結論,進一步進行推理或演算。這就是老師常給同學們講的:「聰明的同學是一類一類地學,不聰明的同學是一道一道地學」。要知道,題海無邊,只有舉一反三,觸類旁通,才能跳出題海,領會數學學習的奧妙。 二、記住 三、講「方法」聯系「思想」,以「思想」指導「方法」,兩者相得益彰。必要的基礎知識是熟練解題的關鍵。 四、形成良好的思維品質是理解數學問題的基礎數學,作為培養人的思維能力的一門學科,以其理性的思考而引人入勝。它不像游山觀景,以其迷人的景色讓人賞心悅目,流連忘返。數學學習,是通過思考與反思去研究事物的空間形式和數量關系,讓事物的空間形式與數量關系呈現出來。只有形成良好的思維品質,以良好的思維品質這把利刃拔開事物的表象,才能「看」到事物的本質。 那麼什麼是良好的思維品質呢?我們以生活中「串門」這種現象為例來說明。許多人都有這樣的生活體驗,讓別人帶著去某人家串門,去了一次,兩次,也可能是多次。有一天你不得不自己去某人家串門。當你走到某人家附近時,面對林立的整齊劃一的建築群,你茫然失措了,不知道某人家到底在哪兒。 在學習過程中,我們就經常出現這樣的現象。在課堂上,老師講得頭頭是道,同學們聽得只點頭,感覺明白至極。而一讓同學們自己做題,又不知從何入手了。主要原因就在於同學們沒有對所學的知識進行深入的思考,去理解所學知識的本質。就像串門,每次去某人家的時候,我們就應該對某人家周圍的地理環境,特別是有什麼特殊的標志進行記憶一樣。要理解我們所學的知識有什麼特點,有哪些內容是需要記住的,特別是這一節知識涉及到哪些數學思想和方法是需要及時掌握的。該記憶的內容要注意用心去記,只有記住必要的知識,思維才有依據。另外,要注意作好筆記。培根在《論求知》中說:「作筆記能使知識精確。如果一個人不願做筆記,他的記憶力就必須強而可靠」。要注意把老師講的重點,特別是老師總結的一些經驗性、規律性的知識記下來,便於課後及時復習。課後復習,要思考有哪些問題已經搞會了,有哪些問題還沒有搞會,並及時做好查漏補缺的工作。 以上從四個方面談了如何學好初中數學的問題。要學好初中數學,除了要做到上邊所談外,勤奮刻苦的學習精神,認真仔細的學習態度,培養良好的學習習慣也是學好數學的關鍵。在課堂上,不僅是學習新知識,還要潛移默化地學習老師解決問題的思維方式,面對一個問題,最後是提前思考,找出自己的思維方式,然後把自己的思維方式與老師的思維方式作比較,取長補短,進而形成自己的思維方式。由「要我學」轉變為「我要學」,培養學習的主動性,克服被動學習的局面。真正掌握數學學習的要領。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的數學基礎知識,掌握學習數學的思想與方法,只是學好數學的前提,能獨立解題、解對題才是學好數學的標志。

⑨ 數學怎麼學

其實你應該用一顆平常心來對待數學,數學不是一門很難的學科,只要你上課跟著老師走,下課在復習一下上課的內容.另外還要做相關方面的題,在我的觀念里題不是做的越多越好,而應該是把一種類型的做會後會舉一反三.只要真正弄懂了,其它的這種類型的題也就會迎刃而解.而且要學會總結做題的方法,在做考卷的時候可以拿出來看一下.做題的時候要坦然一些,這樣會獲得不一樣的結果.你的其他科目都很好,當你拿學其他科目的熱情來學習數學的時候,相信你的數學會提上來的,不會拖你的後腿.希望你會學好數學。

上課跟著老師想,一定要很認真。這樣下課之後不復習也完全沒有問題。
只要把會的題目的分抓到了,總不會考太差。平常碰到做不出的時候稍微休息一下,多換一點角度嘗試,最好不要問別人。還有訂正是一定要自己做。
至於數學書……那玩意兒從來沒用過……

其實數學題多做只是鞏固記憶而已,在我看來是這樣的。我覺得數學要觸類旁通,我們要做一道題,通一類題。而不是做百道題,懂一道題。我寧可花做一百道題的時間來做一道題而通一類題。

我覺得很多人學習數學就是把這個想法反過來了。我們應該把時間花到思考上,而不是做多少題上。做一道題,做完了。要想這道題要考的是什麼,涉及到了什麼概念,跟什麼公式,把別的條件改為未知量,是怎麼求的,從正面去做,還是用反證法去做呢?等等,這些,如果你都想過了,一類題你就搞懂了。
數學、物理、化學等理科,不是語文,不是要記得越多越清楚就可以的。理解是最重要,當然這里不是說什麼都不要記。學什麼都是要記一些東西的,這個不可改變。我以前是這樣做的,你可以學學看看。看你覺得適用不,把書上的公式都自己證明出來,雖然書上有很多都有證明過程,我這里是指你這里最好是用別的方法來證明,實在自己不能證明,也必須理解書上的證明。我以前數學(初高中)沒幾個定理不會證明。

還有就是你第一個要處理的事情就是:注意調整你的心情!什麼時候,你都可以選擇你的態度,就是看你選擇的是積極還是悲觀了。

我就從小特別喜歡數學,現在在大學我學的也是數學專業,就我個人而言:
1、我不贊成題海政策(可能是因為我這個人較懶吧)。
2、我覺得學好數學就應該認真聽每一堂課,老師講的知識點都是很重要的。
3、數學應該是一門基礎學科吧,只要有很好的功底就能學好。
4、課後做老師講過的題目,每中類型最多做三題。我剛剛說不贊成題海政策就是有的人覺得題目容易就一直做同一類型的題目,我覺得這樣沒有用,就像沒有做,做題目不要畏懼,我覺得數學題就是越難的越值得你去探索。
5、最重要的是培養數學興趣,興趣是最好的老師。

一個高中數學老師告訴我說要多問問題不懂就問,做大量練習才行。希望對你有一定幫助。

本人對數學有動力有目標,向著那個目標前行一定可以,相信自己!

看題時就想與教材有何聯系,這樣就會找到切入點嘍。
做完一道題就馬上把結果用「逆向思維」帶回去能保證作題效率!

我比較懶從來不多做什麼題,其實數學的高分大多數在基礎部分,難題是要靠思維的,找到這些題目的規律和基本的要點,就很好作了,平時在校的試卷夠你鍛煉思維了,祝你能在數學上取得好成績。哦對了,做試卷一定不要緊張,皮厚點考的差有怎麼樣,當然不是真的教你考的差,試試吧,不知道有沒有用!我想會有用的

首先,老師講課一定要認真聽,作業認真完成,這是學好數學的必要條件,它的重要性已不必多說。另外,學校有時會為學生統一訂購一些教學輔導書籍,可充分利用。有些超常學生可以加強學習的深度、廣度、但基本功--基礎知識萬萬不可忽視。

其次,要注意效率。不作"重復勞動",每次預復習都要有比較明確的目的。在此,我想提出一點:過多的參考書是毫無必要的。看透一本參考書往往優於"看兩本書,卻均未看透"的情形。著名數學家華羅庚說過:"讀一本書,要越讀越薄。"這就是說,要抓住統帥全書的基本線索,抓住貫穿全書的精神實質。

這不禁使我想到,我們現在每一個學生在汲取知識的同時,都在為自己編織一張知識網路,其主要作用是串連所學知識,提高學習效率。知識網路應當編織得疏密得當。太疏了,不能使自己的思維四通八達,縱橫恣肆;太密了,會影響主線的清晰度,得不償失。在此不妨舉一例:有一位同學,平時學習極其用功,做的數學題極多,但不去理解主旨,幾乎把每本參考書中的每句話都當成重點,以求"滴水不漏"。更可悲的是,在重復勞動之中,他從來不將自己冗長的思維有條理的整理出來,請教老師、同學的一些問題也往往很"低級"--自己腦子稍稍轉個彎就行了!由於不分主次地學習,不注重培養解題感覺,他的成績始終上不去,這就是把書"越讀越厚"的後果。數學的解題往往靈活多變,每個人解數學題都有自己的解題思路,提高學習效率。

許多數學題都是耐人尋味的。立體幾何使我們了解空間的藝術、數學歸納法讓我們領略證明的技巧……中國足球隊主教練米盧諾維奇崇尚"快樂足球",那麼,我們不妨享受數學,體會數學所帶來的樂趣。多思考,多享受,多收獲,這就是我說的第三點。平時學習中,必須留相當一部分題目給自己充分思考,尤其是難題,哪怕想它一小時甚至更長的時間。解難題,只要經過充分思考,即使沒有做出,整個思維過程也是有價值的。因為難題往往綜合較大,能力性較強,對解題者連續發散思維的要求較高,所以解題者往往會有一個長時間的探索過程。在整個探索過程中,解題者不斷尋找突破口,不斷碰壁,不斷調整思維功勢,不斷進展。與此同時,解題者將自己所學到的不少知識、技巧試用一番,起到了很好的復習效果。解題者也通過做題,檢驗了自己掌握有關知識的程度,便於為此後的學習定下適當的目標。記得在《中學數學》雜志中有一個不等式證明題,頗有難度。我苦思冥想四個小時,終於得出了一個優於參考解答的解法。這令我欣喜若狂,當然也令我對此類不等式問題有了更深的理解。這里順便提一下,多思考是培養一個人數學綜合能力的好方法,但有些同學往往忽視計算能力,疏於實踐。盡管考試可以利用計算器,(競賽中不能使用,)但計算器並不能完成代數式、解析式、三角式等運算。有的時候同學們解題思路正確,只是計算有誤,導致最終出錯,這是很可惜的。我不擅長解析幾何,其中一個原因就是解析幾何的計算量大,如果用的方法不好,計算會更繁瑣,更容易出現錯誤。願讀者和我共同努力,使自己具備過硬的計算能力。

除了以上三點,我想,無論是在學習過程中還是在復習迎考階段,都要注意心態調整。一次考砸了,原因是多方面的,可能是知識未掌握牢固,可能是解題感覺不到位,可能是前面所說的計算錯誤,可能是狀態不佳,可能是特殊原因,也可能是太想考

閱讀全文

與數學的學怎麼標相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069