導航:首頁 > 數字科學 > 做積累數學的東西叫什麼

做積累數學的東西叫什麼

發布時間:2022-07-30 10:36:39

Ⅰ 數學四大領域是什麼

數學四大領域是:

1、數與代數:數的認識,數的表示,數的大小,數的運算,數量的估計;

2、圖形與幾何:空間與平面的基本圖形,圖形的性質和分類;圖形的平移、旋轉、軸對稱;

3、統計與概率:收集、整理和描述數據,處理數據;

4、實踐與綜合應用:以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。

數學的重要性

1、常青的知識

作為小學、中學到大學必修的重要課程,數學是人類必不可少的知識,這一點不會有人疑問。

人類的許多發現就像過眼煙雲,很多學科是從推翻前人的結論而建立新的理論的;然而,古往今來數學的發展,不是後人摧毀前人的成果,而是每一代的數學家都在原有建築的基礎上,再添加一層新的建築。因而,數學的結論往往具有永恆的意義。

2、科學的語言

伽利略曾說過:「大自然這本書是用數學語言寫成的……除非你首先學懂了它的語言……否則這本書是無法讀懂的。」數學這種科學的語言,是十分精確的,這是數學這門學科的特點。

同時,這種語言又是世界通用的。加減乘除,乘方開方,指數對數,微分積分,常數等等,這些數學語言和符號一開始雖然可能五花八門、各有千秋,但早已統一為一個固定的樣式,世界各地通用,對我們的掌握和使用是十分方便的。

3、有力的工具

數學在人們的日常生活及生產中隨時隨地發揮著重要的作用,已經是有目共睹。

在現代,數學作為現代化建設的重要武器,在很多重要的領域中更起著關鍵性、甚至決定性作用。我們國家在兩彈一星研製中的出色成就,凝聚了不少優秀數學家的心血,就是一個突出的例子。

4、共同的基礎

現在,不僅在自然科學、技術科學中,而且在經濟科學、管理科學,甚至人文、社會科學中,為了准確和定量地考慮問題,得到有充分根據的規律性認識,數學都成了必備的重要基礎。離開了數學的支撐,有關的科學已很難取得長足的進步,很多學科(特別是很多自然科學學科)近年來甚至已經出現了數學化的趨勢。

5、重要的科學

數學忽略了物質的具體形態和屬性,純粹從數量關系和空間形式的角度來研究現實世界,它和哲學類似,具有超越具體學科、普遍適用的特徵,對所有的學科都有指導性的意義。

現在的數學科學已構成包括純粹數學及應用數學內含的眾多分支學科和許多新興交叉學科的龐大的科學體系。

6、關鍵的技術

過去一支筆、一張紙就能搞定的數學,竟然可以成為一門技術,似乎是匪夷所思。但是,數學的思想和方法與高度發展的計算技術的結合的確已經形成了技術,而且是一種關鍵性的、可實現的技術,稱為「數學技術」。在這種技術中起核心作用的部分是數學,拿走它就只剩下一堆廢銅爛鐵。

7、文明的基石

數學是人類文明的重要基礎。它的產生和發展伴隨著人類文明的進程,並在其中一直起著重要的推動作用,佔有舉足輕重的地位。數學過去是、現在是、將來也將是一種先進的文化,它帶領著、推動著、影響著人類的文明進程,深刻地改變著世界的面貌,也改變著人類本身的思維能力和認識水平,改變著人類的本身。

Ⅱ 如何幫助學生積累數學活動經驗,如何提升學生的數學學科素養

2001年《數學課程標准(實驗稿)》第一次將「數學活動經驗」列入義務教育數學課程目標:「獲得適應未來社會生活和進一步發展所必需的重要數學知識(包括數學事實、數學活動經驗)以及基本的數學思想方法和必要的應用技能。」表明數學知識不僅包括「客觀性知識」,還包括從屬於自己的「主觀性知識」。十年後(2011年)出版的《數學課程標准》把「雙基」擴展為「四基」,即除了「基本知識」、「基本技能」以外,加上了「基本思想」和「基本活動經驗」,意在進一步強化基本活動經驗。把數學活動經驗確定數學課程目標,體現了對數學課程價值的全面認識;數學活動經驗的積累有助於形成比較完整的認知結構,提升學生素養,對後續學習和發展產生積極的影響。下面我從「如何讓學生積累數學活動經驗」的視角,對四年級下冊數學「小數的加減法」一課談幾點個人的看法。
一、激活已有認知, 喚醒活動經驗

《義務教育數學課程標准(2011版)》指出:「應重視學生已有的經驗,使學生體驗從實際背景中抽象出數學問題、構建數學模型、尋求結果、解決問題的過程」,「有效的數學活動必須建立在學生的認知發展水平和已有知識經驗的基礎上」,分析學生已有的數學活動經驗與新知識之間的結合點是有效教學的前提。心理學研究表明:兒童的數學學習是基於自身經驗,用自己獨特的思維方式進行意義建構的過程。真正適合兒童的學習,應該是一種充滿活力的學習,一種能從內心深處喚醒沉睡的想像力和激情的學習,因此課堂教學中我們要從學生已有的經驗出發,幫助學生找准新舊知識的連接點精確切入,喚醒學生的活動經驗,讓學生生動、有效地學習新知,使他們的活動經驗得到積累,促進知識的有效遷移。四年級學生已經認識了簡單的小數,會計算一位小數的加減法、掌握了整數加減法的計算方法以及小數的基本性質,這些認知都是進一步學習小數的加減法的基礎,教學中充分利用學生的認知基礎,讓他們大膽嘗試、自主探索、合作交流,引導學生利用自己已掌握的整數加減法計算的舊知遷移到小數加減法。當教學計算「2.26-1.18」時,採用(1)議一議。如何列豎式?怎樣計算?(2)試一試。嘗試列豎式計算;(3)說一說。你是怎樣想的?整數加減法又是怎樣列豎式計算?(4)想一想。把2.26米、1.18米改寫成用厘米作 2.26 226

單位怎樣計算?(5)比一比:比較-1.18 -118 找出聯系與區別。這

1.08 108

樣激活學生已有的認知,向他們提供從事數學活動和交流的機會,突出相同數位對齊的道理和退位的過程,成功地解決了小數減法的問題,使學生在探索中感感悟了小數減法的計算方法,變「要我學」為「我要學」。

二、經歷生活過程,領悟直接經驗

建構主義理論認為:學生的數學學習是一個主動建構的過程。數學來源於生活,又服務於生活;學生生活經驗是很豐富的,它是數學學習的重要資源。教師要善於捕捉生活中的數學,從學生熟悉的生活經驗出發,創設生動有趣的生活情境,引導學生將生活經驗與數學經驗「有效對接」,讓學生感受到數學與生活的聯系,經歷生活過程,主動建構知識,進而領悟直接經驗,從而涌動激情,體驗學習成功的快樂。教學中教師從生活入手,設計到超市買東西的例子,通過使用人民幣的經驗來解釋數學問題。如設計趙亮是個喜歡運動的孩子,他買了一雙運動鞋20.18元,一盒乒乓球9.6元,他應付多少錢?媽媽包里有30元夠付嗎?應找回多少錢。學生通過自己平時購買物品的經驗,很快解決了這些問題,即

20.18元=20元1角8分 9.6元=9元6角

20元1角8分-9元6角=29元7角8分

30元-29元7角8分=2角2分

這個過程就是生活經驗轉化為數學知識和數學活動經驗的過程,學生在計算中領悟了直接經驗。這樣教學學生體會了小數加減法計算與我們日常生活息息相關,若不學習小數計算會影響我們日常生活,從而產生要學習小數加減法計算的迫切願望。

三、開展探究活動,豐富間接經驗

數學家華羅庚提出:「學數學不僅要獲取知識結論,更重要的是經歷結論得到的過程,因為只有經歷了這個探索過程,才能明晰數學思想方法的積淀、凝聚的過程。」學生的學習活動不僅建立在看數學、聽數學、說數學的基礎上,更應重視為學生提供親自探索實踐的機會,讓學生做數學,積累豐富的間接性活動經驗。

聯系學生的生活經驗學數學,並不意味著數學局限於讓學生借用生活經驗解決數學問題,如果忽略了把生活經驗提升為數學經驗,那麼學生盡管學得熱烈、積極,而少了數學化的深入思考,思維仍然徘徊不前,無法體現數學教學是數學學科的教學本色。因此,教師必須擺正生活感悟與數學思考的關系,應把生活經驗作為促進學生進行數學思考的催化劑,引導學生把直接的生活經驗提升為間接的數學經驗,在數學化的思考活動中建構數學。如上面趙亮買運動鞋和乒乓球一題,學生如果只停留在用人民幣購買物品的經驗屬於直接經驗,在教學中著重引導豎式計算:(1)計算20.18+0.96時,兩個小數怎樣相加減?使學生明確小數點對齊,就保證了相同數位對齊,只有相同數位對齊,才能保證相同計數單位上的數字相加減的道理。(2)計算30-29.78時,整數如何與小數相加減?使學生理解整數可根據小數的基本性質寫成小數的形式,小數的末尾添上零,小數的大小不變;30添上零後,兩個小數有同樣多的位數,可以更快更准確地計算。這樣向學生提供從事數學活動和交流的機會,幫助他們在自主探索的過程中真正理解和掌握基本的數學知識、技能,使學生在活動中體驗探索和策略,逐步豐富學生的間接經驗。又如出示53.42-49.8 53.4+58.6,教師大膽地放手讓學生去嘗試,給予學生自主探索、合作交流的空間和時間,學生之間互相交換對問題的看法,在運用數學語言交流的過程中逐漸理解「小數點對齊」和結果化簡的道理,在活動中體驗數學的簡潔美,在探索中感悟小數加減法的計算方法。這樣學生親身經歷了用豎式計算小數加減法的全過程,獲得筆算小數加減法的經歷和體驗;在數學活動中,學生積極探索、主動建構,享受了知識的形成過程,豐富了數學活動經驗。

四、加強歸納應用, 提煉思維經驗

學生數學活動經驗的積累是一個循序漸進、層層遞進的過程,在這個遞進的過程中,後者建立在前者的基礎上,學生前期積累的數學活動經驗,只有參與多樣化的數學活動,經歷多次調用和加工才能逐漸內化為概括性更強的經驗,進而達到理性的領悟,更有效地推廣到同類問題的解決中去;學生在活動中獲得的經驗,起初往往是模糊零散的,並且不易被學生直接感受到,所以這就需要教師幫助學生將學習過程中習得的這些模糊零散的經驗清晰化、條理化、系統化,並因此留在大腦中。教學中對學生獲得的經驗,形成的表象要進行分析歸納、深化應用,形成抽象化意義的統一認識。教學中藉助學生筆算小數加減法的經歷,通過師生、生生間的交流,將初步的感悟上升到新的高度,共同總結出小數加減法計算的一般方法,進一步理解列豎式時小數點對齊的道理,促使學生思考提升對小數加減法筆算過程的認識,讓學生在總結概括數學知識的活動中,鍛煉提高思維水平。

朱德全教授認為:「應用意識的產生便是知識經驗形成的標志。」積累基本活動經驗要注重學生基本活動經驗的運用,這種經驗要注重思維的介入,沒有思維的活動只能速寫為缺失了數學意義的基本活動經驗。教師應經常讓學生運用所學知識去解決現代生產生活和其他學科學習中的實際問題,使學生在用數學的過程中,一方面進一步鞏固所學知識,另一方面深深感悟數學在社會生活中的地位和作用,體會數學的應用價值。當學生歸納總結出小數加減法方法後,讓學生練習:(1)填一填:鳥巢可容納約9.12萬觀眾,水立方可容納約1.68萬觀眾,兩處共容納約 萬觀眾。突出小數點的書寫,鞏固應用小數加減法的計算方法,滲透數學的簡潔美。(2)速算。8.88-2、8.88-0.2、8.88-0.02、8.88-0.002,進一步強調小數點對齊,並通過比較培養了學生的思維能力。(3)糾錯題。充分讓學生找出錯誤的原因,有針對性地較正,使得經驗的知識結構更加完善。(4)開放題。2012年倫敦奧運會跳水比賽中,女子10米跳台雙人決賽成績表如下:

讓學生搜集、處理信息,提出數學問題,這個過程就是一個思考、學習的過程。由於學生提的問題是多樣的,列式解答的方法也是多樣的,在解決問題中學生領會多種解題思路,感受解題策略的靈活性,提高了數學思考能力。通過這些練習使學生的經驗從一個水平上升到更高水平,鞏固了活動經驗,實現了經驗的重新改組。

五、引導反思評價,發展復合經驗

弗賴登塔爾教授認為:「反思是一種重要的數學活動,它是數學活動的核心和動力。」教師要給予學生的反思以充足的時間和空間,使每一個學生都積極思考,真正培養他們的數學能力。當學生的數學活動經驗積累到一定程度後,教師應引導學生在回顧的基礎上進行深度反思,這樣一方面可以發揮經驗因素在數學學習中的積極作用,另一方面也使學生有意識地避免經驗因素的消極作用,使積累起來的數學活動經驗能夠更好地為學生所用。課堂教學中,教師在歸納強化後,要注意引導學生評價反思。對數學活動經驗進行提煉、總結、提升,使之成為經驗化並加以推廣,在此過程中,提升數學學習方法,養成反思體驗的習慣,發展復合經驗。如在經歷小數加減法探索後,組織學生進行討論並及時給予評價強化,幫助學生對獲得的小數豎式加減法經驗進行顯性化,當學生做完8.88-2、8.88-0.2、8.88-0.02、8.88-0.002時,引導學生反思,這些題目有什麼特點?從而使學生積累被減數相同,減數的數字相同而小數點的位置不同,差也不同的經驗;又如,學生計算出111.60-99.00=12.6後,讓學生反思,怎樣檢驗是否做正確了,引導學生驗算,既發揮了學生的主體作用,又有利於培養遷移;當學生計算錯誤時,要善於捕捉來自學生的失利經驗,調整教學策略,啟發學生反思,讓學生識錯、主動糾錯,讓學生真正學習自己需要的數學,使經驗的知識結構更加完善。一課結束時,可引導學生反思:我們是怎樣得到小數加減法計算方法的?在學生回答的基礎上,利用課件逐步出示學生將小數加減法數位對齊的活動過程,同時對學生及時作出評價;結束時的反思可以是知識、技能內容,也可以是思想方法、活動經驗的內容。

總之,數學活動經驗的獲得是一個積累、提升的過程,教師要充分激活學生原有的認知水平,讓學生經歷生活過程領悟經驗,在探究活動中豐富經驗,在反思評價中提升經驗,在歸納應用中發展經驗,切實將數學知識、數學技能、數學思想方法的獲得統一於數學活動經驗的積累過程中,從而不斷提高學生的數學素養。

Ⅲ 如何在數學教學中積累學生的基本活動經驗

那如何讓學生在數學學習中積累基本的活動經驗呢?下面我就結合《面積和面積單位》一課來談一談自己的一點想法。
一、置身生活場景,將生活經驗提升為數學活動經驗;
生活是數學教學的源泉。學生數學活動經驗的積累,離不開學生自己的生活經驗。教學中,教師要善於為學生創設生活化的學習環境,捕捉生活中的數學現象,挖掘數學知識的生活內涵,將數學與生活密切聯系,充分發揮生活經驗在學生積累數學活動經驗中的積極作用,將起到事半功倍的效果。
【師:今天的會場還來了這么多的客人,那你們說我們應該以怎樣的方式歡迎他們的到來呢?(學生鼓掌)謝謝同學們的掌聲!
師:現在大家看看剛才我們鼓掌時兩只手接觸的地方。
生:(學生做鼓掌時的動作,觀察。)
師:鼓掌時相接觸的這個面就是手掌面。那誰想摸一摸老師的手掌面呢!看看誰是這節課老師認識的第一位小朋友?
生1:從上向下摸
師:瞧他摸得多規范呢,像這樣從上向下摸就把老師的整個手掌面都摸到了。(師與學生握手)認識你真高興!
師:誰還想來摸一摸?
生2:從下向上摸
師:他是從下向上摸的,看來你是一個很愛思考問題的學生。
生3:從左向右摸
師:看得出你是一個與眾不同的人 !
師:剛才的三位同學雖然摸的方向不同,但卻把老師的整個手掌面都摸到了】
在這個片段中,我從學生已有的生活經驗出發,通過生活經驗與教材內容發生交互作用,誘導學生激活了自己原有經驗的同時,激發了學生的學習興趣,學生在教師指導下,在生生之間的相互啟發促進中用不同的方式摸全老師的手掌面,讓學生在「做數學」中體驗數學,感悟數學,獲得體驗,將生活中的摸的方法這一數學現象的經驗進行分析、比較、歸納,加以總結與升華,豐富與發展學生的數學事實材料,將生活經驗提升為數學活動經驗,為學生接下來更好的感知面積積累了一定的數學經驗,使經驗的構築與知識的習得溶為一體。
[案例二]教學「乘法的分配律」。利用本班教室內的24套課桌椅進行探究。
師:我們班有多少個同學?有多少張桌子?有多少把椅子?
生:(很快回答出)
師:如果每張課桌85元,每把椅子45元,你能算出購買這批桌椅一共需要多少元?
生:列式計算,匯報演算法。(85十45)×24
85×24 +45×24
師:說一說你是怎樣想的?
生1:我是先求去一張課桌和一把椅子的價格之和,再乘以24套,就得到總價。
生2:我是先求桌子總價,再求椅子的總價,最後再求和。
師:這兩種演算法有什麼關系?
生:相等。
師:能試著用語言來說一說等式的兩邊表示的意義嗎?
生:嘗試用數學語言口頭表述兩式的意義,小組內進行互說交流。
……
這個教學片斷,有效地利用學生生活中看得見、摸得著的事物進行實際計算,學生已有的生活經驗支撐起計算和語言描述活動,為抽象概括出乘法分配律提供可依託的數學事實,同時運用生活經驗的表象作用,引導學生深入進行「數學化」的探究,事實、經驗、知識相互作用,有利於經驗的逐步累積並順利上升為數學模念。
二、讓學生的思維活躍起來,在思維的跳躍中積累數學活動經驗。
【播放繪圖的片段】
思維是根本,活躍的思維是課堂不可缺失的靈魂。在這個教學片斷中,我和學生共同經歷了畫封閉圖形與不封閉圖形及塗色的過程,通過操作、交流、觀察、思考等活動,把抽象的知識化為具體的、形象的、可操作的知識,把學生的思維一步步引向深處,學生在輕松愉快的氛圍中,思維被激活了,同時我更珍惜學生的感悟、體驗,理解,學生在猜測、驗證、總結的過程中,既深深地感受到封閉圖形的面積,理解不封閉圖形面積是不能確定的這一抽象的知識,同時又掌握了一些基本的研究問題的方法,讓學生在思維的跳躍中積累 「基本的數學活動經驗」。
三、讓學生在「親歷」中積累數學活動經驗;
學者史寧中曾說:「我們必須清楚,世界上有很多東西是不可傳遞的,只能靠親身經歷。智慧並不完全依賴知識的多少,而依賴知識的運用、依賴經驗,教師只能讓學生在實際操作中磨煉。」
可見,活動是經驗的源泉,不親歷實踐活動就根本談不上經驗。紙上得來終覺淺,絕知此事須躬行。對於孩子們來講,動手做始終是他們最歡迎的學習形式,只有學生動手操作、體驗積累的數學經驗,才能最終沉澱到他們的內心深處,成為一種素質,一種能力,伴其一生,受用一生。
因此,數學教學應強調「做數學」,通過做數學讓學生來體驗、理解數學的內容、思想與方法,通過讓學生親自參與充滿豐富、生動的思維活動,在實踐中獲得活動經驗。
【師:請大家拿出2號學具袋中最小的正方形,動手量一量他的邊長是多少?
生測量 1厘米
師:(出示、課件)像這樣邊長1厘米的正方形, 面積是1平方厘米(板貼)
讓我們一起來記住這位新朋友,仔細看,用心記,把1平方厘米印在你的腦海里,頭腦中有1平方厘米了嗎?
師:好,現在就畫一個1平方厘米,但不能用格尺,也不能用1平方厘米的學具。
學生畫
師:同桌之間互相檢驗,你想對他說什麼?
生:我的同桌畫的太小了,在大一點就好了、、、、、、
師:誰畫的比較接近1平方厘米,請舉手。
師:這就是數學美!畫的不準的同學再畫一次,相信你這次一定會有進步的。
生:老師,我畫的正好····
師:很激動,是嗎?這就是數學帶給我們的不一樣的樂趣!
師:你能在身邊找一找1平方厘米嗎?
生:大拇指甲的面積、紐扣面的面積、、、、、、】
這是在認識1平方厘米時設計數學活動,這一活動的設計目的是激發學生主動參與、實踐、思考和探索,讓學生在活動中學習和感悟數學,幫助學生積累數學活動經驗。這個過程中的測量、徒手畫、同桌評價、在身邊找,這就是一個積累基本活動經驗的過程,一個幫助學生獲取具有數學本質的數學活動經驗,建構數學模型、數學思想方法的過程。
「兒童的智慧就在他的手指尖上」,數學活動經驗是學生在學習的活動過程中所獲得的,離開了活動過程,這個實踐過程是不會形成有意義的數學活動經驗的。數學活動經驗的積累往往就是靠這樣的同伴自己動手實踐、同伴分享、觀察思考悟出新知,知識的獲得不是靠老師教,而是在「潤物細無聲」中完成的。
作為一線數學教師,我們更應該站在為學生終身發展的高度,努力與學生一同實踐,在教學中開展一切有現實意義的數學活動,促進學生提升數學活動經驗,為學生的數學素養從「雙基」向多元發展作出自已不懈的努力!

Ⅳ 數學四大領域是什麼


數學四大領域是:
1、數與代數:數的認識,數的表示,數的大小,數的運算,數量的估計;
2、圖形與幾何:空間與平面的基本圖形,圖形的性質和分類;圖形的平移、旋轉、軸對稱;
3、統計與概率:收集、整理和描述數據,處理數據;
4、實踐與綜合應用:以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。
數學是研究數量、結構、變化、空間以及信息等概念的一門學科。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。

Ⅳ 數學是一個什麼樣的東西

數學(mathematics或maths),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
1:數學史
2:數理邏輯與數學基礎
X軸Y軸
a:演繹邏輯學(亦稱符號邏輯學)b:證明論 (亦稱元數學) c:遞歸論 d:模型論 e:公理集合論 f:數學基礎 g:數理邏輯與數學基礎其他學科
3:數論
a:初等數論 b:解析數論 c:代數數論 d:超越數論 e:丟番圖逼近 f:數的幾何 g:概率數論 h:計算數論 i:數論其他學科
4:代數學
a:線性代數 b:群論 c:域論 d:李群 e:李代數 f:Kac-Moody代數 g:環論 (包括交換環與交換代數,結合環與結合代數,非結合環與非結 合代數等) h:模論 i:格論 j:泛代數理論 k:范疇論 l:同調代數 m:代數K理論 n:微分代數 o:代數編碼理論 p:代數學其他學科
5:代數幾何學
6:幾何學
a:幾何學基礎 b:歐氏幾何學 c:非歐幾何學 (包括黎曼幾何學等) d:球面幾何學 e:向量和張量分析 f:仿射幾何學 g:射影幾何學 h:微分幾何學 i:分數維幾何 j:計算幾何學 k:幾何學其他學科
7:拓撲學
a:點集拓撲學 b:代數拓撲學 c:同倫論 d:低維拓撲學 e:同調論 f:維數論 g:格上拓撲學 h:纖維叢論 i:幾何拓撲學 j:奇點理論 k:微分拓撲學 l:拓撲學其他學科
8:數學分析
a:微分學 b:積分學 c:級數論 d:數學分析其他學科
9:非標准分析
10:函數論
a:實變函數論 b:單復變函數論 c:多復變函數論 d:函數逼近論 e:調和分析 f:復流形 g:特殊函數論 h:函數論其他學科
11:常微分方程
a:定性理論 b:穩定性理論 c:解析理論 d:常微分方程其他學科
12:偏微分方程
a:橢圓型偏微分方程 b:雙曲型偏微分方程 c:拋物型偏微分方程 d:非線性偏微分方程 e:偏微分方程其他學科
13:動力系統
a:微分動力系統 b:拓撲動力系統 c:復動力系統 d:動力系統其他學科
14:積分方程
15:泛函分析
a:線性運算元理論 b:變分法 c:拓撲線性空間 d:希爾伯特空間 e:函數空間 f:巴拿赫空間 g:運算元代數 h:測度與積分 i:廣義函數論 j:非線性泛函分析 k:泛函分析其他學科
16:計算數學
a:插值法與逼近論 b:常微分方程數值解 c:偏微分方程數值解 d:積分方程數值解 e:數值代數 f:連續問題離散化方法 g:隨機數值實驗 h:誤差分析 i:計算數學其他學科
17:概率論
a:幾何概率 b:概率分布 c:極限理論 d:隨機過程 (包括正態過程與平穩過程、點過程等) e:馬爾可夫過程 f:隨機分析 g:鞅論 h:應用概率論 (具體應用入有關學科) i:概率論其他學科
18:數理統計學
a:抽樣理論 (包括抽樣分布、抽樣調查等 )b:假設檢驗 c:非參數統計 d:方差分析 e:相關回歸分析 f:統計推斷 g:貝葉斯統計 (包括參數估計等) h:試驗設計 i:多元分析 j:統計判決理論 k:時間序列分析 l:數理統計學其他學科
19:應用統計數學
a:統計質量控制 b:可靠性數學 c:保險數學 d:統計模擬
20:應用統計數學其他學科
21:運籌學
a:線性規劃 b:非線性規劃 c:動態規劃 d:組合最優化 e:參數規劃 f:整數規劃 g:隨機規劃 h:排隊論 i:對策論 亦稱博弈論 j:庫存論 k:決策論 l:搜索論 m:圖論 n:統籌論 o:最優化 p:運籌學其他學科
22:組合數學
23:模糊數學
24:量子數學
25:應用數學 (具體應用入有關學科)
26:數學其他學科
發展歷史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意.古希臘學者視其為哲學之起點,「學問的基礎」.另外,還有個較狹隘且技術性的意義——「數學研究」.即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的.
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……).[1]
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用.
具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學).
就縱度而言,在數學各自領域上的探索亦越發深入.
圖中數字為國家二級學科編號.

結構
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示.此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統.把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅理論解決了,它涉及到域論和群論.代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法.

空間
空間的研究源自於歐式幾何.三角學則結合了空間及數,且包含有非常著名的勾股定理、三角函數等。現今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學.數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色.在微分幾何中有著纖維叢及流形上的計算等概念.在代數幾何中有著如多項式方程的解集等幾何對象的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間.李群被用來研究空間、結構及變化.

基礎

旋轉曲面(8張)

主條目:數學基礎
為了弄清楚數學基礎,數學邏輯和集合論等領域被發展了出來.德國數學家康托爾(1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的思想,為以後的數學發展作出了不可估量的貢獻.
集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具.20世紀初,數學家希爾伯特在德國傳播了康托爾的思想,把集合論稱為「數學家的樂園」和「數學思想最驚人的產物」.英國哲學家羅素把康托的工作譽為「這個時代所能誇耀的最巨大的工作」

邏輯
主條目:數理邏輯
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果.就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果.現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關聯性.

符號
編輯
主條目:數學符號
也許我國古代的算籌是世界上最早使用的符號之一,起源於商代的占卜.
我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的.在此之前,數學是用文字書寫出來,這是個會限制住數學發展的刻苦程序.現今的符號使得數學對於人們而言更便於操作,但初學者卻常對此感到怯步.它被極度的壓縮:少量的符號包含著大量的訊息.如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼.

嚴謹性
數學語言亦對初學者而言感到困難.如何使這些字有著比日常用語更精確的意思,亦困惱著初學者,如開放和域等字在數學里有著特別的意思.數學術語亦包括如同胚及可積性等專有名詞.但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性.數學家將此對語言及邏輯精確性的要求稱為「嚴謹」.
嚴謹是數學證明中很重要且基本的一部分.數學家希望他們的定理以系統化的推理依著公理被推論下去.這是為了避免依著不可靠的直觀,從而得出錯誤的「定理」或"證明",而這情形在歷史上曾出現過許多的例子.在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹.牛頓為了解決問題所作的定義,到了十九世紀才讓數學家用嚴謹的分析及正式的證明妥善處理.今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度.當大量的計算難以被驗證時,其證明亦很難說是有效地嚴謹.

數量
數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的有理和無理數.
另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較.

簡史

西方數學簡史
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術.第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破.除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年.算術(加減乘除)也自然而然地產生了.
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普.歷史上曾有過許多各異的記數系統.
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究.
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備.但尚未出現極限的概念.
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換.在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明.隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展.

中國數學簡史
主條目:中國數學史
數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合.

相關
編輯
中國古代算術的許多研究成果裡面就早已孕育了後來西方數學才涉及的思想方法,近現代也有不少世界領先的數學研究成果就是以華人數學家命名的:
【李善蘭恆等式】數學家李善蘭在級數求和方面的研究成果,在國際上被命名為「李善蘭恆等式」(或李氏恆等式).
【華氏定理】數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」.
【蘇氏錐面】數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」.
【熊氏無窮級】數學家熊慶來關於整函數與無窮級的亞純函數的研究成果被國際數學界譽為「熊氏無窮級」.
【陳示性類】數學家陳省身關於示性類的研究成果被國際上稱為「陳示性類」.
【周氏坐標】數學家周煒良在代數幾何學方面的研究成果被國際數學界稱為「周氏坐標;另外還有以他命名的「周氏定理」和「周氏環」.

【吳氏方法】數學家吳文俊關於幾何定理機器證明的方法被國際上譽為「吳氏方法」;另外還有以他命名的「吳氏公式」.
【王氏悖論】數學家王浩關於數理邏輯的一個命題被國際上定為「王氏悖論」.
【柯氏定理】數學家柯召關於卡特蘭問題的研究成果被國際數學界稱為「柯氏定理」;另外他與數學家孫琦在數論方面的研究成果被國際上稱為「柯—孫猜測」.
【陳氏定理】數學家陳景潤在哥德巴赫猜想研究中提出的命題被國際數學界譽為「陳氏定理」.
【楊—張定理】數學家楊樂和張廣厚在函數論方面的研究成果被國際上稱為「楊—張定理」.
【陸氏猜想】數學家陸啟鏗關於常曲率流形的研究成果被國際上稱為「陸氏猜想」.
【夏氏不等式】數學家夏道行在泛函積分和不變測度論方面的研究成果被國際數學界稱為「夏氏不等式」.
【姜氏空間】數學家姜伯駒關於尼爾森數計算的研究成果被國際上命名為「姜氏空間」;另外還有以他命名的「姜氏子群」.
【侯氏定理】數學家侯振挺關於馬爾可夫過程的研究成果被國際上命名為「侯氏定理」.
【周氏猜測】數學家周海中關於梅森素數分布的研究成果被國際上命名為「周氏猜測」.
【王氏定理】數學家王戌堂關於點集拓撲學的研究成果被國際數學界譽為「王氏定理」.
【袁氏引理】數學家袁亞湘在非線性規劃方面的研究成果被國際上命名為「袁氏引理」.
【景氏運算元】數學家景乃桓在對稱函數方面的研究成果被國際上命名為「景氏運算元」.
【陳氏文法】數學家陳永川在組合數學方面的研究成果被國際上命名為「陳氏文法」.

數學名言
外國人物
萬物皆數.——畢達哥拉斯
幾何無王者之道.——歐幾里德
數學是上帝用來書寫宇宙的文字.——伽利略[2]
我決心放棄那個僅僅是抽象的幾何.這就是說,不再去考慮那些僅僅是用來練思想的問題.我這樣做,是為了研究另一種幾何,即目的在於解釋自然現象的幾何.——笛卡兒(Rene Descartes 1596-1650)
數學家們都試圖在這一天發現素數序列的一些秩序,我們有理由相信這是一個謎,人類的心靈永遠無法滲入。——歐拉
數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.數學是科學之王.——高斯
這就是結構好的語言的好處,它簡化的記法常常是深奧理論的源泉.——拉普拉斯(Pierre Simon Laplace 1749-1827)
如果認為只有在幾何證明裡或者在感覺的證據里才有必然,那會是一個嚴重的錯誤.——柯西(Augustin Louis Cauchy 1789-1857)
數學的本質在於它的自由.——康托爾(Georg Ferdinand Ludwig Philipp Cantor 1845-1918)
音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科學可改善物質生活,但數學能給予以上的一切.——克萊因(Christian Felix Klein 1849-1925)
只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示獨立發展的終止或衰亡. ——希爾伯特(David Hilbert 1862-1943)
問題是數學的心臟.——保羅·哈爾莫斯(Paul Halmos 1916-2006)
時間是個常數,但對勤奮者來說,是個『變數』.用『分』來計算時間的人比用『小時』來計算時間的人時間多59倍.——雷巴柯夫

Ⅵ 在數學中,用售價的百分之幾做積累的積累是什麼意思

意思是一件東西成本25元,按30元出售賺百分之幾? (30-25)除以25 (30-25)除以25就是五分之一,百分之二十 (30-25)/25 (30-

Ⅶ 數學又叫什麼

數學叫作算術,又稱算學,最後才改為數學。

中國古代的算術是六藝之一(六藝中稱為「數」)。數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。

從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

中國數學簡史:

數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。

符號:

我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的。在此之前,數學是用文字書寫出來,這是個會限制住數學發展的刻苦程序。

現今的符號使得數學對於人們而言更便於操作,但初學者卻常對此感到怯步。它被極度的壓縮:少量的符號包含著大量的訊息。如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼。

以上內容參考網路—數學

Ⅷ 我想學文現在是高一。我知道這東西靠積累,學哥學姐們能給推薦點書籍之類的嗎再告訴一些學習數學的方法

如何學好初三數學,是擺在即將升入新初三學生面前的一個難題。其實,學好數學並不難!
一、課本要「預、做、復」。每堂新課之前,做到先預習,特別要把難點或不懂之處用彩筆劃出,以便上課時更加註意。每節內容後面的練習自己可以先做一做,做到看懂70%的新內容,會做80%的練習題。每節新內容學完後,我們要按照課本內容,從易到難,從簡到繁,一步一步地把學過的知識進行比較復習,對概念、定理、公式做出歸納、總結,加深對知識的理解,最好能把課本上的例題自己做一遍。對課本上的概念、定理、公式推理一遍,以形成對知識的整體認識。
二、上課要「聽、記、練」。把預習中存在的問題放在課堂上著重聽,必要時還需做好筆記,並通過一些練習題加以鞏固。數學不同於其他學科,單把概念、定理、公式背熟,無法解決實際問題,只有通過練來減少運算中出現的錯誤。
三、作業要「思、問、集」。作業一定要養成獨立思考的習慣,多從不同的方法、角度入手,多從典型題目中探索多種解題方法,從中得到聯想和啟發。同時,還應多樹立數學解題思想:如,方程的思想、函數的思想、數形結合的思想、整體的思想、分類的思想等常用方法;對於難題,要多問幾個為什麼,如改變條件、添加條件、結論與條件互換,原結論還成立嗎?另外,對於自己作業、試卷中出現的錯誤,最好能准備一本錯題集,以便今後復習中使用。做到絕不出現第二次類似錯誤。
總之,學習數學要有方法、計劃和合理的安排。新課授完後,有些同學就感到頭痛,於是,東看看西翻翻,一天下來,不知道自己學了什麼。因此,每個同學都應根據自己的實際情況制訂出合理的學習方法、目標;沒有方法,就會變成一隻無頭蒼蠅;沒有目標就會沒有動力。
如果想拿高分建議你做一做歷年中考的最後兩道題
還要總結一下以往錯題 常看避免再犯
(1)學會「數學閱讀」

在中小學,我們會遇到這樣的情況,當學生向教師問問題時,一些教師常常會說:請你把問題再讀兩遍;請你把問題講一講;請你把問題抄一遍;等等。這些教師要表達的是一個意思,請你再讀一讀,再理解一下。

我們講一個真實的故事。在大學,每年都要舉辦一次「數學建模競賽」,競賽的問題都是一些實際問題,要求三人一組,工作三天,共同完成一篇解決問題的「論文」,可以藉助各種圖書、網上資源和工具(包括計算機和軟體等)。1993或1994年,首都師范大學第一次組隊參加,讓我們擔任指導教師,我們十分為難,首都師范大學的學生要與北大、清華的學生一起考試,差距是明顯的,是多方面的。我們分析,感到最大的差距是:獨立地學習和理解數學的習慣和能力。我們改變了輔導的方式,讓學生選擇內容,學生講,我們聽。開始階段,我們總會說:對不起,我們沒有聽懂,請你重新准備。有的學生講過四、五遍,當我們感到他真的懂了,再學別的。這種方法很好,大部分學生經歷了一次這樣的過程以後,再報告其他的內容就變得比較順利了。這些學生在競賽中得到了很好的成績。

在學習外語時,有一種基本能力:閱讀理解。我們感到在數學的學習中,「數學閱讀」也是非常基本的。這些年我們接觸了一些中小學的教學實際,中小學生獨立進行「數學閱讀」的要求和機會越來越少。教師是好意,為了使學生盡快地提高考試成績,為了「多講一些」,為了「節約時間」,教師替代學生做得太多了。我們希望同學們認識到,提高數學閱讀能力是學好數學的基本功之一。我們曾經做過一個調查,在地質學科的論文中,數學公式的出現次數是平均每頁六次之多。在其他的學科中也有類似的情況。為了更好的說明數學閱讀在中小學的重要性,我們以數學「應用問題」為例加以說明。

在中小學數學教學中,「應用問題」常常是難點,為什麼難?主要兩個理由,一個理由是背景豐富,都是一元二次方程,但是,可以用各種背景去展示,很難規為題型,如果歸為「一元二次方程的應用題」,就好像沒有歸類,如果從背景歸類,又會十分龐雜。

第二個理由是問題和條件不像「傳統的數學習題」那樣規范,有時需要自己從敘述中明確「要求的結論和要證的結論」,「條件」和「結論」的關系不像「傳統的數學習題」那樣「可丁可卯」,即條件不可多也不可少。這樣,需要分析和判斷哪些條件有用,哪些條件沒用,而分析和判斷的依據是因題而異。對目前中小學教學的基調——題型,這些是不匹配的。

應用問題「難」在需要「數學閱讀理解」能力,「難」在這種能力不能突擊培養、不容易模式化,「難」在教師不能替代。

應用問題,包括數學建模,她的教育作用有兩方面。一方面,體會數學與日常生活、數學與其他學科的聯系,數學的社會發展中的作用,體會數學的價值。另一方面,從另一個角度體會做數學的過程,數學不僅僅是從概念到概念,從定理到定理,從一些結果到一個新的結果;數學是有背景的,這些背景中蘊含著深刻的數學內涵,這些背景在數學思考中發揮了重要的作用;做數學會有一個過程,是一個很有趣的過程,需要我們發現問題,提出猜想,分析和尋求條件,並且,還會不斷地修正,甚至反復,等等。

「數學閱讀理解」能力是一種基本能力,教師和學生都應予以重視,提高這種能力需要比較長期的積累,作為教師應該針對不同的學生提供不同的建議。

在中小學數學教學中,有一個認識上的障礙,一些人認為:「學習數學就是做數學習題」,也有人認為:「做習題能力是實的,其他都是虛的。」這種看法是有一定道理的,特別是在對付考試時會起一定的作用。做數學習題的能力是反映數學能力的一個重要方面,通過做習題有助於對一些數學技能、方法的理解。但是,數學的學習還包含更豐富的內容,關於這些我們在前面已經講了很多。

建議教師多給學生一些機會,針對不同水平和特點的學生,提高他們的「數學閱讀理解能力」。很多教師在這方面積累了一些很好的經驗,例如,有針對性地讓學生閱讀教材和收集參考資料,在閱讀中,讓學生思考「一些重要概念」形成的過程,思考某些章節的知識結構,不同概念(像函數與數列等)的內在聯系,等等,並鼓勵學生把自己的思考寫成報告。

希望學生們把思路開闊一些,除了做習題,還能提出一些值得思考的問題,並養成思考問題的習慣,我們在北大數學系讀書時,曾問過丁石孫老師一個問題,大體意思是:什麼樣的學生算好學生?丁先生的回答使我們終生難忘,「沒有問題的學生恐怕不能算好學生」。對很多學生來說,除了不會做的習題,大概沒有值得思考的問題。在數學的閱讀中,應該不斷的提出問題,把自己對數學的理解深入下去。

(2)養成好的數學學習習慣

在這次課程改革中,提出三維目標,其中「過程」也作為一個目標。「學習習慣」是過程的一個很好的體現。

什麼是學習習慣?

有的學生放學,回家就做作業(一般是做習題),做完,就算完成學習任務。

有的學生,回家後,先把教師講授內容的教材認真地讀一遍,然後,再做作業,做完,再想一想,今天學的與以前學的有什麼聯系。

有的學生有些總結的習慣,學習一個段落的內容,一定要整理一下,寫下來。

有的學生不喜歡寫,喜歡想,常常會做在那發呆,把學過的回憶一遍。

……

不同的學生有不同的學習習慣。養成一個適合自身情況,好的學習習慣,會提高學習的效率,會自然地保持下去,會一生受益。

數學學習有自身的特點,例如,很多人在講解數學時,喜歡畫圖,總會用最直觀、形象的語言來解釋本質的內容;有些人在講解抽象數學概念時,總喜歡選擇一些大家非常熟悉的例子,一下子就會把抽象概念很清晰地表示出來;有些人在教授數學時,總讓人有一種整體的感覺,來源、過程、結果、應用等,哪一部分都是不可缺少的,十分自然。用直觀的圖像來表述抽象的概念;用具體的事例來理解一般的事物;不斷地形成整體知識框架;等等。這些都是非常好的「習慣」。

這些好習慣的形成需要長時間的積累,教師自覺不自覺地都在用自己的習慣影響學生,希望各位教師把這件事做得更自覺一些,更主動一些。也希望學生在學習中,成為有心人,形成一些適合自身條件、行之有效的好習慣,改變一些不好的習慣,提高學習效率。

(3)學會「索取」——主動學習

從教師的角度,總希望千方百計把自己的東西給學生。有的學生不知道該如何接受這些東西;有的學生不論好壞全收;有的會挑挑揀揀,好得留下,重要的收好;等等。但是,一般地,教師最喜歡會主動「索取」的學生。

我們常說「授之以魚,不如授之以漁。」如何「授魚」,一般教師想得多一些,如何「授漁」,這是極具挑戰的,前面說的「好的學習習慣」就是「撲魚」的范疇。

「授漁」,有兩個方面,一是方法,「好的學習習慣」是方法;另一個是動力,「好奇」,「興趣」,「上進心」,「對數學價值的認識」,這些都是動力。二者是不可分的,「信心」就體現了二者的聯系,學好數學,需要花些力氣,碰到難處,要堅持一下,我們的一些碩士或博士學生做論文時,常常碰到一些「坎」,除了我們一起分析討論之外,我們總會要求「再堅持一下」,這個過程不僅能幫助他們建立自信,也會「逼迫」他們總結出「方法」。很多優秀的教師在這方面是很有辦法的。

從學生的角度,學生的主要任務是學習,不僅要學會「知識」,把別人的變成自己的;也要學「索取知識」,不斷得到自己需要的,這兩者也是相輔相成。需要思考。例如,在做題時,有的學生有一種很好的習慣,做完總要想一想,對題目作一個評價,是不是好題?給我留下了什麼?這些思考使得他們的學習「事半功倍」,這就是他們索取知識的辦法。

我們希望把「教和學」結合起來,在這方面建立起教師和學生之間的互動,一榮皆榮。教師應該盡力多給學生提供一些提高主動性的機會,幫助學生把他們的潛能發揮出來,針對不學生生的情況給於不同的建議,讓更多學生盡快「入門」。變被動為主動。

(4)獨立思考與研討交流

學習數學,需要獨立思考,對於背景、問題、概念、定理、應用以及它們之間的聯系,都需要自己思考,讓它們自然地留在我們的頭腦中,做問題、習題也需要獨立完成,即或請教了別人,最後,還是需要自己來完成。

目前,各種不同形式的討論班(seminar)已經成為研究數學的一種基本的工作模式,在研究生和部分本科生的教學中,也越來越多地採用討論班的形式,討論的形式不同,水平不同,人數不同,但是,基本的形式是一樣的,有明確的討論問題,參加的成員應事先認真思考准備,有主題報告,又充分地討論交流。

在中小學也可借鑒這種形式,教師和學生一起組織,大家都會受益。

藉助網路,搭建專題討論的平台,已經出現了一批,特別是一些「名師工作室」,採用這樣的形式,如果能多一些討論就更好了。這是信息技術給我們帶來的最大方便,我們應該把技術充分地利用起來。

閱讀全文

與做積累數學的東西叫什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069