Ⅰ 關於數學排列組合,A什麼的C什麼的到底怎麼算舉個例子。。
A開頭的叫排列,C開頭的叫組合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
註:當且僅當兩個排列的元素完全相同,且元素的排列順序也相同,則兩個排列相同。例如,abc與abd的元素不完全相同,它們是不同的排列;又如abc與acb,雖然元素完全相同,但元素的排列順序不同,它們也是不同的排列。
Ⅱ 高中數學中組合是怎麼算的,詳細過程,公式是多少
C(4,2)=(4*3)/(2*1)=6
C(8,2)=(8*7)/(2*1)=28
所以原式=6/28=3/14
Ⅲ 高中數學排列組合公式有哪些
高中數學排列組合公式如下:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)。
組合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!。
例如A(4,2)=4!/2!=4*3=12。
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。
加法原理與分布計數法:
1、加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法...在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+.. +m種不同方法。
2、第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2...第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合AUA2....UAn。
3、分類的要求:每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重) ;完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
Ⅳ 組合計算公式
組合數的計算公式為:
組合是數學的重要概念之一,它表示從 n 個不同元素中每次取出 m 個不同元素,不管其順序合成一組,稱為從 n 個元素中不重復地選取 m 個元素的一個組合。所有這樣的組合的種數稱為組合數。
n 元集合 A 中不重復地抽取 m 個元素作成的一個組合實質上是 A 的一個 m 元子集和。如果給集 A 編序成為一個序集,那麼 A 中抽取 m 個元素的一個組合對應於數段到序集 A 的一個確定的嚴格保序映射。
(4)高中數學中組合怎麼計算擴展閱讀
組合數的性質:
1、互補性質:即從n個不同元素中取出m個元素的組合數=從n個不同元素中取出 (n-m) 個元素的組合數;這個性質很容易理解,例如C(9,2)=C(9,7),即從9個元素里選擇2個元素的方法與從9個元素里選擇7個元素的方法是相等的。
2、組合恆等式:若表示在 n 個物品中選取 m 個物品,則如存在下述公式:C(n,m)=C(n,n-m)=C(n-1,m-1)+C(n-1,m)。
Ⅳ 組合怎麼運算
組合運算用公式Cmn=Amn/m!計算。組合是一個數學名詞。一般地,從n個不同的元素中,任取m(m≤n)個元素為一組,叫作從n個不同元素中取出m個元素的一個組合。
另外重復組合是一種特殊的組合。從n個不同元素中可重復地選取m個元素。不管其順序合成一組,稱為從n個元素中取m個元素的可重復組合。當且僅當所取的元素相同,且同一元素所取的次數相同,則兩個重復組合相同。
Ⅵ 高中數學排列組合這種式子怎麼計算
C4,2就是4*3/2=6,
C3,1=3,
A2,2等於2,
如果是要做懲罰的話,把6×3×2就等於36
Ⅶ 高中數學,排列組合這個式子怎麼計算
這個組合數就是3個裡面任取一個。
所以答案是:3.
又如:Cn²=n(n-1)÷2
供參考,請笑納。
Ⅷ 高中排列組合的計算方法啊
排列與元素的順序有關,組合與順序無關.如231與213是兩個排列,2+3+1的和與2+1+3的和是一個組合. (一)兩個基本原理是排列和組合的基礎 (1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法. (2)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法. 這里要注意區分兩個原理,要做一件事,完成它若是有n類辦法,是分類問題,第一類中的方法都是獨立的,因此用加法原理;做一件事,需要分n個步驟,步與步之間是連續的,只有將分成的若干個互相聯系的步驟,依次相繼完成,這件事才算完成,因此用乘法原理. 這樣完成一件事的分「類」和「步」是有本質區別的,因此也將兩個原理區分開來. (二)排列和排列數 (1)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列. 從排列的意義可知,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序必須完全相同,這就告訴了我們如何判斷兩個排列是否相同的方法. (2)排列數公式:從n個不同元素中取出m(m≤n)個元素的所有排列 當m=n時,為全排列Pnn=n(n-1)(n-1)…3·2·1=n! (三)組合和組合數 (1)組合:從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從 n個不同元素中取出m個元素的一個組合. 從組合的定義知,如果兩個組合中的元素完全相同,不管元素的順序如何,都是相同的組合;只有當兩個組合中的元素不完全相同時,才是不同的組合. (2)組合數:從n個不同元素中取出m(m≤n)個元素的所有組合的個 這里要注意排列和組合的區別和聯系,從n個不同元素中,任取m(m≤n)個元素,「按照一定的順序排成一列」與「不管怎樣的順序並成一組」這是有本質區別的. 一、排列組合部分是中學數學中的難點之一,原因在於 (1)從千差萬別的實際問題中抽象出幾種特定的數學模型,需要較強的抽象思維能力; (2)限制條件有時比較隱晦,需要我們對問題中的關鍵性詞(特別是邏輯關聯詞和量詞)准確理解; (3)計算手段簡單,與舊知識聯系少,但選擇正確合理的計算方案時需要的思維量較大; (4)計算方案是否正確,往往不可用直觀方法來檢驗,要求我們搞清概念、原理,並具有較強的分析能力。 二、兩個基本計數原理及應用 (1)加法原理和分類計數法 1.加法原理 2.加法原理的集合形式 3.分類的要求 每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏) (2)乘法原理和分步計數法 1.乘法原理 2.合理分步的要求 任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同