A. 初中數學有哪些知識點
考點1
相似三角形的概念、相似比的意義、畫圖形的放大和縮小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2
平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3
相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。
考點4
相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。
考點5
三角形的重心
考核要求:知道重心的定義並初步應用。
考點6
向量的有關概念
考點7
向量的加法、減法、實數與向量相乘、向量的線性運算
考核要求:掌握實數與向量相乘、向量的線性運算
考點8
銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。
考點9
解直角三角形及其應用
考核要求:
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
考點10
函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數
考核要求:
(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;
(2)知道常值函數;
(3)知道函數的表示方法,知道符號的意義。
考點11
用待定系數法求二次函數的解析式
考核要求:
(1)掌握求函數解析式的方法;
(2)在求函數解析式中熟練運用待定系數法。
注意求函數解析式的步驟:一設、二代、三列、四還原。
考點12
畫二次函數的圖像
考核要求:
(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像
(2)理解二次函數的圖像,體會數形結合思想;
(3)會畫二次函數的大致圖像。
考點13
二次函數的圖像及其基本性質
考核要求:
(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;
(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。
注意:
(1)解題時要數形結合;
(2)二次函數的平移要化成頂點式。
考點14
圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。
考點15
圓心角、弧、弦、弦心距之間的關系
考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點16
垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點17
直線與圓、圓與圓的位置關系及其相應的數量關系
直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。
考點18
正多邊形的有關概念和基本性質
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。
考點19
畫正三、四、六邊形。
考核要求:能用基本作圖工具,正確作出正三、四、六邊形。
考點20
確定事件和隨機事件
考核要求:
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;
(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點21
事件發生的可能性大小,事件的概率
考核要求:
(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。
注意:
(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;
(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。
考點22
等可能試驗中事件的概率問題及概率計算
考核要求:
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;
(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。
注意:
(1)計算前要先確定是否為可能事件;
(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點23
數據整理與統計圖表
考核要求:
(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;
(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。
考點24
統計的含義
考核要求:
(1)知道統計的意義和一般研究過程;
(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。
考點25
平均數、加權平均數的概念和計算
考核要求:
(1)理解平均數、加權平均數的概念;
(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。
考點26
中位數、眾數、方差、標准差的概念和計算
考核要求:
(1)知道中位數、眾數、方差、標准差的概念;
(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。
注意:
(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;
(2)求中位數之前必須先將數據排序。
考點27
頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖
考核要求:
(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;
(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1。
考點28
中位數、眾數、方差、標准差、頻數、頻率的應用
考核要求:
(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;
(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;
(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。
B. 初中數學常考知識點有哪些
1、一元二次方程的基本概念
一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。直角坐標系與點的位置,特殊三角函數值,圓的基本性質,直線與圓的位置關系等等。
2、一元二次方程
只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程
。一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次項,a是二次項系數;bx叫作一次項,b是一次項系數;c叫作常數項。
3、特殊三角函數
特殊三角函數值一般指在30°,45°,60°等角的三角函數值。這些角度的三角函數值是經常用到的。並且利用兩角和與差的三角函數公式,可以求出一些其他角度的三角函數值。cos30°=1,tan45°=1。
4、圓的基本性質
半圓或直徑所對的圓周角是直角。
任意一個三角形一定有一個外接圓。
在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
在同圓或等圓中,相等的圓心角所對的弧相等。
同弧所對的圓周角等於圓心角的一半。
同圓或等圓的半徑相等。
過三個點一定可以作一個圓。
長度相等的兩條弧是等弧。
在同圓或等圓中,相等的圓心角所對的弧相等。
經過圓心平分弦的直徑垂直於弦。
C. 初中數學內容有哪些
初中數學主要包含代數和幾何兩部分。
數與代數知識點主要包括有理數、實數、代數式、整式、分式、一元一次方程、二元一次方程(組)、一元二次方程、一元一次不等式(組)、一次函數、反比例函數、二次函數等。
幾何部分知識點包括線段、角、相交線、平行線 、三角形 、四邊形 、相似形 、圓等。
代數部分主要包含:
實數,代數式(整式,二次根式),方程(一元一次方程,二元一次方程組,一元二次方程,分式方程),不等式,函數(正比例函數,一次函數,反比例函數,二次函數)。
幾何部分主要包含:
幾何初步(線以角,平行線),三角形(三角形認識及性質,直角三角形,等腰三角形,全等三角形,相似三角形,銳角三角函數),四邊形(平行四邊形,矩形,菱形,正方形),圓,立體圖形基礎,圖形三大變化(平移,旋轉,對稱)。
D. 初中數學必背知識點
總結的有點多,請耐心看哈!
希望能幫助你,還請及時採納謝謝!
數學,是一門關於如何思維的科學。熟記數學口訣,是解題的一條捷徑,孩子做題思維就會變快。從而更加深刻的記住知識點,減輕孩子的學習負擔,輕松學習。
下面小優老師將初中數學必須掌握的26個知識點口訣總結如下,希望對你有幫助。
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓最大弦,直圓周角立上邊,
它若垂直平分弦,垂徑、射影響耳邊;
還有與圓有關角,勿忘相互有關聯,
圓周、圓心、弦切角,細找關系把線連
同弧圓周角相等,證題用它最多見,
圓中若有弦切角,夾弧找到就好辦;
圓有內接四邊形,對角互補記心間,
外角等於內對角,四邊形定內接圓;
直角相對或共弦,試試加個輔助圓;
若是證題打轉轉,四點共圓可解難;
要想證明圓切線,垂直半徑過外端,
直線與圓有共點,證垂直來半徑連,
直線與圓未給點,需證半徑作垂線;
四邊形有內切圓,對邊和等是條件;
如果遇到圓與圓,弄清位置很關鍵,
兩圓相切作公切,兩圓相交連公弦。
E. 初中數學知識有哪些
初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
F. 中考數學重點知識歸納內容是什麼
一、圓周角定理及其推論
1、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
二、一些基本公式
三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三、二元一次方程組
1、二元一次方程
含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。
2、二元一次方程的解
使二元一次方程左右兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。
3、二元一次方程組
兩個(或兩個以上)二元一次方程合在一起,就組成了一個二元一次方程組。一般形式:(不全為0)
4、二元一次方程組的解
使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。
5、二元一次方程組的解法
四、基本思想:"消元"
解法:(1)代入法(2)加減法(3)二元一次方程組一元一次方程組.
6、三元一次方程
把含有三個未知數,並且含有未知數的項的次數都是1的整式方程。
五、列方程(組)解應用題
注意:千萬不要死記硬背例題的類型及其解法,要具體問題具體分析,一般來講,應按下面的步驟進行:
1、審題:弄清題意和題目中的已知量、未知量,並能找出能夠表示應用問題的全部含義的等量關系。
2、設未知數:選擇一個或幾個適當的未知量,用字母表示,並根據題目的數量關系,用含未知數的代數式表示相關的未知量。
3、列方程(組):根據等量關系列出方程(組)。
4、解方程(組):其過程可以省略,但要注意技巧和方法。
5、檢驗:首先檢查所列方程(組)是否正確,然後檢驗所得方程的解是否符合題意。
6、寫答:不要忘記單位名稱。
7、分式方程的解法
①一般解法:去分母法,即方程兩邊同乘以最簡公分母。
②特殊解法:換元法。
(2)驗根:由於在去分母過程中,當未知數的取值范圍擴大而有可能產生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡公分母,看結果是不是零,使最簡公分母為零的根是原方程的增根,必須捨去。
說明:解分式方程,一般先考慮換元法,再考慮去分母法。
六、相交線中的角
兩條直線相交,可以得到四個角,我們把兩條直線相交所構成的四個角中,有公共頂點但沒有公共邊的兩個角叫做對頂角。我們把兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角叫做臨補角。
臨補角互補,對頂角相等。
直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,並且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,並且在EF的異側,像這樣位置的兩個角叫做內錯角;∠3與∠6在直線AB,CD之間,並側在EF的同側,像這樣位置的兩個角叫做同旁內角。
七、線段的性質
1、線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。
2、連接兩點的線段的長度,叫做這兩點的距離。
3、線段的中點到兩端點的距離相等。
4、線段的大小關系和它們的長度的大小關系是一致的。
5、線段垂直平分線的性質定理及逆定理
垂直於一條線段並且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
G. 初中數學知識點有哪些
初中數學知識點有:
1、平行線的兩條判定定理
(1)兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行。簡稱:內錯角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行。簡稱:同旁內角互補,兩直線平行。
2、利用絕對值比較大小
(1)兩個正數比較:絕對值大的那個數大;
(2)兩個負數比較:先算出它們的絕對值,絕對值大的反而小。
3、圓的基本性質
(1)半圓或直徑所對的圓周角是直角。
(2)任意一個三角形一定有一個外接圓。
(3)在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4、全等三角形的判定
(1)邊邊邊公理:三邊對應相等的兩個三角形全等(「邊邊邊」或「SSS」)。
(2)邊角公理:兩邊和它們的夾角對應相等的兩個三角形全等(「邊角邊」或「SAS」)。
(3)角邊角公理:兩個角和它們的夾邊分別對應相等的兩個三角形全等(「角邊角」或「ASA」)。
5、一次函數
形如y=kx+b(k、b是常數,且k≠0)的函數,叫做一次函數。特別地,當b=0時,y是x的正比例函數。即:y=kx(k為常數,k≠0)。所以,正比例函數是特殊的一次函數。
H. 初中數學知識點整理
《01.初中數學試講》網路網盤資源免費下載
鏈接: https://pan..com/s/1iWBOCq_t6SmTHTUq_Pra3Q
01.初中數學試講|初中數學|3、初中數學教材梳理班(重點看)|2、初中數學試講|1、初中數學試講+答辯理論課(王威)(14講)重點看|TransferConverted|第9講_有理數加減法_recv.mp4|第8講_一次函數_recv.mp4|第7講_二元一次方程組_recv.mp4|第6講_義務教育數學課程標准解讀4_recv.mp4|第5講_義務教育數學課程標准解讀3_recv.mp4|第4講_義務教育數學課程標准解讀2_recv.mp4|第3講_義務教育數學課程標准解讀1_recv.mp4|第2講_試講理論2_recv.mp4|第1講_試講理論1_recv.mp4
I. 初中一年級數學知識點是什麼
初中一年級上期數學知識點:
第一章有理數。
一、知識框架。
二、知識概念。
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數。
(2)有理數的分類:①②。
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線。
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0。
(2)相反數的和為0 ? a+b=0 ? a、b互為相反數。
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離。
(2)絕對值可表示為:或;絕對值的問題經常分類討論。
5.有理數比大小:
(1)正數的絕對值越大,這個數越大。
(2)正數永遠比0大,負數永遠比0小。
(3)正數大於一切負數。
(4)兩個負數比大小,絕對值大的反而小。
(5)數軸上的兩個數,右邊的數總比左邊的數大。
(6)大數-小數>0,小數-大數<0。
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數。
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值。
(3)一個數與0相加,仍得這個數。
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c)。
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b)。
10有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘。
(2)任何數同零相乘都得零。
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc)。
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。
13.有理數乘方的法則:
(1)正數的任何次冪都是正數。
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a -b)n=-(b-a)n ,當n為正偶數時:(-a)n =an或(a-b)n=(b-a)n 。
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方。
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪。
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位。
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運演算法則:先乘方,後乘除,最後加減。
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運演算法則解決實際問題。
體驗數學發展的一個重要原因是生活實際的需要。激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
第二章整式的加減。
一、知識框架。
二、知識概念。
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式。
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數。
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。
通過本章學習,應使學生達到以下學習目標:
1.理解並掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。
2.理解同類項概念,掌握合並同類項的方法,掌握去括弧時符號的變化規律,能正確地進行同類項的合並和去括弧。在准確判斷、正確合並同類項的基礎上,進行整式的加減運算。
3.理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合並同類項、去括弧的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。
4.能夠分析實際問題中的數量關系,並用還有字母的式子表示出來。
在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
第三章一元一次方程。
一、知識框架。
二、知識概念。
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括弧……移項……合並同類項……系數化為1……(檢驗方程的解)。
4.列一元一次方程解應用題:
(1)讀題分析法:…………多用於「和,差,倍,分問題」。
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:…………多用於「行程問題」。
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間。
(2)工程問題:工作量=工效·工時。
(3)比率問題:部分=全體·比率。
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度。
(5)商品價格問題:售價=定價·折·,利潤=售價-成本。
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a。
S正方形=a2,S環形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。
J. 初中數學知識有哪些簡單概括
知識點1:一元二次方程的基本概念
知識點2:直角坐標系與點的位置
知識點3:已知自變數的值求函數值
1.當x=2時,函數y=的值為1.
2.當x=3時,函數y=的值為1.
3.當x=-1時,函數y=的值為1.
知識點4:基本函數的概念及性質
1.函數y=-8x是一次函數.
2.函數y=4x+1是正比例函數.
4.拋物線y=-3(x-2)2-5的開口向下.
5.拋物線y=4(x-3)2-10的對稱軸是x=3.
6.拋物線的頂點坐標是(1,2).
7.反比例函數的圖象在第一、三象限.
知識點5:數據的平均數中位數與眾數
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3
知識點6:特殊三角函數值
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
知識點7:圓的基本性質
1.半圓或直徑所對的圓周角是直角.
2.任意一個三角形一定有一個外接圓.
3.在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓.
4.在同圓或等圓中,相等的圓心角所對的弧相等.
5.同弧所對的圓周角等於圓心角的一半.
6.同圓或等圓的半徑相等.
7.過三個點一定可以作一個圓.
8.長度相等的兩條弧是等弧.
9.在同圓或等圓中,相等的圓心角所對的弧相等.
10.經過圓心平分弦的直徑垂直於弦。
知識點8:直線與圓的位置關系
1.直線與圓有唯一公共點時,叫做直線與圓相切.
2.三角形的外接圓的圓心叫做三角形的外心.
3.弦切角等於所夾的弧所對的圓心角.
4.三角形的內切圓的圓心叫做三角形的內心.
5.垂直於半徑的直線必為圓的切線.
6.過半徑的外端點並且垂直於半徑的直線是圓的切線.
7.垂直於半徑的直線是圓的切線.
8.圓的切線垂直於過切點的半徑.