導航:首頁 > 數字科學 > 為什麼要學數學論點參考文獻

為什麼要學數學論點參考文獻

發布時間:2022-08-01 07:10:58

⑴ 為什麼我們要學習數學

人為什麼要學數學?其實很多人並不清楚,甚至存在許多認識誤區。有學生認為,「數學除了買東西的時候有點用,考試的時候有點用,沒有多大的實際用途。」還有學生認為,「學數學一切為了高考,沒有高考就沒有人會學這些沒有用的東西。」其實,數學是一個意義的領域。

1、數學意義——科學的立場
數學一直是形成人類文化的主要力量,通過數學這面鏡子可以了解一個時代的特徵。古希臘數學家強調嚴密的推理,他們關心的並不是這些成果的實用性,而是教育人們去進行抽象的推理,激發人們對理想和美的追求。所以,古希臘創造了後世很難超越的優美文學,理性化的哲學,以及理想化的建築與雕刻。中國古代數學崇尚實用,最大的缺點是缺少嚴格求證的思想。「數學和各種科學假說的數學化已經成為近代科學的脊樑骨」。一個時代的特徵與這個時代的數學活動密切相關。17世紀以來,由於微積分的創立,藉助微積分工具在尋求自然規律方面所取得的成功遠遠超出了天文學的領域。19 世紀,由於把微積分這個工具改進為嚴格的分析體系,使數學物理強有力的理論成為可能,最終導致了量子力學、相對論的誕生,使人們對物質和空間的基本性質有更深的了解。20 世紀 50 年代,數學的發展創造了計算機,數學從科學的幕後走向台前,數字化深入到了人類幾乎所有的活動。
數學能像音樂一樣,給人以巨大的心靈震撼。羅素在自傳中這樣寫道:「我 11 歲時,我開始學習歐幾里得幾何學,哥哥做我的老師,這是我生活中的一件大事,就像初戀一樣令人陶醉。我從來沒有想像到世界上還有如此美妙的東西。」在人們的印象中,數學與藝術很少有共同之處,雖然它們都是人類智慧的結晶。然而,數學始終默默地伴隨著藝術,為它提供豐富的靈感之源和堅實的創作支柱。數學能產生藝術的靈感,藝術也能使數學產生靈感。從斐波那契數列和圓周率的小數位數字,到四面體和麥比烏斯帶,都可以作為藝術家創作的靈感。音樂是人類精神通過無意識計算而獲得的愉悅享受。法國數學家傅立葉證明了:所有的聲音,無論是噪音還是儀器發出的聲音,復雜的還是簡單的聲音,都可以用數學方式進行全面的描述。傅立葉的證明具有深刻的哲學意義。美妙的音樂以令人意想不到的美妙方式得到了數學描述,從而,藝術中最抽象的領域能轉換成最抽象的科學;而最富有理性的學問,也有合乎理性的音樂與其密切相聯。所以,數學是推理中的音樂,而音樂則是感覺中的數學。數學和建築間的緊密聯系應該沒有什麼可驚奇的。數學一直是建築師們取之不盡用之不竭的創造源泉,是建築設計與創新的寶貴工具。
不僅自然科學,各門社會科學也同樣地不斷求助於數學。隨著數學與其它科學之間關系的更深入的揭示,數學又獲得了一種新的稱謂——夥伴。美國數學家斯蒂恩對數學與其它學科作了這樣的比喻:許多有學問的人,特別是科學家和工程師,把數學想像成一棵知識之樹,公式、定理和結論就像掛在樹上的成熟的果實,讓路過的科學家採摘,用以豐富他們的理論。數學家則與之相反,他們視數學如迅速生長的熱帶雨林,需要從數學之外的世界吸取養分,同時它又奉獻給人類文明豐富的、變化無窮的智慧動植物。數學對其它學科做出了許多貢獻,同時,這些學科正用一些有趣的新型問題向數學家發出了挑戰,這些問題又導致了新的應用,且越基本的數學其用處更廣。可以想像,隨著人類社會的發展,數學會成為最基本的學科,會成為所有科學的框架。如果採用後現代諺語來說,就是幾乎沒有什麼東西能夠避開數學的「文本」。可以說,如果我們的世界裡數學突然被抽走,人類社會將頃刻崩潰;如果我們的世界裡數學被凍結,人類文明將即刻倒退。沒有數學的文明是不可以想像的。

2、數學意義——教育的立場
學作為人的基本素質,在古希臘社會尤其明顯。希臘哲人以知識為善,追求真善美乃是希臘教的宗旨。柏拉圖認為數學是具備公民資格的前提,人的靈魂受到數學的陶冶之後,就有可能超凡脫俗,回到聖潔至上的理念世界而得到拯救。接受訓練而能以邏輯和數學進行推理的人,將更有可能逃出無知的洞穴。數學不僅是人的基本素質,數學還能提升智能,增進才能。柏拉圖認為,那些天性擅長算術的人,往往也敏於學習其它一切學科;而那些反應遲緩的人,如果受了算術的訓練,他們的反應也總會有所改善。柏拉圖特別強調,幾何學中高深的東西能夠幫助人們較為容易地把握善的理念。不知道基本的數學語言,不理解基本的數學符號,不掌握基本的數學推理,不懂得基本統計圖表,這樣的人將不能適應現代社會的快速發展。在信息社會,數學作為現代人的基本素質,已經越來越被人們所認識。數學以它的思維性、理性精神和優美性成為當今社會文化中的一個基礎組成部分。可以說,沒有數學,我們幾乎不能很好地生活;沒有數學,我們幾乎不能很好地工作;沒有數學,我們幾乎不能很好地思考;沒有數學,我們幾乎不能很好地交流;沒有數學,我們幾乎不能很好地欣賞。

通過數學的學習,「能夠促進學生的學習態度、思維習慣、思維模式、思維策略等的發展,讓每個學生面對全新的情景都能做出適當的回應」。傳統實證主義知識觀將知識描述成線性積累和價值中立,忽略知識創造中人的活動,忽視知識所蘊涵的倫理意義。然而,知識本質上是一種社會建構,它必然體現人的價值選擇,表現人的倫理關懷。數學也不例外,對於數學來說,它可以促進人的下列優秀品質的形成。

第一,誠實正直,崇尚真理。計算、證明並不是一個簡單的操作步驟或形式化過程,而是一系列的觀點與洞察。數學結論對任何人都一樣,必須接受理性法庭的裁決,對就是對,錯就是錯。數學計算、數學演繹、數學證明都不能靠投機取巧,而只能靠一步一步的計算與推理。通過數學的學習,可以培養誠實正直、以理服人、堅持真理、有錯就改的優良品格。

第二,勤於思考,勇於創新。要啟發人類這種獨有的、高貴的創新能力,莫過於數學。沒有哪一門學科能像數學這樣集中、加速和強化人們的注意力。事實證明,數學家的成功並不在於他們的天賦有多高,而主要取決於他們的勤奮和創新。

第三,堅韌不拔,敢於攀登。幾何中沒有王者之路,數學研究需要有堅強的毅力。因為數學命題的證明猶如登山,只有那些堅忍不拔、勇於探索的人,才能達到勝利的彼岸。數學是一所優秀的思維學校,數學是一門睿智的訓練學科,數學是一種抽象的思維模式。精確的數學語言讓我們有條不紊地思考復雜的決策,而不是只憑軼事、猜測和雄辯。學習數學的人更能有效地進行思維,發展人的思維能力是數學重要的文化功能,沒有數學就不會有有組織的邏輯思維。數學能使人們的思維方式嚴格化,養成有步驟地進行推理的習慣。
數學是打開機會大門的鑰匙。數學不僅是科學的語言,而且以直接的方式為商業、財政、經濟、國防做出貢獻,為學生打開職業的大門。一個人懂得的數學越多,就會有更多的職業之門向他開放。今天,那些理解數學並且能做數學的人,將比那些不懂數學的人獲得更多的機會。從保險公司統計員、系統分析家、營銷專家、網路管理人,到金融分析家,等等。實際上,數學歷來都在幫助教育當局甄別哪些學生應該得到社會的報酬這一點上起到重要的作用。在某種程度上,數學水平和能力的不同決定了一個人將來從事的職業和發展前景。在未來世界中,求職和晉升的最好機會將提供給那些有信心應付數學的人,作為科學和技術的基礎,數學提供通向成功的鑰匙。信息時代就是數學的時代,正如未來的科學家和工程師需要廣泛的數學一樣,未來的公民將需要極其多樣的數學,以對付工作中大量以數學為基礎的工具、設備和技術。當學生離開學校並進入工作生涯時,數學極大地決定了一個人能從事什麼樣的工作與不能從事什麼樣的工作。

在世界上所有的國家中,中小學的數學課程內容較為一致,具有突出的相似性。具體地說,各國選取的數學課程內容與社會的需求、數學的發展以及學生的發展密切相關。數學在課程中占據中心位置,在不同的國家或文化中,沒有任何一門其它學科的教育時間有數學這樣長。我們很少看到數學學得好而其它學科學得不好的學生。在中學里很少有這樣的情況,即某個學生在數學上是第一名,而在其它學科上卻屬於最差的行列。反之,那些所謂「差生」,往往首先就是數學沒有學好,數學對於這些學生而言竟然成了「篩子」。篩掉了他們的就業機會,篩掉了他們的發展機會。數學真正成了打開通向未來的大門,每個人的發展都依賴於數學教育的成功。在所有文明中,一代又一代的兒童學習數學以獲得更加美好的生活。

3、對數學教育的啟示

在數學課程改革的背景下,我們為什麼要學習數學?數學對學生的發展意味著什麼?數學到底要塑造學生什麼?數學到底能塑造學生什麼?這些問題看似平凡,實則非凡;看似簡單,實則復雜;看似淺顯,實則深遠。其實,每個問題都是我們教育工作者必須弄清的數學教育哲學的基本問題。事實表明,無論是從人類文明的發展來看,還是從學生個人的發展來說,數學是一個不容忽視的意義的領域。數學是人類最高超的智力成就,是人類心靈最獨特的創造,是人類文明的核心部分。數學是了解世界及其發展的主要鑰匙之一。作為人類文明發展標志的數學,在人的發展中扮演著重要的角色。數學已成為個人參與社會的基本條件,每個人都需要學習數學。數學應該走進學生的生活世界,成為每個學生生活的組成部分,激發他們對生活的熱愛,體現更多的人文關懷。數學應該促進學生的發展,震撼學生心靈,培養學生的好奇心,體現數學的文化價值。數學應該發展學生的能力,體現數學的思維價值。數學應該培養學生對美的追求,體現數學的藝術價值。從而,數學教學不是把數學各個領域的片段知識灌輸給學生,不是把數學作為一個封閉系統,從那些完美的數學結論開始,而是從學生熟悉的現實生活、已有的數學經驗開始,把數學作為一項人類的基本活動。應該少些強制,少些令人厭惡的機械訓練。讓學生思考!思考!再思考!教師不是為考試而教,學生不是為考試而學。數學不是無意義的符號,數學不是無意義的公式游戲,數學不是無意義的運算和推理。數學是一個意義的領域,數學並非虛無飄渺,其中萌動著思想的生命。今天,數學教育中的種種困惑與迷茫,都與數學意義的失落密切相關。走向意義的數學教育是時代的呼喚。在這里,數學意義不是一個邏輯概念,而是被理解為生命的表現。數學意義不是從文本中提煉出來的,而是從對話中創造出來的。數學意義蘊涵在運算和推理中,蘊涵在每一個數學概念的學習中,蘊涵在每一個數學定理的探究中,蘊涵在每一個數學問題的研究中。走向意義的數學教育要給每一個學生一片陽光,喚醒他們的心靈,成為學生難忘的人生經歷。它讓學生領略現代數學思想中令人鼓舞的概念,像夏天喝冰水那樣令人清新。它讓學生欣賞數學,感受數學定理與數學概念的美妙,像藝術那樣令人振奮。它讓學生發現優美定理、概念的形成過程創造出更有內涵、更有意義的數學文化,像呼吸那樣順乎自然。在數學教育中,當做題、考試、成績成為數學教育關注的焦點時,數學就變成了一種無意義的諸多公式、定義、過程的羅列,數學意義——無論是科學意義還是教育意義——就離我們遠去。然而,遠離了意義的數學教育,也就從根本上遠離了學生的生活。從而將數學知識局限於認識論的窠臼,片面強調數學知識的客觀性、抽象性和確定性,遮蔽了數學知識所蘊涵的意義世界。所以,數學教育必須超越抽象的世界、符號的世界、邏輯的世界、知識的世界、絕對真理的世界以及升學工具的世界,邁向意義的世界。可以說,回歸數學意義是每一個數學教育工作者神聖的使命。走向意義的數學教育理所當然應該成為新的教育方向,新的教育追求。

⑵ 誰能幫我寫關於「讓數學走進生活」的參考文獻綜述範文~謝謝!~~

走進生活中的數學才會有更強的生命力

[摘要]現狀調查表明,我國數學學習具有較強的自我封閉性,普遍注重「純粹」技能技巧的訓練和題型教學,脫離社會生活實際,即使一些數學技能較好的學生面對現實的數學問題也常常感到困難。我們學生通常認為「數學就是解題」,「學數學就是通過解題求得一個結果」。其實不然,數學應該是一個過程,一種活動,學數學更重要的是運用數學解決生活中的問題。如果把數學比作是魚,那麼生活就是數學所需要的水;如果把數學比作是花,那麼生活就是數學所需求的泥土。只有數學與生活相結合,讓數學融於生活,走進生活才會具有更強的生命力。

關鍵詞:必要性;現狀分析;教學策略;

一、 數學融於生活的必要性

《課標》中提出「人人學有價值的數學」,是指人人能獲得必需的數學,數學應滿足學生未來社會生活的需要,能適應學生個性發展的要求。「有價值」的數學應該與學生的現實生活密切聯系。學習數學是重要的,將數學融於生活更是必要的。

數學的結果的呈現形式往往是一些經過精心組織的、條理清晰的數學結構,它們雖然看上去很完美,但卻割斷了與現實生活之間的聯系,差不多完全沒有了產生與發展的痕跡。如果教師授課時僅僅把數學結果作為課堂上的內容,學生的參與只能是被動的,他們就很難找到發揮主動性和創造性的空間,對數學的興趣和愛好就成了空談。比如,教師在講授七年級下的第2章《圖形的變換》時,倘若只是純粹地介紹平移變換,旋轉變換的概念,學生必定很難理解。如果將平移變換與我們平時生活中的纜車的運動,生產線上的產品的移動聯系,旋轉變換與鍾面上時針、分針的運動相結合,我想學生必定能通過生活中這種典型的數學模型,充分理解平移變換,旋轉變換的概念。只有將數學貼近學生熟悉的現實生活,將生活中的數學與教科書上的數學相結合,使生活和數學融為一體,這樣才能有利於學生理解數學、熱愛數學,讓數學成為學生發展的重要動力源泉。

二、 現狀分析

雖然現在提倡素質教育,但迫於升學的壓力,現在的教育在一定的程度上還存在很多的弊端。不管是學校,教師,家長重視的不是學生學習的過程,而是學習的結果,說直白點還是更看重考試分數。

(1) 學習方式以被動為主

表現之一是教學過程中還是以教師的講授為主,很少讓學生通過自己的活動與時間來獲取知識、得到發展。依靠學生查閱資料、集體討論為主的學習的活動很少。另一表現是學生們很少有根據自己的理解發表看法和意見的機會。這樣的教學過程很難使學生達到真正的理解,只是純粹地接受教科書上的知識點。中小學學生在學習數學知識的時候,一般都是獨立於學生生活的「外來物」,是一個封閉的「知識體系」,只是由抽象的符號所構成的一系列客觀數學事實(概念、定理、公式、法則等)。這種沒有與生活聯系的數學猶如一潭死水,沒有的生機,沒有與生活聯系的數學學習更是枯燥乏味。

(2) 學習評價單一

現在對學習數學的評價還是以考試的形式為主,以學生考試的分數為標准。對學生而言,他們的強烈感受就是考試次數多,考題和考卷的分量重,考試難度大,導致他們根本沒有空餘時間去思考,學習數學的目的就變成了解題,而不是將書本上的數學知識應用於生活。長時間下去,學生對學習數學就失去了興趣,成了一台考試的機器。

三、 教學策略

(1)創設情境,在生活中體會數學

所謂創設情境,就是把那些不知與已知、淺知與深知的知識、需要學生解決的矛盾問題帶到一定的場景中去。新課程標准中很重要的改革是注重學生的情感與態度的培養,新理念的數學教學也要求緊密聯系學生的生活實際。

創設生活情境,能激發學生探索規律的興趣;創設生活情境,可以從他們的經驗和已有知識出發,引導探索新知識。

(2)在課堂訓練中體驗「生活化」。

數學起源於生活,又作用於生活。數學課堂教學應該著力體現「小課堂、大社會」的理念,讓學生貼近生活情境中發現數學問題,運用所學的數學知識解決實際問題,培養學生綜合運用知識以及做出決策的能力,使學生有更多的機會接觸生活和生產實踐中的數學問題,真正認識到數學能力與現實問題之間的密切聯系。

比如在講授「比例線段」時,我有意把學生帶到廣場上,要學生測量計算廣場邊的旗桿的高。如何測量?同學們開始討論,想辦法,正當同學們議論紛紛的時候,我適時取來了一根長2米的竹竿,筆直插在操場上。我啟發學生思考:如果桿長是影子的2倍,你能想出測旗桿高的辦法嗎?一位同學搶答道:這時旗桿的高也是它影子的2倍。我馬上肯定了那位同學的想法,然後讓學生們分組合作,分別同時測量竹竿的影長,旗桿的影長及竹竿的長度,算出了旗桿的高度。接著,我又說:「你們能用比例寫出一個求桿高的公式嗎?」於是得出:竹竿長:竹竿影長=旗桿高:旗桿影長或竹竿長:旗桿高=竹竿影長:旗桿影長……學生意猶未盡,完全沉醉於探討活動中,增長了知識,鍛煉了能力。我有意讓學生通過觀察、分析、運用,了解數學知識在生活中的實際作用。目的是培養學生多用數學眼光看問題,多用數學頭腦想問題,增強學生運用數學知識解決生活中的實際問題的意識。

(3)探究生活中數學問題,讓數學充滿趣味性

心理學研究表明,興趣是求知的最佳驅動力,只要引起了學生的興趣,就等於拿了打開知識寶庫的鑰匙,手拿這把鑰匙,學生會主動地去開啟智慧之門。「讓講台成為舞台,讓教室成為社會,讓學生成為演員,讓教師成為導演」,將數學與生活、學習、活動有機結合起來,使學生感受到數學源於生活,從而激發學生學習數學的興趣和慾望。

例如,讓學生了解附近市場或超市的銷售情況,提出進貨的建議。這需要學生了解市場的貨物的種類、每天的銷售、哪些商品的銷售額高等情況,在此基礎上才能給出進貨的建議。又如,讓學生測算粉刷房屋的費用。這需要學生首先測定房屋的粉刷面積,了解市場上有哪些塗料、價格如何,確定選用哪種塗料,需要多少塗料,粉刷的工錢如何計付。教師要努力為學生應用數學知識創造條件和機會,還要鼓勵學生在現實中尋找數學知識和數學思想方法解決問題。正如要讓一個人學會游泳,必須把他放到水裡一樣。

總之,數學教學要更貼近學生的生活,使學習數學變得有趣、生動、易懂,並會把數學運用於實踐,才能使得數學變得更有活力。讓數學走進學生的生活,融於生活,才能使得數學更有生命力。

祝你好運- -

⑶ 為什麼數學那麼重要

  1. .什麼是數學


數學是研究現實世界空間形式和數量關系的一門科學.分為初等數學和高等數學.它在科學發展和現代生活生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.

數學符號的引入

六.數學與文化

數學的文化價值

一、數學是哲學思考的重要基礎
數學在科學、文化中的地位,也使得它成為哲學思考的重要基礎。歷史上哲學領域內許多重要論爭,常常牽涉到有關對數學的一些根本問題的認識。我們思考這些問題,有助於正確認識數學,正確理解哲學中有關的爭論。
(一)數學——-根源於實踐
數學的外在表現,或多或少人的智力活動相聯系。因此在數學和實踐的關繫上,歷來有人主張數學是「人的精神的自由創造」,否定數學來源於實踐其實,數學的一切發展都不同程度地歸結為實際的需要。從我國殷代的甲骨文中,就可以看到那時我們的祖先已經會使用十進制計數方法他們為適應農業的需要,將「十干」和「十二支」配成六十甲子,用以記年、月、日,幾千年的歷史說明這種日歷的計算方法是有效的。同樣,由於商業和債務的計算,古代的巴比倫人己經有了乘法表、倒數表,並積累了許多屬於初等代數范疇的資料。在埃及,由於尼羅河泛濫後重新測量土地的需要,積累了大量計算面積的幾何知識。後來隨著社會生產的發展,特別是為適應農業耕種與航海需要而產生的天文測量,逐漸形成了初等數學,包括當今我們在中學里學習到的大部分數學知識。再後來由於蒸汽機等機械的發明而引起的工業革命,需要對運動特別是變速運動作更精細的研究,以及大量力學問題出現,促使微積分在長期的醞釀後應運而生。20世紀以來近代科學技術的飛速發展,使數學進入一個空前繁榮時期。在這個時期數學出現了許多新的分支:計算數學,資訊理論,控制論,分形幾何等等。總之,實踐的需要是數學發展的最根本的推動力。
數學的抽象性往往被人所誤解。有些人認為數學的公理、公設、定理僅僅是數學家頭腦思維的產物。數學家靠一張紙、一支筆工作,和實際沒有什麼聯系。
其實,即使就最早以公理化體系面世的歐的幾里德幾何而言,實際事物的幾何直觀和實踐中人們發展的現象,盡管不合乎數學家公理化體系的各式,卻仍然包含著數學理論的核心。當數學家把建立幾何的公理體系當作自己的目標時,他伯頭腦中也一定聯繫到幾何作圖和直觀現象。一個人,即使是很有天賦的數學家,能在數學的研究中獲得具有科學價值的成果,除了他接受嚴格的數學思維訓練以外,他在數學理論研究的過程中,必定會在問題的提出、方法的選擇、結論的提示等諸多方面自覺或不自覺地受到實踐的指引。可以這么說,脫離了實踐,數學就會成為無源之水,無本之木。
其實,即使就最早以公理化體系面世的歐幾里德幾何而言,實際事物的幾何直觀和實踐中人們發現的現象,盡管不合乎數學家公理化體系的程式,卻仍然包含著數學理論的核心。當數學家把建立幾何的公理體系當作自己的目標時,他的頭腦中也一定聯繫到幾何作圖和直觀現象。一個人,即使是很有天賦的數學家,能在數學的研究中獲得具有科學價值的成果,除了他接受過嚴格的數學思維訓練以外,他在數學理論研究的過程中,必定會在問題的提出、方法的選擇、結論的提示等諸多方面自覺或不自覺地受到實踐的指引。可以這么說,脫離了實踐,數學就會變成無源之水,無本之木。
但是,數學理性思維的特點,使它不會滿足於僅研究現實的數量關系和空間形式,它還努力探索一切可能的數量關系和空間形式。在古希臘時期,數學家就超越了在現實有限尺度精度內度量線段的方法,覺察到了無公度量線段的存在,即無理數的存在。這其實是數學中最困難的概念之一—連續性、無限性的問題。直到兩千年以後,同樣的問題導致極限理論的深入研究,大大地推動了數學的發展。試想今天如果還沒有實數的概念,我們將面臨怎樣的處境。這時人們無法度量正方形對角線的長度,也不會解一元二次方程:至於極限理論與微積分學更不可能建立即使人們可以像牛頓那樣應用微積分,但是在判斷結論的真實性時會感到無所適從。在這種狀況下,科學技術還能走多遠呢?又如在歐幾里德幾何產生時,人們就對其中一個公設的獨立性產生懷疑。到19世紀上半葉,數學家改變這個公設,得到了另一種可能的幾何一一非歐幾里德幾何。這種幾何的創立者表現了極大的勇氣,因為這種幾何得出的結論從「常理」來說是非常「荒唐」的。例如「三角形的面積不會超過某一個正數」。現實世界似乎沒有這種幾何的容身之地。但是過了近一百年,在物理學家愛因斯坦發現的相對論中,非歐幾里德幾何卻是最合適的幾何。再如,20世紀30年代哥德爾得到了數學結論不可判別性的結果,其中的某些概念非常抽象,近幾十年卻在演算法語言的分析中找到了應用。實際上,許多數學在一些領域或一些問題中的應用,一旦實踐推動了數學,數學本身就會不可避免地獲得了一種動力,使之有可能超出直接應用的界限。而數學的這種發展,最終也會回到實踐中去。
總之,我們應該大力提倡研究和當前實際應用有直接聯系的數學課題,特別是現實經濟建設中的數學問題。但是我們也應該在純粹科學和應用科學之間建立有機的聯系,建立抽象的共性和豐富多彩的個性之間的平衡,以此來推動整個科學協調地發展。
(二)數學—充滿了辯證法由於數學嚴密性的特點,很少有人懷疑數學結論的正確性。相反,數學的結論往往成為真理的一種典範。例如人們常常用「像一加一等於二那麼確定」來表示結論不容置疑。在我們的中小學的教學中,數學更是只准模仿、演練、背誦。數學真的是萬古不變的絕對真理嗎?
事實上,數學結論的真理性是相對的即使像1+1=2這樣簡單的公式,也有它不成立的地方。例如在布爾代數中,1+1=0!而布爾代數在電子線路中有廣泛的應用。歐幾里德幾何在我們的日常生活中總是正確的,但在研究天體某些問題或速度很快的粒子運動時非歐幾何卻是適宜的。數學其實是非常多樣化的,它的研究范圍也隨著新問題的出現而不斷擴大。如同一切科學一樣,數學家們如果死守著前輩的思想、方法、結論不放,數學科學就不會進步。把數學的嚴密性和公理化體系看作一種「教條」是錯誤的,更不能像封建時代的文人對待孔夫子說的話:「真理」已經包含在聖人說過的話里,後人只能對其作詮釋。數學發展的歷史可以證明,正是數學家特別是年輕數學家的創新精神,敢於向守舊的思想挑戰,數學的面貌才得以不斷地更新,數學才成長為今天這樣一門蓬勃發展、富有朝氣的學科。
數學的公理化體系從來也不是不容懷疑、不容變化的「絕對真理」歐幾里德的幾何體系是最早出現的數學公理化體系,但從一開始就有人懷疑其中的第五公設不是獨立的,即該公設可以從公理體系的其他部分推出。兩千多年來人們一直在尋找答案,終於在19世紀由此發現了非歐幾何。雖然人們長時期受到歐幾里德幾何的束縛,但是最終人們還是接受了不同的幾何公理體系。如果歷史上某些數學家多一點敢於向舊體系挑戰的革新精神,非歐幾何也許還可能早幾百年出現
數學公理化體系反映了內部邏輯嚴密性的要求。在一個學科領域內,當有關的知識積累到一定程度後,理論就會要求把一堆看來散亂的結果以某種體系的形式表現出來。這就需要對己有的事實再認識、再審視、再思索,創造新概念、新方法,盡可能地使理論能包括最一般、最新發現的規律。這實在是一個艱苦的理論創新過程。數學公理化也一樣,它表示數學理論已經發展到了一個成熟的階段,但並不是認識一勞永逸的終結。現有的認識可能被今後更深刻的認識所代替,現有的公理也可能被今後更一般化、包含更多事實的公理體系所代替。數學就在不斷地更新過程中得到發展。
有種看法以為,應用數學就是把熟誦的數學結論套到實際問題上去,以為中小學的教學就是教給學生這些萬古不變的教條。其實數學的應用極充滿挑戰性,一方面不但需要深切地認識實際問題本身,另一方面要求掌握相關數學知識的真諦,更重要的是要求能創造性地把兩者結合起來。
就數學的內容來說,數學充滿了辯證法。在初等數學發展時期,占統治地位的是形而上學。在該時期的數學家或其他科學家看來,世界由僵硬的、不變的東西組成。與此相適應,那時數學研究的對象是常量,即不變的量。笛卡爾的變數是數學中的轉折點,他把初等數學中完全不同的兩個領域一一幾何和代數結合起來,建立了解析幾何這個框架具備了表現運動和變化的特性,辯證法因此進入了數學。在此後不久產生的微積分拋棄了把初等數學的結論作為永恆真理的觀點,常常做出相反的判斷,提出一些在初等數學的代表人物看來完全不可理解的命題。數學走到了這樣一個領域,在那裡即使很簡單的關系,都採取了完全辯證的形式,迫使數學家們不自覺又不自願地轉變為辯證數學家。在數學研究的對象中,充滿了矛盾的對立面:曲線和直線,無限和有限,微分和積分,偶然和必然,無窮大和無窮小,多項式和無窮級數,正因為如此,馬克思主義經典作家在有關辯證法的論述中經常提到數學。我們學一點數學,一定會對體會辯證法有所幫助。

7.數學占考試的分值

中考(江蘇):

語文,滿分150
數學,滿分150
英語,滿分130
物理,滿分100
化學,滿分100
歷史,滿分50
政治:滿分50
體育,滿分40

高考:

語文 150
數學 150
英語 150
文綜(理綜)300
總分 750


由此可見,數學無論是在生活與學習中都有重大的作用。


1.參考文獻:

網路詞條「數學」

http://ke..com/link?url=_

2.數學成績計入文化考試總分

http://news.artxun.com/jingdezhentaoci-1282-6406456.shtml

3.網路「數學與文化」詞條

http://ke..com/link?url=pMPMrsPNHIIqNCNdzCy-zwcKT-ccIxgIQ6itzYTYh_ZirDhpZnUYQ_h0ewDB7m1ke8F589QyTzQ1Yvu_yjfweK

請廣大讀者閱讀參考

⑷ 誰能給我一篇(我們為什麼要學數學)的文章~~~~

在日常生活中,普通人不可能特意去使用諸如導數積分等專業的知識,但在許多公司內都會有很大的作用,它影響著生產製造等方面就是影響著人們的日常生活。對於有人說數學培養人的理性思維,我並不完全同意這種觀點,如果數學只是主要發展人的理性思維為什麼不把哲學等理性的東西作為一門象數學一樣重要的課程呢,難道沒學過數學的人就很缺少理性的思維嗎。學數學首先是了解它的應用價值,它的應用價值便是我們日常生活中的作用,而其理論價值就更不言而喻了,所有的理工科都需要它的發展。還有一點數學的推理都是有條件的,並不是一是一,二是二,無條件一切都會是隨機或混沌的,在理性的思維中要求人有發散的思維更是創造的思維,怎麼能簡單認為數學是這樣的一門學科呢

⑸ 為什麼要學數學

我們在學習一樣東西的時候(比如數學),其實我們最後真正得到的是兩個層面的東西。 第一個層面是這個學科非常具體的內容,比如數學公式、解題技巧。這類東西通常可以被寫在教科書上,也容易用語言描述出來,我們可以稱之為「顯性知識」。 第二個層面是在學習這個學科的過程中帶給我們的影響或者順帶學到的一些思維方式、思維習慣或者其他一些微妙而隱晦的東西。這類東西一般很難用語言表述出來,甚至很多人在掌握這些知識、習慣之後,自己並不會意識到自己已經「學會了」它們。這類知識,我們一般可以稱之為「隱性知識」。 比如,在科學史上,古希臘哲學家泰勒斯的一句「萬物源於水」被認為是早期科學誕生的重要標志之一。但是我們知道萬物源於水這句話實際上在科學上並不正確。那為什麼他的話還會流傳至今呢?原因在於,雖然這句話在顯性知識層面上不正確,然而這句話背後卻隱含著這樣一種思維邏輯:即人類第一次對世界的規律的問題做了從自然自身尋找答案的嘗試,而不是簡單地將其託付於超自然力的原因,這一點正是科學的核心思想之一。而這個隱性知識實際上對當時認可這句話的人們起的作用遠比其顯性知識來得作用要大。雖然這句話本身是錯的,確使接受這句話的人在以後的問題中會更傾向於使用非神秘主義的方法來認識這個世界,科學也由此逐漸在人類文明中誕生。 由此可見,顯性知識的運用往往是有條件、有范圍的,而隱性知識雖然不容易被發現和察覺,但其作用和影響卻可以作用於人的一生、乃至整個人類文明的發展軌跡。 回到你的問題,數學本身給我們帶來的顯性知識可能對於大多數不從事理工專業技術工作的人來說可能沒有什麼直接作用。就像韓寒曾經說的那樣,我們生活中用到的數學估計到小學三年級就已經夠用了。然而在之後我們多年來學習的數學,實際上塑造了我們一種理性的、條理的、系統化的思維方式。這種思維方式在我們解決自己一生中遇到的諸多問題時,都有非常重要的作用。比如慎密的思考、分類的思想、排序的思想等。很多東西其實都帶有學習數學這個過程產生的影響,只是由於其作用方式非常隱晦,也不容易被追溯其源頭,我們平時不容易注意到罷了。 因此對於平時工作不使用數學的人來說,真正學到,有益的的是那些隱形而非顯性知識,而正是這些隱形知識將極大地影響我們在一生中做出的許多關鍵的抉擇。

⑹ 我們為什麼要學數學

說起數學,我小學和初中的時候數學很好,但是上了高中我感覺我的數學就再也沒好過。以前還覺得數學很容易,上了高中之後就再也不覺得了、反而覺得數學很難。當時心裡還有一個念頭,我們學數學有什麼好處?我們為什麼要學數學?之後經過自己的一番研究我終於明白了。為什麼要學數學以及學數學的好處。


為什麼學數學:

1、數學是人類認識自然的中介。隨著科學與數學的進一步發展,數學的推演與實際觀測的吻合,人們堅信自然規律就是數學規律,一切注意力都集中在探索宇宙的數學規律上。數學彷彿是一種人與自然,人們的內在世界與周圍外部世界之間的媒介物。最後學數學有益處而無害處,就是這樣的理由說服了我。

⑺ 為什麼要學習數學

數學來源於生活,生活離不開數學。數學對個人,社會,世界都會產生影響。
數學與人類文明一樣古老,有文明就一定有數學。數學在其發展的早期就與人類的生活及社會活動有著密切的關系,解決著各種各樣的問題:食物、牲畜、工具以及其他生活用品的分配與交換,房屋、倉庫的建造,丈量土地,興修水利,編制歷法等。隨著數學的發展和人類文明的進步,數學的應用逐漸擴展到更一般的技術和科學領域。從古希臘開始,數學就與哲學建立了密切的聯系。近代以來,數學又進入了人文科學領域,並使人文科學的數學化成為一種強大的趨勢。
當今社會,數學的發展,計算機技術的廣泛應用,可以說數學的足跡已經遍及人類知識體系的全部領域。從衛星到核電站,高技術的高精度、高速度、高自動、高質量、高效率等特點,無不是通過數學模型和數學方法並藉助計算機的控制來實現的。產品、工程的設計與製造,產品的質量控制,經濟和科技中的預測和管理,信息處理,資源開發和環境保護,經濟決策等,無不需要數學的應用。數學在現代社會中有許多出人意料的應用,在許多場合,它已經不再單純是一種輔助性的工具,它已成為許多重大問題的關鍵性的思想與方法,由此產生的許多成果,又悄悄的遍布在我們身邊,改變著我們的生活方式。可以說數學對現代社會已產生了深遠的影響,我們生活在數學的時代。數學對社會發展的影響,一方面說明了數學在社會發展中的地位和作用,同時,也反映出在未來社會中,社會的主體——人在數學方面所應具備的素養和素質。
1、數學與軍事、戰爭
軍事與戰爭是人們所厭惡的,是人類追求和平的敵人。但是它卻一直伴隨著社會的發展,自從有了社會以來,戰爭一直連綿不斷。而數學在軍事與戰爭中也扮演了無法定義的角色。數學對武器的製造及改進起著很大的作用,16世紀後,許多數學家也是彈道學家,在第一次世界大戰乃至第二次世界大戰時,計算計算射擊火力表一直是數學家的主要任務。數學在戰爭中發揮重要作用的另一個領域是密碼破譯,密碼加密和破譯完全是數學的工作。
2、數學與藝術
當你與從事音樂、美術等藝術的人交談時,只要他們對數學有一定的認識和了解,他們會說,音樂、美術中蘊藏在著數學。繪畫藝術中三維現實世界在二維平面上的真實再現,需要依據幾何學中的透視理論,因此,藝術家們對透視理論進行了研究,提出了將幾何原理應用於繪畫的數學透視法。同時,對同一物體在不同平面上的投影的特徵的思考,成為射影幾何的出發點。
以分形幾何學為理論基礎的計算機圖形學為藝術家的創作和想像提供了更廣闊的空間。利用它創作出的作品是一些形態逼真、充滿魅力的分形圖形,如分形山脈、分形海岸線、分形雲彩、分形湖泊、分形樹林,這些作品所表現出來的精湛的技藝,令人贊嘆不已。面對分形藝術的巨大沖擊,一些美術學院的教授不得不在教案中編入一些分形的內容。不難預料,分形理論及其應用將進一步對繪畫、雕塑、建築設計、廣告設計產生深遠影響。
3、數學與生活
如果說自然科學科學領域和社會科學領域對數學的需求和百姓的生活還有一段距離的話,那麼我們看一看在我們的日常生活中,是否也需要數學,數學到底在哪裡?事實上,數學對整個社會發展的影響不僅僅局限在上述這些比較專門的領域中,數學在現代社會生產、生活中各個方面的應用越來越廣泛,它已滲透到人們的日常生活、工作的方方面面,從每日的天氣預報到個人的投資方式(購買股票、購房、保險),從旅遊到房屋的布局和裝修,到每天電視報紙等新聞媒介中帶給人們的各種各樣的信息,都與數學有著密切的聯系。
衣、食、住、行是社會生活的基礎,過去,人們追求的是吃飽、穿暖、實現小康。隨著生活水平的提高,人們的目標是均衡的營養、設計新穎的服裝、土地的合理利用、舒適的房屋等等,事實上,在日常生活中,就學、就業、住房、醫療、退休、養老等模式,都在發生變化,變得可選擇性越來越強,變得越來越需要減少依賴,增強自主,需要百姓運用自己的頭腦,分析批判,作出決策。在眾多的選擇面前,有人如魚得水,有人無所適從,無論你是否習慣,是否能夠接受,「降水概率」已經赫然與電視和報端。有人設想,不久的將來,新聞報道中每一條消息旁都會註明「真實概率」;電視節目的預告中,每個節目旁都會寫上「可視度概率」;另外,還有西瓜成熟概率、火車正點概率、葯方療效概率、廣告可靠概率等。總之,世間萬物本來如此,人們只是藉助於數學幫助恢復其本來面目。西方發達國家的人們體會最深的是機會與選擇,申請助學金要選擇類別;申請住房要選擇房間大小;聽課要選擇教師、教室和時間;看病要選擇醫生;甚至考試內容、考試方式也都由你選擇。不同的選擇意味著不同的機會,風險大小來源於你的決策分析。這些決策的作出,需要我們以概率統計等數學知識來武裝,人們有了這些數學知識,就可以認識到我們面臨的許多問題的條件是變化的、結論不總是唯一的、結論不是絕對可靠的,實物的多樣性是普遍的,而必然性、絕對性則是相對的、有條件的。
在選擇中,人們常常考慮的是這樣一類問題,即怎樣才能達到「最近、最省時間、最短距離、最佳效益」等優化問題。尋求優化是人類的一種本能,一個沒有受過任何教育的孩子也知道兩點間的距離最短,而且不僅是人類,整個大自然都充斥著這一現象。在我們周圍,優化問題幾乎隨處可見。例如,如何利用有限的空間儲存或運送更多的貨物;如何在激烈的市場競爭中調整商品的價格,薄利多銷,獲得最多利潤;如何合理安排人員配置,使全員勞動生產率最高;如何使有限的生產資料得到最充分的利用;如何選擇出行的最佳路線;等等。把這些問題抽象為一個理論問題,就是如何使系統在給定的情況下,達到最理想的效果。這就需要數學中的最優化理論。

⑻ 大學論文為何要用參考文獻有何意義

文獻也分為零次文獻,一次文獻,二次文獻。

零次文獻最具影響和參考價值,它代表的是最原始的數據記錄,最能體現真實性和依據,在論文中一般體現在作者本身,比如通過大量實驗所得的數據。

一次文獻一般出現在具有官方證實的網站、報刊等地方,一般影響一個時代的著作或者實驗都可以作為強有力的一次文獻借鑒在自己的文章中,例如達爾文的《物種起源》。

二次文獻是對於一次文獻的加工所產生的結果,例如將一次文獻整理和歸納後所得到的出版物和作品,例如學術年度報告總結、數據報告手冊等編纂過的文章都可以稱之為二次文獻。

文獻不光對於大學論文的意義重大,也是人們窺探過去的真實依據,它不光作為一種真實的數據存在,也是一種文化傳承,是重要的人類瑰寶。

⑼ 為什麼要學數學

無用之用

有這樣一個傳說,一次,數學家歐基里德教一個學生學習某個定理。結束後這個年輕人問歐基里德,他學了能得到什麼好處。歐基里德叫過一個奴隸,對他說:「給他3個奧波爾,他說他學了東西要得到好處。」在數學還非常哲學化的古希臘,探究世界的本原、萬物之道,而要得到什麼「好處」,受到鄙視是可以理解的。這就像另一個故事:在巴黎的一個酒吧里,一個姑娘問她的情人遲到的原因,那年輕人說他在趕做一道數學題,姑娘搖著腦袋,不解地問:「我真不明白,你花那麼多時間搞數學,數學到底有什麼用啊?」那年輕人長久地看著她,然後說:「寶貝兒,那麼愛情,到底有什麼用啊?」

由經驗構成的分散的知識,顯然沒有成體系的知識可信,我們歷來都對知識的體系更有信任感。例如牛頓的力學體系,可以精確地計算物體的運動,即使推測1億年的日食也幾乎絲毫不差;達爾文以物種進化和自然選擇為核心的進化論,把整個生物世界統括為一個有序的、有機的系統,使得我們知道不同物種之間的關系。

但是,即使是經典的知識體系,也不足以始終承載我們的全部信任,因為新的經驗、新的研究會調整、更新舊的知識體系,新理論會替代舊理論。愛因斯坦相對論的出現,使得牛頓的力學體系成為一種更廣泛理論中的特例;基因學說的發展和化石證據的積累,使得達爾文進化論中漸變的思想受到挑戰,這樣的事例充滿了整個科學發展的歷史,讓我們不時用懷疑的眼光打量一下那些彷彿無懈可擊的知識體系,對它們心存警惕。

不過,在人們追求確定性、可靠性的時候,還有一塊安寧的綠洲,那就是數學。數學是我們最可信賴的科學,什麼東西一經數學的證明,便板上釘釘,確鑿無疑。另外,新的數學理論開拓新的領域,可以包容但不會否定已有的理論。數學是惟一一門新理論不推翻舊理論的科學,這也是數學值得信賴的明證。

終極的確定

數學追求什麼?我們稱古希臘的賢哲泰勒斯是古代數學第一人,是因為他不像埃及或巴比倫人那樣,對任意一個規則物體求數值解,他的雄心是揭示一個系列的真理。比如圓,他的答案不是關於一個特殊圓,而是任意圓,他對全世界所有的圓感興趣,他創造的理想的圓可以斷言:任何經過圓心的直線都將圓分割為兩等分,他找到的真理揭示了圓的性質。

數學要求普遍的確定性。

數學要劃清結果和證明的界限。

世界再變幻不定,我們也總要有所憑信,有所依託,把這種憑信的根據推到極致,我們能體會到數學的力量。數學之大用也在於此。

我們的先人很早就開始用數學來解決具體的工程問題,在這方面,各古文明都有上佳的表現,但是古希臘人對數學的理解更值得我們敬佩。首先是畢達哥拉斯學派,他們把數看作是構成世界的要素,世上萬物的關系都可以用數來解析,這絕不是我們現代「數字地球」之類的概念可以比擬的,那是一種世界觀,萬物最終可以歸結為數,由數學說明的東西可以成為神聖的信仰,我想,持這樣想法的人,一定對自然常存敬畏,不會專橫自欺的。

其次,古希臘人把數學用於辯論,他們要求數學提供關於政治、法律、哲學論點的論據,要求絕對可靠的證據,要求「不可駁斥性」;他們也不滿足於(例如埃及、巴比倫前輩那樣的)經驗性的證據,而是進一步要求證明,要求普遍的確定性。多麼可愛、嚴正的要求!有這樣要求的人,必定明達事理,光明磊落。

為了保證思想可靠,古希臘的思想家制定了思想的規則,在人類歷史上,思想第一次成為思想的對象,這些規則我們稱之為邏輯。比如不可同時承認正命題和反命題,換句話說,一個論點和它的反論點不能同時為真,即矛盾律;比如一正論點與反論點不可同時為假,即排中律。所有這些努力,都特別體現著人類對確定、可靠的知識的追求,一部數學史,就是人類不斷擴大確知領域的歷史。

閱讀全文

與為什麼要學數學論點參考文獻相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069