① 數學專業有哪些專業課程
數學專業的專業課程有:
一、數學分析
又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。
數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
二、高等代數
初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。
發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。
三、復變函數論
復變函數論是數學中一個基本的分支學科,它的研究對象是復變數的函數。復變函數論歷史悠久,內容豐富,理論十分完美。它在數學許多分支、力學以及工程技術科學中有著廣泛的應用。 復數起源於求代數方程的根。
復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。
四、抽象代數
抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。
他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。
五、近世代數
近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一代數方程(組)是否可解,如何求出代數方程所有的根〔包括近似根〕,以及代數方程的根有何性質等問題。
法國數學家伽羅瓦在1832年運用「群」的思想徹底解決了用根式求解多項式方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數創始人。他使代數學由作為解代數方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。
參考資料來源:
網路—數學分析
網路—高等代數
網路—復變函數論
網路—抽象代數
網路—近世代數
② 數學專業有哪些課程
《精通學堂雪姨數學》網路網盤高清資源免費在線觀看
鏈接:
精通學堂雪姨數學視頻(易懂)浙江專升本數學(超清視頻)網路網盤
③ 大學數學專業都有哪些課程要詳細
《精通學堂秋季大學數學網課》網路網盤免費下載
鏈接:
精通學堂秋季大學數學網課(74.8G超清視頻)網路網盤
④ 數學專業包括什麼
1、數學分析
數學分析又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。
它也是大學數學專業的一門基礎課程。數學中的分析分支是專門研究實數與復數及其函數的數學分支。
2、高等代數
初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。
發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。
3、解析幾何
解析幾何指藉助笛卡爾坐標系,由笛卡爾、費馬等數學家創立並發展。它是利用解析式來研究幾何對象之間的關系和性質的一門幾何學分支,亦叫做坐標幾何。
嚴格地講,解析幾何利用的並不是代數方法,而是藉助解析式來研究幾何圖形。這裡面的解析式,既可以是代數的,也可以是超越的——例如三角函數、對數等。通常默認代數式只由有限步的四則運算及開方構成,超越運算一般不屬於代數學的研究范疇。
4、抽象代數
抽象代數(Abstract algebra)
又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。
他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。
5、實變函數論
實變函數論19世紀末20世紀初形成的數學分支。起源於古典分析,主要研究對象是自變數(包括多變數)取實數值的函數,研究的問題包括函數的連續性、可微性、可積性、收斂性等方面的基本理論,是微積分的深入和發展。
因為它不僅研究微積分中的函數,而且還研究更為一般的函數,並且得到了較微積分中相應理論更為深刻、更為一般從而應用更為廣泛的結論,所以實變函數論是現代分析數學各個分支的基礎。
⑤ 大學數學專業基礎課程有哪些
《大學數學專業基礎課程》網路網盤高清資源免費在線觀看
鏈接:
內容簡介:《初等數學研究》是專業基礎課,初等數學研究主要包括初等代數和初等幾何兩部分內容,它是一門古老而又充滿生命力的學科,是師范院校數學專業的必修課程。
⑥ 數學類專業有哪些
數學類專業包括數學與應用數學、信息與計算科學、數理基礎科學3個專業。
數學與應用數學專業培養掌握數學科學的基本理論與基本方法,具備運用數學知識、使用計算機解決實際問題的能力,受到科學研究的初步訓練,能在科技、教育和經濟部門從事研究、教學工作或在生產經營及管理部門從事實際應用、開發研究和管理工作的高級專門人才。
信息與計算科學專業(原名:計算數學,1987年更名為計算數學及其應用軟體,1998年教育部將其更名為信息與計算科學),是以信息領域為背景。
數學與信息,計算機管理相結合的計算機科學與技術類專業。信息與計算科學專業培養的學生具有良好的數學基礎,能熟練地使用計算機,初步具備在信息與計算機科學領域的某個方向上從事科學研究,解決實際問題,設計開發有關計算機軟體的能力。
數理基礎科學專業介紹
數理基礎科學專業主要培養能從事數學、物理等基礎科學教學和科研的有發展潛力的優秀人才,尤其是在數學、物理上具有創新的能力的人才,同時也為對數理基礎要求高的其它學科培養有良好的數理基礎的新型人才。
數理基礎科學專業的畢業生在畢業以後,可以在物理學、數學領域、信息與計算科學、計算機信息處理、經濟、金融等部門從事研究、教學、應用軟體開發或者是管理部門從事一些實際應用、技術開發、研究或者管理工作。
⑦ 大學數學學什麼內容
大學數學一般是高等數學,包括微積分、代數學、幾何學以及它們之間的交叉內容。高等數學的主要學習內容包括數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
數學分析課程的內容一般由極限論、一元微積分、級數論和多元微積分這四大部分所組成,其中一元微積分對應了通常國外所說的「初等微積分」課程,而極限論、級數論和多元微積分這三部分則對應了國外所說的「高等微積分」課程。極限理論的主要內容有:數列的極限、函數的極限、連續函數、關於實數的基本定理、以及閉區間上連續函數的性質。
大學數學學習技巧
第一、大學的數學非常注重邏輯,課前的預習有助於學好大學數學,一可以發現不懂的,二可以在正式課程上加深印象。
第二,重點掌握關鍵公式,大學數學不會考得太深,基本是學會了相關的內容,考試就考這么些內容,所以公式必定要爛熟於心。
第三,練習是很重要的,大學數學雖然考得不深,但是學生常有,上課聽老師說,明白。但是課後自己做題,卻發現不會。這就是沒有熟練的典型特徵
第四,考試復習的時候,一定要聽老師在考試前一節課給你們講的題,或者老師劃的重點。大學的考試,老師說什麼,考試幾乎就考什麼的。