導航:首頁 > 數字科學 > 數學的美具有什麼特點

數學的美具有什麼特點

發布時間:2022-08-01 15:01:28

⑴ 數學之美的內容

數學美是自然美的客觀反映,是科學美的核心。簡言之數學美就是數學中奇妙的有規律的讓人愉悅的美的東西。

作為科學語言的數學,數學具有一般語言文字與藝術所共有的美的特點,即數學在其內容結構上和方法上也都具有自身的某種美,既所謂數學美。

數學美的含義是豐富的,如數學概念的簡單性、統一性,結構關系的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異性等等都是數學美的具體內容。

(1)數學的美具有什麼特點擴展閱讀:

數學美有別與其它的美,它沒有鮮艷的色彩,沒有美妙的聲音,沒有動感的畫面,它卻是一種獨特的美。

德國數學家克萊因曾對數學美作過這樣的描述:「音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科技可以改善物質生活,但數學卻能提供以上一切。」

大多數的數學家會由他們的工作及一般數學里得出美學的喜悅。他們形容數學是美麗的來表示這種喜悅。有時,數學家會形容數學是一種藝術的形式,或至少是一個創造性的活動。通常拿來和音樂和詩歌相比較。

⑵ 數學的簡潔美主要體現在什麼地方

19世紀大數學家高斯就說過「數學是科學中的皇後」),它具有簡潔美(抽象美、符號美、統一美等)、和諧美(對稱美、形式美等)、奇異美(有限美、神秘美等)。美在一個困難問題的簡單解答,一個復雜問題的簡單答案;美在種種圖案、建築物、衣服式樣、傢具及裝飾等事物的對稱性上;美在人們對和諧、有規律的事物的喜愛以及從事物中發現普遍性與統一性的秩序和規律中。 1、美觀:數學對象以形式上的對稱、和諧、簡潔,總給人的觀感帶來美麗、漂亮的感受。 比如:幾何學常常給人們直觀的美學形象,美觀、勻稱、無可非議; 在算術、代數科目中也很多: 如(a+b)·c=a·c+b·c; a+b=b+a 這些公式和法則非常對稱與和諧,同樣給人以美觀感受。 但是外形上的的美觀,並不一定是真實和正確的。 比如:sin(A+B)=sinA+sinB是何等的「對稱」、「和諧」、「美觀」啊!但是它是錯誤的,就象「」雖然美麗但是有「毒」。 2、美好:數學上的許多東西,只有認識到它的正確性,才能感覺到它的「美好」。 不美麗的例子很多,比如二次方程的求根公式,無論從哪方面看都不對稱、不和諧、不美觀。但是,當我們真正了解它、運用它,就會感到它的價值,它的美好。這一公式告訴我們許多信息:±表示它有兩個根,a≠0、△會顯示根的數目和方程的性質…… 3、美妙:美妙的感覺需要培養,美妙的感覺往往來自「意料之外」但在「情理之中」的事物。三角形的高交於一點就是這樣;2個圓柱體垂直相截後將截面展開,其截線所對應的曲線竟然是一條正弦曲線,與原來猜想的是一斷圓弧大出「意料之外」,經過分析證明的確是正弦曲線,又在「情理之中」,美妙的感覺就油然而生了。 4、完美:數學總是盡量做到完美無缺。這就是數學的最高「品質」和最高的精神「境界」。歐氏幾何公理化體系的建立,「1+1」的證明都是追求數學完美的典型例子。

⑶ 數學是怎樣的一種美

數學是一種對稱美(很多結論具有對稱性)
數學是一種簡潔美(用簡單的數學公式可以解決一類問題)
數學是一種邏輯美(用嚴格的證明去解釋各種現象)

⑷ 數學的美體現在哪些方面

幾乎所有的數學家都認為數學是美的。著名數學家巴拿赫說「數學是最美的,也是最有力的人類創造。」

再給大家看一些圖片感受一下;

(轉自頭條號-數學經緯網)

⑸ 數學中的美體現在哪裡

(1)完備之美

沒有那一門學科能像數學這樣,利用如此多的符號,展現一系列完備且完美的世界。就說數吧,實數集是完備的,任意多的實數隨便做加減乘除乘方開方,其結果依然是實數(注意:數學上完備是根據序列的收斂性嚴格定義的,我這里不是完備的嚴格說法,但可認為是廣義的說法)。引入虛數單位,實數集擴展到復數集,還是任意多的復數,還做那些運算,結果還是復數。

把具體的數抽象成空間中的點,在一定的假設和約定之下,可以得到完備的空間,這些空間可以是一維的,也可以是二維三維甚至多維的。三維之外,你就難以想像,但不能否認其存在。某空間的點、序列依一定的法則進行運算,依然不能離開那個空間,這就是完備性。這種完備性是很奇妙的。你可以把它想像成在一個球體中,不管你如何運動,總是不能鑽出球面。

具有完備性的空間,可以帶來許多好處。工程中用得最多的空間是Hilbert空間。順便提一句,Hilbert是個二十世紀最偉大的數學家之一。

另外,數學中的諸多體系,其本身也都是完備的,如歐式幾何,這是大家所熟知的,在幾個公理的基礎上,推演出一系列漂亮的結論,生命力經久不衰,尤其在工程運用中。


(2)對稱之美

提到對稱的美,大家首先想到的是幾何,其實幾何只是一方面,是「看得見」的那一方面。實際上,對稱性在數學中處處存在。如微積分的基本定理,展現了微分與積分之間的緊密聯系,本身具有很強的對稱性。如泛函中的對偶運算元,不但在運算上具有顯著的對稱性,在性質上也處處顯示出一致性。

(3)簡潔之美

數學中有個非常漂亮的公式,那就是歐拉公式。這個式子把數學中幾個「偉大的」數給聯繫到了一塊,它們分別是自然對數、圓周率、虛數單位以及1,其中前兩個是超越數,是無數個超越數中人類目前僅僅找到的兩個,而且這兩個對數學影響巨大。我大膽猜想,當下一個超越數被找到的時候,數學將會經歷另一場巨大的革命。虛數單位今天看起來沒什麼特別,但它剛被引進的時候曾受到眾多(大)數學家的置疑和反對,最後它終於還是進來了,而數學也開辟了一條康莊大道,那就是復變函數。

勿庸置疑,歐拉公式是簡潔而完美的,另一個可以跟它抗衡的式子出現在物理學中,那就是愛因斯坦的質能變換公式。我這種說法可能有點武斷,不過我目前只能想到這一點,呵呵。

(4)抽象之美

這一點可能會引起許多人的異議,因為在許多人看來,抽象是不好的,因為離現實太遠。可是我不這么認為,數學如果不抽象,便難以發展,雖然很多問題都是從現實引出的。數學建立在符號邏輯的基礎之上,即使是解決實際問題,也要把問題抽象出來,用數學符號表示,才可以很好的解決。另一方面,抽象的數學,能帶動你在無限的思維空間中遨遊,拋開一切雜念,成為一種美好的享受。當然,這有點理想化,但不可否認,這確實是一種美的體驗。

⑹ 數學中的美表現在哪方面

數學的美在於興趣,如果感興趣,數學無處不在,在工作和生活中,無論深奧還是實際應用,都有意思

⑺ 數學的美到底是怎樣體現出來的

我覺得數學的美也可以是體會到具體情況下的,他可以體現在一些具體的模型上面,比如說建模的過程也特別的快樂,你可以在一些建模的過程中慢慢的去克服一些自己原來克服不了的困難,這些克服了困難造成的一些好的影響其實是好的

⑻ 數學是否唯美,不同的人有不同的感受.於是,問題來了,難道數學之美沒有標准嗎

加減乘除算盡世間紛繁,點線面體繪成宇宙蒼茫。

數學之美可以概括為:簡潔美、和諧美、奇異美。

一、簡潔美

著名數學家陳省身說:「對於在數學方面的行家高手來說,美和真受到同樣的尊重,在抽象的數學世界中,簡單性和優雅性的要求幾乎是壓倒一切的。」數學的簡潔美簡直可以說是無處不在,例如,以數學中許多定義、公式為例,就都體現著簡潔的特性,如:在教學「平行四邊形的定義」時,讓學生充分觀察後自由下定義,然後通過比較揭示:「對邊相等的四邊形叫做平行四邊形」的定義表述是多麼無可挑剔的簡單。這種數學語言的簡潔美給人以明快、精練之美感。

而數學的這種簡潔美不僅體現在運算和證明上,在現實生活中也有廣泛的應用,如人們使用銀行卡來代替大量的現金。總而言之,數學能把自然界的法則與規律進行抽象概括,繼而變成相應的公理、定律或概念,它所展現的是與現實世界相對應,卻又高於現實世界、美於現實世界的理想空間,盡現數學的簡潔之美,給人以強烈的美的體驗與感受。

二、和諧美

數學的和諧美是一種統一、有序、無矛盾的對稱之美,它不僅體現在公式、圖形的對稱性之中,在許多問題中都有它獨特的魅力。美妙的音律竟然跟數字有著不解之緣;一切空間圖形都可以簡化抽象為點、線、面、體,這充分體現了數學統一和諧的美。幾何中的黃金分割以其和諧的比例成為人們心中一切美的事物的象徵;圓形和球形作為幾何圖形中對稱美的傑出代表,給人們帶來了豐富多彩的自然之美;蝴蝶定理的證明從另一角度豐富了數學的美的內涵,這就是美麗的幾何。代數中的這種和諧之美也絲毫不遜色於幾何,你能說乘法公式、二項式定理、直線方程、三角函數中和角公式、差角公式、楊輝三角等不美嗎?幾何中美的形象、代數中美的神韻,相輔相成,共同組成了數學的和諧之美。

數學的和諧還表現為它能夠為自然界的和諧、生命現象的和諧、人自身的和諧等找到最佳論證。以動物的血液循環為例,血液輸往全身的過程就很好地體現了數學的和諧之美。

三、奇異美

數學中的許多發現是令人驚奇的,奇異美是數學美的另一種體現,它充分地展示了數學思想方法的獨創性和新穎性。幾何與代數曾經被當作兩個不同的分支,在兩條平行的軌道上前行,永遠不可能相遇。終於有一天,人們突然發現一個簡單的二次方程竟然蘊涵了漂亮的圓錐曲線,代數、幾何原本是一家,這一驚人的發現給人們一種豁然開朗的感覺,這不正是數學的魅力所在嗎?

數學以其獨特的形式,給人新奇的美感。受客觀條件的影響,直到19世紀中葉,還沒人思考作角的三等分線的問題,這使得莫萊定理成為初等幾何中最令人驚訝的定理之一;一些極為普通的數竟然能找到許多有趣的性質,如:3×4=1233×34=1122333×334=1112223333×3334=11112222 „„這一系列美妙的結果顯示了一種規律:m個3構成的數與其直接後繼的積是一個2m位數,其前m位為1,後m位為2。

⑼ 數學美的內涵是什麼闡述數學美的內涵。

一、數學的簡潔美
簡潔本身就是一種美,而數學的首要特點在於它的簡潔。大幹世界,紛繁多樣,在雜亂無章的客觀現象中,抽象出數學理論,用簡單、清晰的數學形式來表達,反過來再解釋、處理更多的客觀事物和現象,這就是數學的簡潔美。就象優秀的詩詞講究用最少的文字表達最豐富的內容一樣,數學中的公式、法則、定理等,用精煉的語言和符號,高度概括了現實世界量的關系和結構。你看,世界上存在著何其多的三角形,形態之多令人難以想像,然而它們的面積計算,都可以高度凝結成這樣一個關系式廣計算所有多邊形的面積。形式是如此的簡單,而應用是那麼的廣5=十。A,由此我們還能推泛。數學符號的產生發展,使得數學的表達式極其簡潔。一大堆的數字計算,一連串的數字算式,是多麼讓人心煩理不出一個頭緒來。但是我們可用一個數學表達式將它們全部概括進來。連乘積n.(n一1)(n-2)……3·2·1寫起是多麼的麻煩啊,可以用階乘符號「n!」十分簡潔地表示了出來。使用符號「》」來進行推理,給人一種嚴謹有序清晰明快的美感。
二、數學的統一美
把眾多的概念、公式和理論,用一個更高層次的概念、公式或理論統一起來,會使人們得到一種心理上的愉悅,這就是數學的統一美。在數學研究中,人們總是在謀求更高程度的抽象,以便有更大的概括面和更廣的適用范圍,這樣許多概念又屬於一個種概念之下,許多公式又有一個統一的公式。如小學幾何中有許多概念:正方形、長方形、梯形、平行四邊形,但它們卻都是四邊形。在小學數學中,我們有三角形、平行四邊形、梯形的面積公式、雖然它們各不相同.但它們卻可用公式s=1/2(a十b)h統一起來(公式中「a為上底、b為下底、h為高)。在數學學習中,許多優秀的學生,在解題過程中,時時在追求著數學問題中存在的統一美,他們覺得只有找到一類題型的統一解答規律,才是真正掌握數學知識的主人,才能從中獲得美的享受。
三、數學的奇異美
奇異是指規律的奇巧或結果的出人預料。數學中的奇異美就象波瀾起伏的文學故事,珍貴奇異的藝術品一樣扣人心弦,給人以美的享受。無論你畫出怎樣的一個三角形,它的三條高線交於一點,三條中線交於一點。三條角平分線交於一點,其中顯示了一種奇巧的美,使人們感到三角形中似乎蘊含著一種神奇的規律,讓人驚奇、神秘。在運算中,我們會對3十9十3×9=39,4十9十4×9=49等式驚訝.因為左右兩邊的數字是如此的對稱,我們還會為4109589041096×83=341095890410968這個乘法算式拍案稱奇,因為兩乘數與積的數字競然會如此地巧合。數學中不少結論令人贊嘆,因為其巧妙無比.正是因為這一點數學才有無窮的魅力。在數學的發展史上,往往正是數學自身的奇異性的美,吸引著數學家向更新、更深的層次探索,弄它個水落石出。
四、數學美的奇異性
美在於奇特而令人驚異.——培根
奇異性是數學美的一個重要特性.奇異性包括兩個方面內容:一是奇妙,二是變異.數學中不少結論令人 贊嘆,因為其巧妙無比,正是因為這一點數學才有無窮的魅力.變異是指數學理論拓廣或統一性遭到破壞後,產生新方法、新思想、新概念、新理論的起點.變異有悖於人們的想像與期望,因此就更引起人們的關注與好奇.凡是新的不平常的東西都能在想像中引起一種樂趣,因為這種東西會使人的心靈感到一種愉快的新奇,滿足它(心靈)的好奇心,將會使之得到原來不曾有過的一種觀念.數學中許多新的分支的誕生,都是人們對於數學奇異性探討的結果.在數學發展史上,往往正是數學自身的奇異性的魅力,吸引著數學家向更新、更深的層次探索,弄它個水落石出!

閱讀全文

與數學的美具有什麼特點相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069