① 數學分析選講的介紹
本書是為報考數學類專業碩士研究生的本科學生編寫的。按照數學分析的數學大綱要求,強調學生的綜合能力,這個綜合能力表現在兩個方面:一是對一個具體學科的數學理論的歸納能力,即日用百貨基本問題是什麼,基本思想是什麼,基本方法有哪些。二是靈活運用相關理論和方法解決某一個具體的數學問題,熟練地運用數學工具。本書分為六章:一元函數的極限與連續、一元函數微分學、一元函數積分學、多元函數微分學、多元函數積分學、無窮級數與廣義積分。其內容順序與通常教材的順序基本一致。每節有一定的練習題,以便讀者自己檢驗學習的效果。
② 數學分析主要講什麼內容
數學分析的主要內容是微積分學,微積分學的理論基礎是極限理論,極限理論的理論基礎是實數理論。微積分學是微分學(Differential Calculus)和積分學(Integral Calculus)的統稱,英語簡稱Calculus,意為計算,這是因為早期微積分主要用於天文、力學、幾何中的計算問題。
後來人們也將微積分學稱為分析學(Analysis),或稱無窮小分析,專指運用無窮小或無窮大等極限過程分析處理計算問題的學問。
數學分析的研究對象是函數,它從局部和整體這兩個方面研究函數的基本形態,從而形成微分學和積分學的基本內容。微分學研究變化率等函數的局部特徵,導數和微分是它的主要概念,求導數的過程就是微分法。圍繞著導數與微分的性質、計算和直接應用,形成微分學的主要內容。
積分學則從總體上研究微小變化(尤其是非均勻變化)積累的總效果,其基本概念是原函數(反導數)和定積分,求積分的過程就是積分法。
③ 大學課程中的數學分析很難嗎數學分析是什麼
2020年春季學期微課郭雨辰數學分析(超清視頻)網路網盤
鏈接:
若資源有問題歡迎追問~
④ 數學分析選講的簡介
ISBN:10位[7536351402]13位[9787536351400]
⑤ 大學課程中的數學分析是什麼
大學課程中的數學分析是是數學專業的必修課程之一,基本內容是微積分.
⑥ 請問學科基礎課「數學分析」和選修課「數學分析選講」有什麼關系,後者是前者的延伸還是後者是前者的簡化
數學分析比較簡單,從概念開始講,而數學分析選講主要是講題目,比較難,一般考研看了數學分析還要看數學分析選講
⑦ 國內大學數學系高年級有一門課,叫數學分析選講。請問主要內容是什麼和一年級的數學分析課有什麼區別嗎
考研數學是不一樣的。難度分好幾個,就看你考哪個了
⑧ 數學分析是什麼
最佳答案
數學分析(Mathematical Analysis)是數學專業的必修課程之一,基本內容是微積分,但是與微積分有很大的差別。
微積分學是微分學(Differential Calculus)和積分學(Integral Caculus)的統稱,英語簡稱Calculus,意為計算。這是因為早期微積分主要用於天文、力學、幾何中的計算問題。後來人們也將微積分學稱為分析學(Analysis),或稱無窮小分析,專指運用無窮小或無窮大等極限過程分析處理計算問題的學問。
早期的微積分,由於無法對無窮小概念作出令人信服的解釋,在很長的一段時間內得不到發展。柯西(Cauchy)和後來的魏爾斯特拉斯(weierstrass)為微積分奠定了堅實的理論基礎,微積分逐漸演變為非常嚴密的數學學科,被稱為「數學分析」。
數學分析的基礎是實數理論。實數系最重要的特徵是連續性,有了實數的連續性,才能討論極限,連續,微分和積分。正是在討論函數的各種極限運算的合法性的過程中,人們逐漸建立起嚴密的數學分析理論體系。
⑨ 什麼是數學分析
《數學分析》課程是一門面向數學類專業的基礎課。學好數學分析(和高等代數)是學好其他後繼數學課程如微分幾何,微分方程,復變函數,實變函數與泛函分析,計算方法,概率論與數理統計等課的必備的基礎。作為數學系最重要的基礎課之一,數學科學的邏輯性和歷史繼承性決定了數學分析在數學科學中舉足輕重的地位,數學的許多新思想,新應用都源於這堅實的基礎。數學分析出於對微積分在理論體繫上的嚴格化和精確化,從而確立了在整個自然科學中的基礎地位,並運用於自然科學的各個領域。同時,數學研究的主體是經過抽象後的對象,數學的思考方式有鮮明的特色,包括抽象化,邏輯推理,最優分析,符號運算等。這些知識和能力的培養需要通過系統、扎實而嚴格的基礎教育來實現,數學分析課程正是其中最重要的一個環節。我們立足於培養數學基礎扎實,知識面寬廣,具有創新意識、開拓精神和應用能力,符合新世紀要求的優秀人才。
從人才培養的角度來講,一個學生能否學好數學,很大程度上決定於他進大學伊始能否將《數學分析》這門課真正學到手。本課程的目標是通過系統的學習與嚴格的訓練,全面掌握數學分析的基本理論知識;培養嚴格的邏輯思維能力與推理論證能力;具備熟練的運算能力與技巧;提高建立數學模型,並應用微積分這一工具解決實際應用問題的能力。微積分理論的產生離不開物理學,天文學,幾何學等學科的發展,微積分理論從其產生之日起就顯示了巨大的應用活力,所以在數學分析的教學中,應強化微積分與相鄰學科之間的聯系,強調應用背景,充實理論的應用性內容。數學分析的教學除體現本課程嚴格的邏輯體系外,也要反映現代數學的發展趨勢,吸收和採用現代數學的思想觀點與先進的處理方法,提高學生的數學修養。復旦大學有非常好的生源,吸引了眾多優秀的學生,使得實現這一培養目標與要求成為可能。另一方面,許多優秀的學生受教學計劃限制,學習的是《高等數學》這一課程。但他們對於學習《數學分析》以提高自己的數學修養有著強烈的願望(其中一部分通過轉專業成為數學類專業的學生)。我們推出的《數學分析原理》課程應運而生,為這一部分學生提供了一個恰當的學習提高機會。