導航:首頁 > 數字科學 > 數學需要記憶什麼

數學需要記憶什麼

發布時間:2022-08-03 01:09:06

A. 數學需要記憶很多東西嗎

個人覺得數學需要記憶的東西並不是很多呢,就公式,但是要理解公式的應用,還有就是記憶定理,可以通過反復朗讀並理解定理的意思。
加油!數學真的很簡單。

B. 如何快速記憶小學數學知識

歸類記憶法
歸類記憶法就是根據識記材料的性質、特徵及其內在聯系,進行歸納分類,以便幫助學生記憶大量的知識。比如,學完計量單位後,可以把學過的所有內容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。這樣歸類,能夠把紛紜復雜的事物系統化、條理化,易於記憶。
歌訣記憶法
歌訣記憶法就是把要記憶的數學知識編成歌謠、口訣或順口溜,從而便於記憶。比如,量角的方法,就可編出這樣幾句歌訣:「量角器放角上,中心對准頂點,零線對著一邊,另一邊看度數。」再如,小數點位置移動引起數的大小變化,「小數點請你跟我走,走路先要找准『左』和『右』;橫撇帶口是個you,擴大向you走走走;橫撇加zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數位不夠找『0』拉拉鉤。」採用這種方法來記憶,學生不僅喜歡記,而且記得牢。
規律記憶法
規律記憶法即根據事物的內在聯系,找出規律性的東西來進行記憶。比如,識記長度單位、面積單位、體積單位的化法和聚法。化法和聚法是互逆聯系,即高級單位的數值×進率=低級單位的數值,低級單位的數值÷進率=高級單位的數值。掌握了這兩條規律,化聚問題就迎刃而解了。規律記憶需要學生開動腦筋對所學的有關材料進行加工和組織,因而記憶牢固。

C. 數學公式如何記憶

學習數學,很多同學都怕數學公式,一是公式繁多,二是有些公式容易混雜,三是有的公式帶有限制條件.無論哪種情況,最根本的一條,就是要通過對公式形式上形象化解讀和公式內在含義的理解.從中發現記憶的規律,從而達到記憶的熟練和持續程度.下面就談談記憶的幾個方面的問題:
1.相似法:用不同的數據代入公式比較,可以幫助對公式的理解和記憶.
如:向量a 在向量b上的射影記為ab,向量b 在向量a上的射影記為ba則向量a 在向量b上的正射影數量為ab=|a|cos<a,b,向量b在向量a上的正射影數量為ba=|b|cos<a,b比較一下,就可以區分它們之間的差異,記憶起來就不會錯了.
2.形象法:用通俗化、口語化、順口溜的方法來幫助記憶邏輯連接詞中:p∨q、p∧q、pÞq的真值表可用順口溜:p∨q:全假為假;p∧q:全真為真;pÞq:真假為假
三角函數的誘導公式:
sin(p-a)=sina,cos(p-a)=-cosa,tan(p-a)=-tana,cot(p-a)=-cota.
sin(2kp+a)=sina,cos(2kp+a)=cosa,tan(2kp+a)=tana,cot(2kp+a)=cota.
sin[(2k+1)p+a]=-sina,cos[(2k+1)p+a]=-cosa,tan[(2k+1)p+a]=tana,cot[(2k+1)p+a]=cota.
sin(x+a)=sina,cos(x+a)=-cosa,tan(x+a)=-tana,cot(x+a)=-cota.
都可用一句話概括:函數名不變,符號看象限,其中只要弄清楚象限是指p-a、2kp+a、(2k+1)p+a所在象限就行了.
3.遞進法:由一個公式的記憶推廣到多個公式的記憶
如:向量a 在向量b上的射影記為ab,向量b 在向量a上的射影記為ba則向量a 、b的內積數量為a ·b=|a||b|cos<a ,bÞ向量a 、b的內積a ·b=|a|ba(即|a|×向量b在a上正射影的數量)
4.分組法:把公式分成若干組,便於歸類記憶.
如:指數函數和對數函數的單調性,當a1 時為增函數,當時0<a<1為減函數.
5.圖象法:利用函數或曲線.如二次函數、指數函數、對數函數、直線、圓、橢圓、雙曲線、拋物線的性質都不需要去記,只要會作出它們的圖象、知道奇偶性、單調性、周期性的概念,就可以看圖來了解性質

D. 怎樣才能快速把數學概念記住

1、歸類記憶法

就是根據識記材料的性質、特徵及其內在聯系,進行歸納分類,以便幫助學生記憶大量的知識。比如,學完計量單位後,可以把學過的所有內容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。這樣歸類,能夠把紛紜復雜的事物系統化、條理化,易於記憶。

2、歌訣記憶法

就是把要記憶的數學知識編成歌謠、口訣或順口溜,從而便於記憶。比如,量角的方法,就可編出這樣幾句歌訣:「量角器放角上,中心對准頂點,零線對著一邊,另一邊看度數。」

再如,小數點位置移動引起數的大小變化,「小數點請你跟我走,走路先要找准『左』和『右』;橫撇帶口是個you,擴大向you走走走;橫撇加個zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數位不夠找『0』拉拉鉤。」採用這種方法來記憶,學生不僅喜歡記,而且記得牢。

3、規律記憶法

即根據事物的內在聯系,找出規律性的東西來進行記憶。比如,識記長度單位、面積單位、體積單位的化法和聚法。化法和聚法是互逆聯系,即高級單位的數值×進率=低級單位的數值,低級單位的數值÷進率=高級單位的數值。

掌握了這兩條規律,化聚問題就迎刃而解了。規律記憶,需要學生開動腦筋對所學的有關材料進行加工和組織,因而記憶牢固。

4、列表記憶法

就是把某些容易混淆的識記材料列成表格,達到記憶之目的。這種方法具有明顯性、直觀性和對比性。比如,要識記質數、質因數、互質數這三個概念的區別,就可列成表來幫助學生記憶。

5、重點記憶法

隨著年齡的增長,所學的數學知識也越來越多,學生要想全面記住,既浪費時間且記憶效果不佳。因此,要讓學生學會記憶重點內容,學生在記住了重點內容的基礎上,再通過推導、聯想等方法便可記住其他內容了。

比如,學習常見的數量關系:工作效率×工作時間=工作量。工作量÷工作效率=工作時間;工作量+工作時間=工作效率。這三者關系中只要記住了第一個數量關系,後面兩個數量關系就可根據乘法和除法的關系推導出來。這樣去記,減輕了學生記憶的負擔,提高了記憶的效率。

E. 怎樣學好初中數學,數學知識的快速記憶方法

我總結了以下六個方法,用來數學的學習。

1.歸類記憶法

2.歌訣記憶法

就是把要記憶的數學知識編成歌謠、口訣或順口溜,從而便於記憶。

3.規律記憶法。

即根據事物的內在聯系,找出規律性的東西來進行記憶。

5.重點記憶法

6.聯想記憶法

F. 數學哪些地方需要記憶那些需要背誦

數學中的許多公式還是需要背的,背熟了,應用的時候隨手就可以寫出來。比如小學的九九表,初中里的乘法公式等等。但多數場合下,需要在理解的基礎上記憶的,光背不會用還是不行的。

G. 數學知識記憶法 怎樣學好數學

您好!

一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習。在面對復雜運算的時候,常常要注意以下兩點:①情緒穩定,算理明確,過程合理,速度均勻,結果准確;②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。
二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。保證數量就是①選准一本與教材同步的輔導書或練習冊。②做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。④每天保證1小時左右的練習時間。
保證質量就是①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。②落實:不僅要落實思維過程,而且要落實解答過程。③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。
四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。

祝您學業有成!

H. 高中數學的記憶方法有哪些

記憶,就是過去的經驗在人腦中的反映。它包括識記、保持、再現和回憶四個基本過程。其形式有形象記憶、概念記憶、邏輯記憶、情緒記憶、運動記憶等。
記憶的大敵是遺忘。提高記憶力,實質就是盡量避免和克服遺忘。在學習活動中只要進行有意識的鍛煉,掌握記憶規律和方法,就能改善和提高記憶力。
下面介紹增強記憶的10種方法:
1.注意集中記憶時只要聚精會神、專心致志,排除雜念和外界干擾,大腦皮層就會留下深刻的記憶痕跡而不容易遺忘。如果精神渙散,一心二用,就會大大降低記憶效率。
2.興趣濃厚如果對學習材料、知識對象索然無味,即使花再多時間,也難以記住。
3.理解記憶理解是記憶的基礎。只有理解的東西才能記得牢記得久。僅靠死記硬背,則不容易記得住。對於重要的學習內容,如能做到理解和背誦相結合,記憶效果會更好。
4.過度學習即對學習材料在記住的基礎上,多記幾遍,達到熟記、牢記的程度。
5.及時復習遺忘的速度是先快後慢。對剛學過的知識,趁熱打鐵,及時溫習鞏固,是強化記憶痕跡、防止遺忘的有效手段。
6.經常回憶學習時,不斷進行嘗試回憶,可使記憶有錯誤得到糾正,遺漏得到彌補,使學習內容難點記得更牢。閑暇時經常回憶過去識記的對象,也能避免遺忘。
7.視聽結合可以同時利用語言功能和視、聽覺器官的功能,來強化記憶,提高記憶效率。比單一默讀效果好得多。
8.多種手段根據情況,靈活運用分類記憶、圖表記憶、縮短記憶及編提綱、作筆記、卡片等記憶方法,均能增強記憶力。
9.最佳時間一般來說,上午9~11時,下午3~4時,晚上7~10時,為最佳記憶時間。利用上述時間記憶難記的學習材料,效果較好。
10.科學用腦在保證營養、積極休息、進行體育鍛煉等保養大腦的基礎上,科學用腦,防止過度疲勞,保持積極樂觀的情緒,能大大提高大腦的工作效率。這是提高記憶力的關鍵。

閱讀全文

與數學需要記憶什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069