導航:首頁 > 數字科學 > 數學建模的模型怎麼訓練

數學建模的模型怎麼訓練

發布時間:2022-08-03 06:30:09

⑴ 數學建模的步驟

數學建模的主要步驟:

第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建

模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以

高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應

盡量使問題線性化、均勻化。

第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間

的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老

人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱

大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工

具愈簡單愈有價值。

第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,

特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計

算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作

出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差

分析,數據穩定性分析。

數學建模採用的主要方法有:

(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模

型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策

等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。

(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。

(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀

態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構


3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的

可能變化,人為地組成一個系統。
希望能解決您的問題。

⑵ 如何培養數學建模能力

新課標下如何培養學生的數學建模思想
數學模型是指針對或參照某種事物的特徵或數量相依關系,採用形式化的數學語言,概括地或近似地表示出來的一種數學結構。初中數學中常見的建模方法有:對現實生活中普遍存在的等量關系(不等關系),建立方程模型(不等式模型);對現實生活中普遍存在的變數關系,建立函數模型;涉及圖形的,建立幾何模型;涉及對數據的收集、整理、分析,建立統計模型……這些模型是常見的,並且對它們的研究具有典型的意義,這也就註定了這些內容的重要性。在中學階段,數學建模的教學符合數學新課程改革理念。通過建模教學,可以加深學生對數學知識和方法的理解和掌握,調整學生的知識結構,深化知識層次。學生通過觀察、收集、比較、分析、綜合、歸納、轉化、構建、解答等一系列認識活動來完成建模過程,認識和掌握數學與相關學科及現實生活的聯系,感受到數學的廣泛應用。同時,培養學生應用數學的意識和自主、合作、探索、創新的精神,使學生能成為學習的主體。因此在數學課堂教學中,教師應逐步培養學生數學建模的思想、方法,形成學生良好的思維習慣和用數學的能力。下面談談建模思想在初中數學教學中幾種常見的應用類型。
一、 方程思想
新課標要求能夠根據具體問題中的數量關系列出方程,體會方程是刻畫現實世界中的一個有效的數學模型。這即是方程的思想在初中數學中的應用,它要求我們能夠從問題的數量關系入手,運用數學語言將問題中的條件轉化為方程(組),然後通過解方程(組)使問題獲解。例:學校準備在圖書館後面的場地邊上建一個面積為50平方米的長方形自行車棚,一邊利用圖書館的後牆,並利用已有的總長為25米的鐵圍欄,請你設計,如何搭建比較合理?此題是華東師大出版的數學(九年級上)課本P38習題第9題。它考查了同學們在現實生活的背景中理解基本數量關系的能力。
顯然,方程的思想就是把未知量用字母表示和已知量一起參與建立等式,構造方程的方法來解決問題,體現了未知和已知的統一。所以,在建立方程模型時,應著重培養學生如何學會尋找問題中的已知量、未知量的關系建立方程。隨著課改的深入,數學命題更重視以社會熱點,焦點和日常生活中熟悉的事實為背景,構建一個有鮮活背景,與社會,生活相關的數學應用題。因此,在課堂教學中,教師應引導學生關注生活,生產中的數學問題,盡可能給學生提供合適的問題,鼓勵學生積極參與解決問題的活動,自己去探索,研究,從而強化應用數學的意識,並且具備把實際問題轉化為數學問題的能力,使學生領會數學建模的思想和基本過程,提高解決問題的能力和信心。
二、不等式(組)的思想
同樣的,數學建模思想用於不等式(組),新課標提出了類似的要求。不等式(組)的思想即從問題的數量關系出發,運用條件將問題中的數量關系轉化為不等式(組)來解決。
例:某校初一、初二兩年段學生參加社會實踐活動,原計劃租用48座客車若干輛,但還有24人無座位。
1) 設原計劃租用48座客車x輛,試用x的代數式表示這兩個年段學生的總人數。
2) 現決定租用60座客車,則可比原計劃租48座客車少2輛,且所租60座客車中有一輛沒有坐滿,但這輛車已坐的座位超過36位,請你求出該校這兩個年段學生總人數。此題便可通過構建不等關系得以解答。
三、 函數思想
新課標提出,能用適當的函數表示法刻畫某些實際問題中變數之間的關系變化,結合對函數關系的分析,嘗試對變數的變化規律進行初步預測,能用一次函數,二次函數等來解決簡單的實際問題。在學習了正、反比例函數、一次函數和二次函數後,學生的頭腦中已經有了這些函數的模型。因此,一些實際問題就可以通過建立函數模型來解決
例:某中學要印刷本校高中錄取通知書,有兩個印刷廠前來聯系製作業務。甲廠優惠條件是每份定價1.5元,八折收費,另收900元製版費;乙廠的收費條件是每份定價1.5元的價格不變,而製版費900元則六折優惠,且甲、乙都規定,一次印刷數量至少是500份,如何根據印數數量選擇比較合算的方案?若印刷數量為2000份,應選擇哪個?費用是多少?
方案設計題是基礎知識與基本技能結合比較緊密的一類應用題。此題不僅充分運用了函數的思想,又用到分類討論思想。其形式上表述生產、銷售、規劃等問題十分貼近生活,是近年來中考熱點問題。
四、 統計思想
在當前的經濟生活中,統計知識的應用越來越廣泛。而數學建模思想的應用在統計學方面的研究得到很好的體現。如新課標明確提出:體會用樣本估計總體的思想。例:在某樹林中100平方米的面積上統計有8棵紅楓樹,整個樹林面積為10000平方米,你能估計整個樹林共有多少棵楓樹嗎?
由以上幾種常見數學模型的建立,可以發現數學模型的建立過程大致有以下三個步驟:①實際問題→數學模型;②數學模型→數學的解;③數學的解→實際問題的解.因此,在實際課堂教學中,教師應以學生為主體,充分引導學生注意觀察生活中的各種現象,充分利用教材的優勢,創造性使用教材,努力創設合適的問題情境,讓學生投入到解決問題的實踐活動中,自己去探索,經歷數學建模的全過程,初步領會數學模型的思想和方法,增強數學應用意識,提高學生的創新能力,養成良好的思維品質,使學生學到有用的數學,學到不同的數學。

⑶ 怎樣學好數學建模

數學建模知識應該具備的數學基礎有高等數學、線性代數、概率論與數理統計,在此基礎上重點看一下運籌學的書籍。當然,數學建模不僅僅是要求數學知識扎實,還需要參賽者廣泛涉獵知識(包括物理、生物、心理學等),因為許多數學建模題目要求背景知識比較深,比如說12年MCM
A題要求畫出一棵樹,這就需要參賽隊員了解某類植物樹葉生長具備的特點,涉及生物學知識;第二屆MATHORCUP全球數學建模挑戰賽A題也涉及到空氣動力學知識。因此,數學建模是以數學為基礎,綜合各門學科(涵蓋自然科學和社會科學)的一項賽事。
具備上述基礎知識以後,就著重看一些建模方面的書籍,如:趙靜和但琦的《數學建模與數學實驗》、姜啟源和謝金星的《數學模型》、《運籌學》、肖華勇的《實用數學建模與軟體應用》。每一本書都有自己的特色,也沒必要仔仔細細地把整本書都看完,甚至你可以只知道模型的大致步驟,真正用到的時候再翻書詳細了解這個模型。因為數學建模本身就是一個學習的過程,在短短3天時間里,將陌生的知識轉化成自己的知識是具有挑戰的,更何況還要對模型進行改進,但是正是這樣,我們才能不斷接觸新知識,不斷培養自己的學習能力。
熟悉模型之後,基本能夠看懂大部分的優秀論文了。個人認為看一些「高教杯」特等獎論文及美賽Outstanding對自己思路、知識、寫作能力提升非常快,這些論文一般邏輯性很強,層次感出眾。在欣賞優秀論文的過程中,還要注意模型的適用范圍,舉個例子來說,對於預測類的題目,比較常用的預測模型有時間序列模型、灰色預測模型、貝葉斯預測模型、神經網路預測模型等,這些模型並不是對所有的數據都是適的,有些模型需要先對數據進行剔除、平均等處理,這些細節需要特別注意,一旦不注意就會影響整篇論文的量。
上述三步進行之後,接下來就是實戰演練了。參加完後主動找組委會要評語(因為那些評語里記錄著你的不足,便於今後改正)。

⑷ 能教教我怎麼做數學建模嗎,我要參加這次的數學建模競賽了,但沒思路

數學建模要有三個人協同合作,他們分別負責寫作、建模和編程。看個人愛好和擅長選擇自己的工作。寫作的要有比較好的語言表達能力;編程的要把matlab、lingo、spss或C++學好,特別是matlab尤其重要;建模的要有很好的邏輯思維能力及數學功底,思路要開闊。希望今年能成功!

⑸ 如何學好數學建模

數學建模是使用數學模型解決實際問題。
對數學的要求其實不高。
我上大一的時候,連高等數學都沒學就去參賽,就能得獎。
可見數學是必需的,但最重要的是文字表達能力
回答者:抉擇415 - 童生 一級 3-13 14:48

數學模型
數學模型是對於現實世界的一個特定對象,一個特定目的,根據特有的內在規律,做出一些必要的假設,運用適當的數學工具,得到一個數學結構。

簡單地說:就是系統的某種特徵的本質的數學表達式(或是用數學術語對部分現實世界的描述),即用數學式子(如函數、圖形、代數方程、微分方程、積分方程、差分方程等)來描述(表述、模擬)所研究的客觀對象或系統在某一方面的存在規律。

數學建模
數學建模是利用數學方法解決實際問題的一種實踐。即通過抽象、簡化、假設、引進變數等處理過程後,將實際問題用數學方式表達,建立起數學模型,然後運用先進的數學方法及計算機技術進行求解。

數學建模將各種知識綜合應用於解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一。

數學建模的一般方法和步驟
建立數學模型的方法和步驟並沒有一定的模式,但一個理想的模型應能反映系統的全部重要特徵:模型的可靠性和模型的使用性。建模的一般方法:
機理分析:根據對現實對象特性的認識,分析其因果關系,找出反映內部機理的規律,所建立的模型常有明確的物理或現實意義。
測試分析方法:將研究對象視為一個「黑箱」系統,內部機理無法直接尋求,通過測量系統的輸入輸出數據,並以此為基礎運用統計分析方法,按照事先確定的准則在某一類模型中選出一個數據擬合得最好的模型。 測試分析方法也叫做系統辯識。
將這兩種方法結合起來使用,即用機理分析方法建立模型的結構,用系統測試方法來確定模型的參數,也是常用的建模方法。
在實際過程中用那一種方法建模主要是根據我們對研究對象的了解程度和建模目的來決定。機理分析法建模的具體步驟大致如下:
1、 實際問題通過抽象、簡化、假設,確定變數、參數;
2、 建立數學模型並數學、數值地求解、確定參數;
3、 用實際問題的實測數據等來檢驗該數學模型;
4、 符合實際,交付使用,從而可產生經濟、社會效益;不符合實際,重新建模。

數學模型的分類:
1、 按研究方法和對象的數學特徵分:初等模型、幾何模型、優化模型、微分方程模型、圖論模型、邏輯模型、穩定性模型、統計模型等。
2、 按研究對象的實際領域(或所屬學科)分:人口模型、交通模型、環境模型、生態模型、生理模型、城鎮規劃模型、水資源模型、污染模型、經濟模型、社會模型等。

數學建模需要豐富的數學知識,涉及到高等數學,離散數學,線性代數,概率統計,復變函數等等 基本的數學知識
同時,還要有廣泛的興趣,較強的邏輯思維能力,以及語言表達能力等等

一般大學進行數學建模式從大二下學期開始,一般在九月份開始競賽,一般三天時間,三到四人一組,合作完成!!!

數模網 :http://www.shumo.com/main/

⑹ 如何准備數學建模呢 需要做那些准備呢

如何准備數學建模,需要做這些准備。第一,找一本有關建模的基礎教程,第二,學會一門數學軟體的使用,三,掌握科技論文旋渦狀的寫作方法。

數學模型(Mathematical Model)是一種模擬,是用數學符號、數學式子、程序、圖形等對實際課題本質屬性的抽象而又簡潔的刻畫,數學模型或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。數學模型一般並非現實問題的直接翻版,數學模型的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)。
全網招募小白免費學習,測試一下你是否有資格
想要了解數學建模相關學習的更多內容,可以了解一下廣州中教在線教育科技有限公司(以下簡稱:中教在線)。中教在線的課程從零基礎開始學習,從簡單入門到後期成品出圖老師帶著你一步一步走過來,畢業後還有就業指導課程,助你解決面試難題,助教老師24小時在線答疑。

⑺ 數學建模的七個步驟

數學建模(mathematical modeling)就是通過建立數學模型來解決各種實際問題的方法。數學建模沒有固定的格式和標准,也沒有明確的方法,通常有6個步驟:

明確問題
合理假設
搭建模型
求解模型
分析檢驗
模型解釋
1、明確問題

數學建模所處理的問題通常是各領域的實際問題,這些問題本身往往含糊不清,難以直接找到關鍵所在,不能明確提出該用什麼方法。因此建立模型的首要任務是辨明問題,分析相關條件和問題,一開始盡可能使問題簡單,然後再根據目的和要求逐步完善。

2、合理假設

作出合理假設,是建模的一個關鍵步驟。一個實際問題不經簡化、假設,很難直接翻譯成數學問題,即使可能也會因其過於復雜而難以求解。因此,根據對象的特徵和建模的目的,需要對問題進行必要合理地簡化。

合理假設的作用除了簡化問題,還對模型的使用范圍加以限定。

作假設的依據通常是出於對問題內在規律的認識,或來自對數據或現象的分析,也可以是兩者的綜合。作假設時,既要運用與問題相關的物理、化學、生物、經濟、機械等專業方面的知識,也要充分發揮想像力、洞察力和判斷力,辨別問題的主次,盡量使問題簡化。

為保證所作假設的合理性,在有數據的情況下應對所作的假設及假設的推論進行檢驗,同時注意存在的隱含假設。

3、搭建模型

搭建模型就是根據實際問題的基本原理或規律,建立變數之間的關系。

要描述一個變數隨另一個變數的變化而變化,最簡單的方法是作圖,或者畫表格,還可以用數學表達式。在建模中,通常要把一種形式轉換成另一種形式。將數學表達式轉換成圖形和表格較容易,反過來則比較困難。

用一些簡單典型函數的組合可以組成各種函數形式。使用函數解決具體的實際問題,還比須給出各參數的值,尋求這些參數的現實解釋,往往可以抓住問題的一些本質特徵。

4、求解模型

對模型的求解往往涉及不同學科的專業知識。現代計算機科學的發展提供了強有力的輔助工具,出現了很多可進行工程數值計算和數學推導的軟體包和模擬工具,熟練掌握數學建模的模擬工具可大大增強建模能力。

不同數學模型的求解難易不同,一般情況下很多實際問題不能求出解析解,因此需要藉助計算機用數值的方法來求解,在編寫代碼之前要明確演算法和計算步驟,弄清初始值、步長等因素對結果的影響。

5、分析檢驗

在求出模型的解後,必須對模型和「解」進行分析,模型和解的適用范圍如何,模型的穩定性和可靠性如何,是否到達建模目的,是否解決了問題?

數學模型相對於客觀實際不可避免地會帶來一定誤差,一方面要根據建模的目的確定誤差的允許范圍,另一方面要分析誤差來源,想辦法減小誤差。

一般誤差有以下幾個來源,需要小心分析檢驗:

模型假設的誤差:一般來說模型難以完全反映客觀實際,因此需要做不同的假設,在對模型進行分析時,需要對這些假設小心檢驗,分析比較不同假設對結果的影響。
求近似解方法的誤差:一般來說很難得到模型的解析解,在採用數值方法求解時,數值計算方法本身也會有誤差。這類誤差許多是可以控制的。
計算工具的舍入誤差:在用計算器或計算機進行數值計算時,都不可避免由於機器字長有限而產生舍入誤差,如果進行了大量運算,這些誤差的積累是不可忽視的。
數據的測量誤差:在用感測器、調查問卷等方法獲得數據時,應注意數據本身的誤差。
6、模型解釋

數學建模的最後階段是用現實世界的語言對模型進行翻譯,這對使用模型的人深入了解模型的結果是十分重要的。模型和解是否有實際意義,是否與實際證據相符合。這一步是使數學模型有實際價值的關鍵一步。

相關閱讀

數學模型和數學建模介紹

數學建模常用的

⑻ 數學建模怎麼入門

數學建模入門方式如下:

①先看看書,最好一本國內的,一本國外的,數學建模書--推薦(數學建模(原書第4版)作者:(美)Brooks R. Cole William P.Fox Steven B. Horton Maurice D.Weir 葉其孝 姜啟源 譯),姜啟源,編的那本可以)。--學習相關的軟體和數學方法(MATLAB、Lingo、SAS等)--看些歷年的題--做一些老題。
②如果參加數學建模競賽,一定要分工明確,安排好各個環節大家的工作,而且要有領頭的人,很多問題難以確定時,需要有人拍板的。
③參加國內賽,論文和解題的思路還是要比較嚴謹一些的好,解題的各個環節基本都要有,要比較完整才能得高分;美國賽就要盡情的放開思路,把奇思妙想都放進去,一些想法建立的模型復雜難解也沒有關系,可以提出解題思路即可。全網招募小白免費學習,測試一下你是否有資格。

想要了解關於數學建模方面的更多內容,可以了解一下廣州中教在線教育科技有限公司(以下簡稱:中教在線)。成立於2010年2月,是國內從事互聯網技能教商培訓機構,生打3D建模、原畫繪制、影視後期及設計類在線學習課程,為零基礎入門學員提十全面立體的系統學習成長解決方案,致力於國內線上教育電業已有多年。

⑼ 數學建模怎麼做啊

數學建模就是通過計算得到的結果來解釋實際問題,並接受實際的檢驗,來建立數學模型的全過程。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。

模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。

模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。

模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。

模型分析
對所要建立模型的思路進行闡述,對所得的結果進行數學上的分析。

模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。

⑽ 如何培養學生的數學建模能力

如何培養學生的數學建模能力
所謂「高效教學」 , 就是要最大程度地發揮課堂教學的功能和作用 , 即在課堂 45 分鍾內要最大限度、最完美地完成教學任務、達成育人目標 , 在課堂有限的教學時間內完美地實現教育教學的三維目標整合 , 以求得課堂教學的最大效益。我認為 , 我們平時所說的「輕負擔、高質量、向課堂教學要效益」 , 就是「高效教學」這種課堂教學理念的反映。但是 , 「高效教學」不僅僅是指知識的傳授、技能的增進 , 而且還應該包括情感、態度和價值觀等方面的要求。那麼如何在初中語文教學中實施高效教學呢 ? 我認為應從以下幾點做起 :
一、讓學生帶著問號走進教室
我們知道,新課程理念提倡自主學習,但是由於個性的差異,不同的學生有不同的學情,對問題的理解有時也不是僅僅靠自主學習就能解決的,所以課前預習過程當中難免會遇到各種各樣的問題,而這些問題就是學生需要解決的問題,也是值得我們探究的問題。比如,我在布置學生自主學習《社戲》一課時,預設了這樣的探究題:魯迅先生筆下的那場戲好看嗎?為什麼?不少同學都認為好看,因為他們形成的共識是:要是不好看的話,魯迅先生為什麼還要寫呢?甚至還把它作為文章的標題呢?實在沒有必要。當然也有同學認為這樣戲實在沒有什麼好看的,但是他們又說不出不好看的理由。這樣就把一個帶有探究性的問題帶進了教室,無疑也就提高了他們聽課的效率。 把一個帶有探究價值的問題帶進了教室,無疑也提高了他們聽課的效率。問題是探究性學習的動力,是創新的基石。起初,同學們的問題意識比較薄弱,每天都是習慣以老師的問號進課堂,以鈴聲的響起為句號出課堂。為了避免這種傳統的課堂教學模式,一開始我主動預設一些具有探究價值的問題讓學生去思考、研究,然後讓他們帶著研究的成果走進教室。一段時間之後,同學們發現了老師預設探究性問題的規律,也就能自主設置一些很有價值的探究題,就能使教學效果較佳。
二、利用現代多媒體技術,豐富課堂,寓教於樂
網路已勢不可擋地進入每個人的生活,也成為教學中必不可少的工具和資源。大部分中學生學習語文只是在課堂上,除此之外沒有更多的時間去積累,現在的中學生很累,作業一天到晚都在做,但是語文學習更多的是在課外的大量閱讀中積累,利用網路資源給學生創造一個這樣的環境,必然會促進學生對語文的感悟和理解。教師可選擇一些跟教材內容相關的電影、電視和新聞,可使學生既了解教材內容相關的風土人情、生活方式等,開闊視野,了解世界,這也是促進學生對語文重新認識,產生興趣的好時機。教師可多搜集與教材相關的照片、漫畫等,在適當的時刻呈現給學生,讓學生集中注意力,活躍課堂氣氛,提高學生的注意力和記憶力,促進學生語言表達能力的形成。利用網路選擇適合學生的小游戲、詩歌、典故等,成立語文學習興趣小組,積極開展語文學習活動,在班級通過語文演講比賽、詩歌朗誦比賽、作文比賽等,可豐富學生課餘生活,鞏固課上學習內容,創造學習語文的良好環境和氛圍,讓學生在活動中,相互學習、相互幫助、追幫趕超、互相感染、交流溝通,共同提高語文學習效果,為打造高效課堂注入新的活力。
三、小組合作互動打造語文高效課堂
小組合作學習模式在課堂教學中的實施形式是各種各樣的,可以根據學生的年齡特徵、教學要求和教學目標,靈活組織。為此,我採用小組學習和班級學習相結合的方式,讓學生嘗試著解決所要達到的學習目標。4~6人為一組。如討論《孔乙己》中孔乙己悲劇命運產生的原因時,先向學生闡明故事發生的時代背景及孔乙己的人生軌跡,在這一基礎上通過小組討論形成共識,使學生真正體會作者的寫作意圖。
其次合理劃分合作小組。我們在構建合作小組時,遵循「組間同質,組內異質,優勢互補」的原則,按照學生的知識基礎、學習能力、性格特點的差異進行分組,每組6人。這樣分組不但有利於學生間的優勢互補,而且為全班各小組之間的公平競爭打下了基礎。
最後明確小組成員分工。在小組互動學習中,小組成員必須分工明確,承擔起自己應盡的責任。每個小組成員都是組長,只是分工不同。學習組長,主要是在課堂上安排學習任務,組織學生討論,監督學習進程。作業組長,主要是收發作業並檢查作業完成情況。小組成員既要積極承擔個人責任,又要相互支持、密切配合,發揮團隊精神,有效地完成小組學習任務。如翻譯《狼》時,學習組長把每段分配給個人,然後大家一起翻譯,疑難之處討論交流,既加深了對課文的理解,又提高了學習效率。

閱讀全文

與數學建模的模型怎麼訓練相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069