導航:首頁 > 數字科學 > 數學1742約是多少

數學1742約是多少

發布時間:2022-08-06 03:07:48

A. 四年級數學721約等於多少

根據需要,
按四捨五入到十位就是720,到百位就是700;
按去尾法到十位就是720,到百位就是700;
按進一法到十位就是730,到百位就是800。

B. 小學數學747約等於多少

保留到十位,747約等於750
保留到百位,747約等於700

C. 小學數學約等於怎麼算

得數四捨五入
比如:小學數學35約等於40
四捨五入是一種精確度的計數保留法,與其他方法本質相同。但特殊之處在於,採用四捨五入,能使被保留部分的與實際值差值不超過最後一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的。這大概也是我們使用這種方法為基本保留法的原因吧

D. 小學數學中的大約等於多少是怎麼定義的

大約等於多少一般是指接近某個整十,整百數。

近似數的混合運算,可按運算順序和近似數的計演算法則分步計算,但中間運算的結果要比最後結果多取一位數字。

例: 計算3.054×2.5-57.85÷9.21。

3.054×2.5-57.85÷9.21

≈3.05×2.5-57.85÷9.21

≈7.63-6.28≈1.4

根據已知數據,最後運算的結果要取兩位數字,因此,中間運算的結果要取三位數字。

(4)數學1742約是多少擴展閱讀

一、有效數字注意:

①近似數的精確度有兩種形式:精確到哪一位;保留幾個有效數字;

②對於絕對值較大的數取近似值時,結果一般用科學計數法來表示,如:8 90 000(保留三個有效數字)的近似值,得8 903 000≈8.90×106。

③對帶有計數單位的近似數,如2.3萬,他有兩個有效數字:2、3,而不是五個有效數字。

二、有效數字的舍入規則:

1、當保留n位有效數字,若後面的數字小於第n位單位數字的0.5就舍掉。

2、當保留n位有效數字,若後面的數字大於第n位單位數字的0.5 ,則第位數字進1。

3、當保留n位有效數字,若後面的數字恰為第n位單位數字的0.5 ,則第n位數字若為偶數時就舍掉後面的數字,若第n位數字為奇數加1。

如將下組數據保留三位

45.77=45.8 43.03=43.0

38.25=38.2 47.15=47.2

E. 數學問題

「近二十年證明沒有本質進展」

「近20年來,哥德巴赫猜想的證明沒有本質進展。」北京師范大學數學系教授、將在本屆國際數學家大會上作45分鍾報告的陳木法說,「它的證明就差最後一步。如果研究取得本質進展,那猜想也就最終獲得了解決。」

據陳木法介紹,在2000年,國際上曾有機構列出了數學領域的7個千年難題,懸賞百萬美元求解,但並未將哥德巴赫猜想包括在內。

「在最近幾年甚至十幾年內,哥德巴赫猜想還難以獲得證明。」中科院數學與系統科學研究院研究員鞏馥洲這樣分析,現在猜想已成為一個孤立的問題,同其他數學學科的聯系不太密切。同時,研究者也缺少有效的思想、方法來最終解決這一著名猜想。「陳景潤先生生前已將現有的方法用到了極至。」

劍橋大學教授、菲爾茨獎得主貝克爾也表示,陳景潤在這項工作上取得的進展是迄今為止最好的求證結果,目前還沒有更大的突破。

「在解決這類數學難題時,可能一二百年內都難有進展,也可能短期內就有重大進展。」在鞏馥洲看來,數學研究中存在一定的偶然性,也許可以讓人們提前在猜想證明上獲得進展。

猜想求證呼喚全新思路

為求解「核心數學中具有挑戰性的問題」,中科院數學與系統科學研究院成立了專門的國際研究團隊。研究院負責人、研究員李福安介紹說:「我們期望在黎曼猜想等領域取得突破。這一研究團隊並沒有將哥德巴赫猜想作為努力的方向。」

陳景潤,這位距「皇冠上的明珠」最近的數學家在1996年離我們而去。他的成就曾一度喚起人們「沖擊」哥德巴赫猜想的「激情」。2000年3月,英國和美國兩家出版公司曾懸賞百萬美元,徵求哥德巴赫猜想的最終解決方案,再次使之成為社會關注的熱點。兩年過去了,直到最後的截止日期,也沒有人前來領取這筆獎金。

據估計,全世界約有二三十人有能力從事猜想的求證。對於這一著名猜想的最終解決,潘承洞曾撰文指出:現在看不出沿著人們所設想的途徑有可能去解決這一猜想。我們必須對有關方法作出重大改進,或提出新的方法,才可能對猜想取得進一步的研究成果。王元的判斷與此基本相似:「對哥德巴赫猜想的進一步研究,必須有一個全新的思路。」作為我國當代著名的數學家,王元和潘承洞都在猜想證明過程中做出過重大貢獻。

「數學研究不只是做難題,我不贊成片面炒作這些難題。在我看來,研究這些數學難題的人不到世界數學家的1%。」陳木法覺得,「數學研究不必非得去解答別人提出的問題,我們要多做些原創性的研究,注重整體研究力量的提高。」

「民間數學家」 距離「明珠」有多遠?

國際數學家大會開幕前夕,一些「民間數學家」紛紛來到北京,聲稱自己「已完全證明」了哥德巴赫猜想,引起社會的關注。

實際上,近年來我國不斷有人拿著猜想的「最終證明結果」輪流拜訪多位數學家,也不時傳出「農民成功證明哥德巴赫猜想」、「拖拉機手摘得『皇冠上的明珠』」等「爆炸性新聞」。

「隨著大會的臨近,數學研究院收到的關於猜想研究成果的稿件也越來越多。」中科院研究員李福安說,「20多年有成千上萬的業余愛好者,我就收到了200多封信。他們的選題主要集中在哥德巴赫猜想上。由於猜想表述非常簡潔,大多數的人都能懂,所以很多人都想來破解這個難題。」

「民間人士熱愛科學的熱情應該保護,但我們不提倡民間人士去攻世界數學難題。他們可以用這種熱情去做更合適的事情。」李福安說,「從來稿中可以看出,不少作者既缺乏基本的數學素養,又不去閱讀別人的數學論文,結果都是錯的。」

「國外也有這種現象。比如在柏林國際數學家大會期間,就有人在會場張貼論文,宣稱自己證明了(1+1)。」首屆國家最高科學技術獎獲得者、本屆國際數學家大會主席吳文俊說:「一些業余愛好者會一點兒數學,有一點兒算術基礎,就去求證(1+1),並把所謂的證明論文寄給我。其實像哥德巴赫猜想這樣的難題,應該讓『專門家』去搞,不應該成為一場『群眾運動』。」

為此,許多數學家對數學愛好者提出忠告:「如果真想在哥德巴赫猜想證明上做出成績,最好先系統掌握相應的數學知識,以免走不必要的彎路。」

新聞背景:摘取「皇冠上的明珠」 還差最後一步

新華網北京8月20日電(記者 李斌 張景勇鄒聲文) 徐遲那篇著名的報告文學,使數億普通百姓知道了「自然科學的皇後是數學;數學的皇冠是數論;哥德巴赫猜想,則是皇冠上的明珠」,也知道了陳景潤是全世界離那顆明珠最近的人——只差最後一步。但20多年過去了,這一步還是沒有人能夠跨過去。

哥德巴赫猜想已讓人類猜了整整260個年頭。1742年,德國數學家哥德巴赫寫信給大數學家歐拉,提出每個不小於6的偶數都是二個素數之和(簡稱「1+1」)。例如,6=3+3,24=11+13,等等。歐拉回信表示,相信猜想是正確的,但他無法加以證明。

從那時起的近170年,許多數學家費盡心血,想攻克它,但都沒有取得突破。直到1920年,挪威數學家布朗終於向它靠近了一步,用數論中古老的篩法證明了:每個大偶數是九個素因子之積加九個素因子之積,即(9+9)。

此後,對猜想的「包圍圈」不斷縮小。1924年,德國數學家拉德馬哈爾證明了(7+7)。1932年,英國數學家愛斯斯爾曼證明了(6+6)。1938年,蘇聯數學家布赫斯塔勃證明了(5+5),2年後又證明了(4+4)。1956年,蘇聯數學家維諾格拉多夫證明了(3+3)。1958年,我國數學家王元又證明了(2+3)。1962年中國數學家潘承洞證明了(1+5),王元證明了(1+4);1965年,布赫斯塔勃等又證明了(1+3)。「包圍圈」越來越小,越來越接近終極目標(1+1)。

1966年,中國數學家陳景潤成為世界上距這顆明珠最近的人——他證明了(1+2)。他的成果處於世界領先地位,被國際數學界稱為「陳氏定理」。由於在哥德巴赫猜想研究方面的卓越成就,1982年,陳景潤與王元、潘承洞共同榮獲國家自然科學獎一等獎。

從陳景潤證明(1+2)以來,哥德巴赫猜想的最後一步——證明(1+1)沒有本質進展。有關專家認為,原有的方法已被用到極至,必須提出全新的方法,採用全新的思路,才可能對猜想取得進一步的研究成果。(完)

附:
【哥德巴赫猜想簡介】
當年徐遲的一篇報告文學,中國人知道了陳景潤和哥德巴赫猜想。
那麼,什麼是哥德巴赫猜想呢?
哥德巴赫猜想大致可以分為兩個猜想:
■1.每個不小於6的偶數都是兩個奇素數之和;
■2.每個不小於9的奇數都是三個奇素數之和。
■哥德巴赫相關
哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。
【哥德巴赫猜想小史】
1742 年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被1和它本身整除的數)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。從哥德巴赫提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但嚴格的數學證明尚待數學家的努力。
從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的"明珠"。人們對哥德巴赫猜想難題的熱情,歷經兩百多年而不衰。世界上許許多多的數學工作者,殫精竭慮,費盡心機,然而至今仍不得其解。
到了20世紀20年代,才有人開始向它靠近。1920年挪威數學家布朗用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了哥德巴赫猜想。
目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理:「任何充分大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」通常都簡稱這個結果為大偶數可表示為 「1 + 2」的形式。
■哥德巴赫猜想證明進度相關
在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱「s + t」問題)之進展情況如下:
1920年,挪威的布朗證明了「9 + 9」。
1924年,德國的拉特馬赫證明了「7 + 7」。
1932年,英國的埃斯特曼證明了「6 + 6」。
1937年,義大利的蕾西先後證明了「5 + 7」, 「4 + 9」, 「3 + 15」和「2 + 366」。
1938年,蘇聯的布赫夕太勃證明了「5 + 5」。
1940年,蘇聯的布赫夕太勃證明了「4 + 4」。
1948年,匈牙利的瑞尼證明了「1+ c」,其中c是一很大的自然數。
1956年,中國的王元證明了「3 + 4」。
1957年,中國的王元先後證明了 「3 + 3」和「2 + 3」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了「1 + 5」, 中國的王元證明了「1 + 4」。
1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及義大利的朋比利證明了「1 + 3 」。
1966年,中國的陳景潤證明了 「1 + 2 」。
從1920年布朗證明"9+9"到1966年陳景潤攻下「1+2」,歷經46年。自"陳氏定理"誕生至今的40多年裡,人們對哥德巴赫猜想猜想的進一步研究,均勞而無功。
■布朗篩法相關
布朗篩法的思路是這樣的:即任一偶數(自然數)可以寫為2n,這里n是一個自然數,2n可以表示為n個不同形式的一對自然數之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在篩去不適合哥德巴赫猜想結論的所有那些自然數對之後(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j= 2,3,…;等等),如果能夠證明至少還有一對自然數未被篩去,例如記其中的一對為p1和p2,那麼p1和p2都是素數,即得n=p1+p2,這樣哥德巴赫猜想就被證明了。前一部分的敘述是很自然的想法。關鍵就是要證明'至少還有一對自然數未被篩去'。目前世界上誰都未能對這一部分加以證明。要能證明,這個猜想也就解決了。
然而,因大偶數n(不小於6)等於其對應的奇數數列(首為3,尾為n-3)首尾挨次搭配相加的奇數之和。故根據該奇數之和以相關類型質數+質數(1+1)或質數+合數(1+2)(含合數+質數2+1或合數+合數2+2)(註:1+2 或 2+1 同屬質數+合數類型)在參與無限次的"類別組合"時,所有可發生的種種有關聯系即1+1或1+2完全一致的出現,1+1與1+2的交叉出現(不完全一致的出現),同2+1或2+2的"完全一致",2+1與2+2的"不完全一致"等情況的排列組合所形成的各有關聯系,就可導出的"類別組合"為1+1,1+1 與1+2和2+2,1+1與1+2,1+2與2+2,1+1與2+2,1+2等六種方式。因為其中的1+2與2+2,1+2 兩種"類別組合"方式不含1+1。所以1+1沒有覆蓋所有可形成的"類別組合"方式,即其存在是有交替的,至此,若可將1+2與2+2,以及1+2兩種方式的存在排除,則1+1得證,反之,則1+1不成立得證。然而事實卻是:1+2 與2+2,以及1+2(或至少有一種)是陳氏定理中(任何一個充分大的偶數都可以表示為兩個素數的和,或一個素數與兩個素數乘積的和),所揭示的某些規律(如1+2的存在而同時有1+1缺失的情況)存在的基礎根據。所以1+2與2+2,以及1+2(或至少有一種)"類別組合"方式是確定的,客觀的,也即是不可排除的。所以1+1成立是不可能的。這就徹底論證了布朗篩法不能證"1+1"。

由於素數本身的分布呈現無序性的變化,素數對的變化同偶數值的增長二者之間不存在簡單正比例關系,偶數值增大時素數對值忽高忽低。能通過數學關系式把素數對的變化同偶數的變化聯系起來嗎?不能!偶數值與其素數對值之間的關系沒有數量規律可循。二百多年來,人們的努力證明了這一點,最後選擇放棄,另找途徑。於是出現了用別的方法來證明哥德巴赫猜想的人們,他們的努力,只使數學的某些領域得到進步,而對哥德巴赫猜想證明沒有一點作用。
哥德巴赫猜想本質是一個偶數與其素數對關系,表達一個偶數與其素數對關系的數學表達式,是不存在的。它可以從實踐上證實,但邏輯上無法解決個別偶數與全部偶數的矛盾。個別如何等於一般呢?個別和一般在質上同一,量上對立。矛盾永遠存在。哥德巴赫猜想是永遠無法從理論上,邏輯上證明的數學結論。

【哥德巴赫猜想意義】
「用當代語言來敘述,哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大於等於7的奇數都是三個素數的和。偶數的猜想是說,大於等於4的偶數一定是兩個素數的和。」(引自《哥德巴赫猜想與潘承洞》)
關於哥德巴赫猜想的難度我就不想再說什麼了,我要說一下為什麼現代數學界對哥德巴赫猜想的興趣不大,以及為什麼中國有很多所謂的民間數學家對哥德巴赫猜想研究興趣很大。
事實上,在1900年,偉大的數學家希爾伯特在世界數學家大會上作了一篇報告,提出了23個挑戰性的問題。哥德巴赫猜想是第八個問題的一個子問題,這個問題還包含了黎曼猜想和孿生素數猜想。現代數學界中普遍認為最有價值的是廣義黎曼猜想,若黎曼猜想成立,很多問題就都有了答案,而哥德巴赫猜想和孿生素數猜想相對來說比較孤立,若單純的解決了這兩個問題,對其他問題的解決意義不是很大。所以數學家傾向於在解決其它的更有價值的問題的同時,發現一些新的理論或新的工具,「順便」解決哥德巴赫猜想。
例如:一個很有意義的問題是:素數的公式。若這個問題解決,關於素數的問題應該說就不是什麼問題了。
為什麼民間數學家們如此醉心於哥猜,而不關心黎曼猜想之類的更有意義的問題呢?
一個重要的原因就是,黎曼猜想對於沒有學過數學的人來說,想讀明白是什麼意思都很困難。而哥德巴赫猜想對於小學生來說都能讀懂。
數學界普遍認為,這兩個問題的難度不相上下。
民間數學家解決哥德巴赫猜想大多是在用初等數學來解決問題,一般認為,初等數學無法解決哥德巴赫猜想。退一步講,即使那天有一個牛人,在初等數學框架下解決了哥德巴赫猜想,有什麼意義呢?這樣解決,恐怕和做了一道數學課的習題的意義差不多了。
當年柏努力兄弟向數學界提出挑戰,提出了最速降線的問題。牛頓用非凡的微積分技巧解出了最速降線方程,約翰·柏努力用光學的辦法巧妙的也解出最速降線方程,雅克布·柏努力用比較麻煩的辦法解決了這個問題。雖然雅克布的方法最復雜,但是在他的方法上發展出了解決這類問題的普遍辦法——變分法。現在來看,雅克布的方法是最有意義和價值的。
同樣,當年希爾伯特曾經宣稱自己解決了費爾馬大定理,但卻不公布自己的方法。別人問他為什麼,他回答說:「這是一隻下金蛋的雞,我為什麼要殺掉它?」的確,在解決費爾馬大定理的歷程中,很多有用的數學工具得到了進一步發展,如橢圓曲線、模形式等。
所以,現代數學界在努力的研究新的工具,新的方法,期待著哥德巴赫猜想這個「下金蛋的雞」能夠催生出更多的理論。

【哥德巴赫猜想證明的錯誤例子】

「哥德巴赫猜想」公式及「哥猜」證明 「哥德巴赫猜想」的證明:設偶數為M,素數刪除因子為√M≈N,那麼,偶數的奇素數刪除因子為:3,5,7,11…N, 1、偶數(1+1)最低素數對的正解公式為:√M/4,即N/4。 2、如果偶數能夠被奇素數刪除因子L整除。偶數的素數對為最低素數對*(L-1)/(L-2),比如說偶數能夠被素數3整除,該偶數的素數對≥(3-1) /(3-2)*N/4=N/2,又如偶數能夠被素數5整除,素數對≥(5-1)/(5-2)*N/4=N/3,如果偶數既能被素數3整除,又能被素數5整除,那麼,該偶數的素數對≥2N/3。對於偶數能夠被其它奇素數刪除因子整除,照貓畫虎。 ∵當偶數為大於6小於14時,都知道有「哥德巴赫猜想」(1+1)的解。又根據上面的「哥猜」正解公式,大於16的偶數(1+1)的素數對都≥1,∴「哥德巴赫猜想」成立
猜想:歌德巴赫猜想一:任意一個>=6的偶數都可以表示為兩個素數相加.
經我猜想得: 任意奇質數末尾數必為1,3,5,7,9 (其中1 ,9 至少為兩位數,如11,19)
這樣就有:1+1,1+3,1+5,1+7,1+9,
3+3,3+1,3+5,3+7,3+9,
5+5,5+1,5+3,5+7,5+9,
7+7,7+1,7+3,7+5,7+9,
9+9,9+1,9+3,9+5,9+7,
(其中都可以為多位數的素數相加)
所得的和末尾必為0,2,4,6,8,(都需>=6的偶數)
這樣所的的和必定為>=6的偶數,
但這不一定可以填充所有的偶數,所以這方法是錯誤的`!條件不充分的!
希望對你能有所幫助。

F. 世界上最難的數學題

哥德巴赫猜想(Goldbach Conjecture)

公元1742年6月7日德國的業余數學家哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:

(a) 任何一個n �0�6 6之偶數,都可以表示成兩個奇質數之和。

(b) 任何一個n �0�6 9之奇數,都可以表示成三個奇質數之和。

這就是著名的哥德巴赫猜想。從費馬提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如:

6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,

16 = 5 + 11, 18 = 5 + 13, . . . . 等等。

有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數學證明尚待數學家的努力。目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理(Chen『s Theorem) �0�6 「任何充份大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」 通常都簡稱這個結果為大偶數可表示為 「1 + 2 」的形式。

在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱 「s + t 」問題)之進展情況如下:

1920年,挪威的布朗(Brun)證明了 「9 + 9 」。

1924年,德國的拉特馬赫(Rademacher)證明了 「7 + 7 」。

1932年,英國的埃斯特曼(Estermann)證明了 「6 + 6 」。

1937年,義大利的蕾西(Ricei)先後證明了 「5 + 7 」, 「4 + 9 」, 「3 + 15 」和「2 + 366 」。

1938年,蘇聯的布赫 夕太勃(Byxwrao)證明了 「5 + 5 」。

1940年,蘇聯的布赫 夕太勃(Byxwrao)證明了 「4 + 4 」。

1948年,匈牙利的瑞尼(Renyi)證明了 「1 + c 」,其中c是一很大的自然 數。

1956年,中國的王元證明了 「3 + 4 」。

1957年,中國的王元先後證明了 「3 + 3 」和 「2 + 3 」。

1962年,中國的潘承洞和蘇聯的巴爾巴恩(BapoaH)證明了 「1 + 5 」,

中國的王元證明了 「1 + 4 」。

1965年,蘇聯的布赫 夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及 義大利的朋比利(Bombieri)證明了 「1 + 3 」。

1966年,中國的陳景潤證明了 「1 + 2 」。

最終會由誰攻克 「1 + 1 」這個難題呢?現在還沒法預測。 圓周率圓周率簡介 圓周率是指平面上圓的周長與直徑之比。用希臘字母 π (讀「Pài」)表示。中國古代有圓率、周率、周等名稱。(在一般計算時π人們都把π這無限不循環小數化成3.14) 圓周率的歷史 古希臘歐幾里得《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而周三」的記載,也認為圓周率是常數。歷史上曾採用過圓周率的多種近似值,早期大都是通過實驗而得到的結果,如古埃及紙草書(約公元前1700)中取π=(4/3)^4≒3.1604 。第一個用科學方法尋求圓周率數值的人是阿基米德,他在《圓的度量》(公元前3世紀)中用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,得到(3+(10/71))<π<(3+(1/7)) ,開創了圓周率計算的幾何方法(亦稱古典方法,或阿基米德方法),得出精確到小數點後兩位的π值。 中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。他用割圓術一直算到圓內接正192邊形。 南北朝時代數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉),給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355/113和約率22/7。其中的密率在西方直到1573才由德國人奧托得到,1625年發表於荷蘭工程師安托尼斯的著作中,歐洲稱之為安托尼斯率。 阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。德國數學家柯倫於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。 無窮乘積式、無窮連分數、無窮級數等各種π值表達式紛紛出現,π值計算精度也迅速增加。1706年英國數學家梅欽計算π值突破100位小數大關。1873 年另一位英國數學家尚可斯將π值計算到小數點後707位,可惜他的結果從528位起是錯的。到1948年英國的弗格森和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。 電子計算機的出現使π值計算有了突飛猛進的發展。1949年美國馬里蘭州阿伯丁的軍隊彈道研究實驗室首次用計算機(ENIAC)計算π值,一下子就算到2037位小數,突破了千位數。1989年美國哥倫比亞大學研究人員用克雷-2型和IBM-VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數,創下新的紀錄。至今,最新紀錄是小數點後12411億位。 除π的數值計算外,它的性質探討也吸引了眾多數學家。1761年瑞士數學家蘭伯特第一個證明π是無理數。1794年法國數學家勒讓德又證明了π^2也是無理數。到1882年德國數學家林德曼首次證明了π是超越數,由此否定了困惑人們兩千多年的「化圓為方」尺規作圖問題。還有人對π的特徵及與其它數字的聯系進行研究。如1929年蘇聯數學家格爾豐德證明了e^π 是超越數等等。
圓周率的計算古今中外,許多人致力於圓周率的研究與計算。為了計算出圓周率的越來越好的近似值,一代代的數學家為這個神秘的數貢獻了無數的時間與心血。 十九世紀前,圓周率的計算進展相當緩慢,十九世紀後,計算圓周率的世界紀錄頻頻創新。整個十九世紀,可以說是圓周率的手工計算量最大的世紀。 進入二十世紀,隨著計算機的發明,圓周率的計算有了突飛猛進。藉助於超級計算機,人們已經得到了圓周率的2061億位精度。 歷史上最馬拉松式的計算,其一是德國的Ludolph Van Ceulen,他幾乎耗盡了一生的時間,計算到圓的內接正262邊形,於1609年得到了圓周率的35位精度值,以至於圓周率在德國被稱為Ludolph數;其二是英國的威廉·山克斯,他耗費了15年的光陰,在1874年算出了圓周率的小數點後707位。可惜,後人發現,他從第528位開始就算錯了。 把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果用魯道夫算出的35位精度的圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一。以前的人計算圓周率,是要探究圓周率是否是循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。 現在的人計算圓周率, 多數是為了驗證計算機的計算能力的,還有,就是為了興趣。 圓周率的運算方法古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。阿基米德用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;魯道夫用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其它公式和由這些經典公式衍生出來的公式,就不一一列舉了。 1、馬青公式 π=16arctan1/5-4arctan1/239 這個公式由英國天文學教授約翰·馬青於1706年發現。他利用這個公式計算到了100位的圓周率。馬青公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。 還有很多類似於馬青公式的反正切公式。在所有這些公式中,馬青公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,馬青公式就力不從心了。 2、拉馬努金公式 1914年,印度天才數學家拉馬努金在他的論文里發表了一系列共14條圓周率的計算公式。這個公式每計算一項可以得到8位的十進制精度。1985年Gosper用這個公式計算到了圓周率的17,500,000位。 1989年,大衛·丘德諾夫斯基和格雷高里·丘德諾夫斯基兄弟將拉馬努金公式改良,這個公式被稱為丘德諾夫斯基公式,每計算一項可以得到15位的十進制精度。1994年丘德諾夫斯基兄弟利用這個公式計算到了4,044,000,000位。丘德諾夫斯基公式的另一個更方便於計算機編程的形式是: 3、AGM(Arithmetic-Geometric Mean)演算法 高斯-勒讓德公式: </B>這個公式每迭代一次將得到雙倍的十進制精度,比如要計算100萬位,迭代20次就夠了。1999年9月,日本的高橋大介和金田康正用這個演算法計算到了圓周率的206,158,430,000位,創出新的世界紀錄。 4、波爾文四次迭代式: </B>這個公式由喬納森·波爾文和彼得·波爾文於1985年發表,它四次收斂於圓周率。 5、ley-borwein-plouffe演算法 </B>這個公式簡稱BBP公式,由David Bailey, Peter Borwein和Simon Plouffe於1995年共同發表。它打破了傳統的圓周率的演算法,可以計算圓周率的任意第n位,而不用計算前面的n-1位。這為圓周率的分布式計算提供了可行性。 6、丘德諾夫斯基公式: 這是由丘德諾夫斯基兄弟發現的,十分適合計算機編程,是目前計算機使用較快的一個公式。以下是這個公式的一個簡化版本: 丘德諾夫斯基公式7.韋達的公式 1593年,是π的最早分析表達式。2/π=√2/2×√(2+√2)/2×√〔2+√(2+√2)〕×~~~ 表示π的級數較著名的表示π的級數有萊布尼茨級數 π/4=1-1/3+1/5-1/7+1/9…… 以及威廉姆斯無窮乘積式 π/2=2*2/3*4/3*4/5*6/5*6/7*8/7*8/9…… 我們就萊布尼茨級數加以證明: 先給出等比級數 1+q+q^2+q^3+q^4+……+q^(n-1)=(1-q^n)/(1-q) 移項得到 1/q=1+q+q^2+ ……+q^(n-1)+q^n/(1-q) 令q=-x^2,得到 1/(1+x^2)=1-x^2+x^4-x^6+……+(-1)^(n-1)*x^(2n-2)+(-1)^n*x^2n/(1+x^2) 將左右兩端做出從0到1的積分,則左端為 ∫下限0 上限1 dx/(1+x^2)=arctan1-arctan0=π/4 右端為1-1/3+1/5-1/7+1/9……+(-1)^n*∫下限0 上限1 x^2n/(1+x^2)dx 現在將證明右端末項(-1)^n*∫下限0 上限1 x^2n/(1+x^2)dx 當n趨於正無窮大時趨於0 關於積分,有不等式:若f(x)≤g(x),則∫下限a 上限b f(x)dx≤∫下限a 上限b g(x)dx 對於x∈[0,1],有x^2n/(1+x^2)≤x^2n 故∫下限a 上限b x^2n/(1+x^2)dx≤∫下限a 上限b x^2ndx 不等式右端結果是1/(2n+1),顯然n→+∞時1/(2n+1)→0,所以∫下限a 上限b x^2n/(1+x^2)dx也趨於0。 於是n增大時,1-1/3+1/5-1/7+1/9……趨於π/4,公式得證。 圓周率的計算歷史時間紀錄創造者小數點後位數 所用方法 前2000 古埃及人 0 前1200中國 0 前500 《舊約全書》0(周三徑一) 前250阿基米德3 263 劉徽5 古典割圓術 480 祖沖之 7 1429 Al-Kashi 14 1593 Romanus 15 1596 魯道夫 20 古典割圓術 1609 魯道夫 35 1699 夏普 71 夏普無窮級數 1706 馬青(梅欽) 100 馬青公式 1719 (法)德·拉尼 127(112位正確)夏普無窮級數 1794(奧地利)喬治·威加 140 歐拉公式 1824 (英)威廉·盧瑟福 208(152位正確)勒讓德公式 1844 Strassnitzky & Dase 200 1847 Clausen 248 1853 Lehmann 261 1853 Rutherford 440 1874 威廉·山克斯 707(527位正確) 20世紀後 年 月 紀錄創造者 所用機器 小數點後位數 1946 (英)弗格森 620 1947 1 (英)弗格森 710 1947 9 Ferguson & Wrench 808 1949 Smith & Wrench 1,120 1949 Reitwiesner et alENIAC 2,037 1954 Nicholson & JeenelNORC3,092 1957 Felton Pegasus 7,480 1958 1 Genuys IBM704 10,000 1958 5 Felton Pegasus 10,021 1959 Guilloud IBM 704 16,167 1961 Shanks & Wrench IBM 7090 100,265 1966 Guilloud & Filliatre IBM 7030 250,000 1967 Guilloud & Dichampt CDC 6600 500,000 1973 Guilloud & Bouyer CDC 7600 1,001,250 1981 Miyoshi & Kanada FACOM M-200 2,000,036 1982 Guilloud 2,000,050 1982 Tamura MELCOM 900II 2,097,144 1982 Tamura & Kanada HITACHI M-280H 4,194,288 1982 Tamura & Kanada HITACHI M-280H 8,388,576 1983 Kanada, Yoshino & Tamura HITACHI M-280H 16,777,206 1985 10 Gosper Symbolics 3670 17,526,200 1986 1 Bailey CRAY-2 29,360,111 1986 9 Kanada & Tamura HITACHI S-810/20 33,554,414 1986 10 Kanada & Tamura HITACHI S-810/20 67,108,839 1987 1 Kanada, Tamura & Kubo et al NEC SX-2 134,217,700 1988 1 Kanada & Tamura HITACHI S-820/80 201,326,551 1989 5 Chudnovskys CRAY-2 & IBM-3090/VF 480,000,000 1989 6 Chudnovskys IBM 3090 525,229,270 1989 7 Kanada & Tamura HITACHI S-820/80 536,870,898 1989 8 Chudnovskys IBM 3090 1,011,196,691 1989 11 Kanada & Tamura HITACHI S-820/80 1,073,741,799 1991 8 Chudnovskys 2,260,000,000 1994 5 Chudnovskys 4,044,000,000 1995 8 Takahashi & Kanada HITACHI S-3800/480 4,294,967,286 1995 10 Takahashi & Kanada 6,442,450,938 1997 7 Takahashi & Kanada 51,539,600,000 1999 4 Takahashi & Kanada 68,719,470,000 1999 9 Takahashi & Kanada HITACHI SR8000 206,158,430,000 2002 Takahashi Team 1,241,100,000,000圓周率的最新計算紀錄1、新世界紀錄 圓周率的最新計算紀錄由日本人金田康正的隊伍所創造。他們於2002年算出π值1,241,100,000,000 位小數,這一結果打破了他們於1999年9月18日創造的206,000,000,000位小數的世界紀錄。至今,最新紀錄是——法國一工程師將圓周率算到小數點後2,700,000,000,000 2、個人計算圓周率的世界紀錄 在一個現場解說驗證活動中,一名59歲日本老人Akira Haraguchi將圓周率π算到了小數點後的83431位,這名孜孜不倦的59歲老人向觀眾講解了長達13個小時,最終獲得認同。這一紀錄已經被收入了Guinness(吉尼斯)世界大全中。據報道,此前的紀錄是由一名日本學生於1995年計算出的,當時的精度是小數點後的42000位。 3、背誦圓周率記錄 2006年,呂超將圓周率背誦到小數點後67890位,第67891位將0背為5發生錯誤,挑戰結束,背誦過程長達24時04分。 一些有趣的數字序列在π小數點後出現的位置數字序列出現的位置 01234567891:26,852,899,245 及 41,952,536,161 99,972,955,571 及 102,081,851,717 171,257,652,369 01234567890:53,217,681,704 及 148,425,641,592 432109876543:149,589,314,822 543210987654:197,954,994,289 98765432109:123,040,860,473 及 133,601,569,485 及 150,339,161,883 183,859,550,237 09876543210:42,321,758,803 及 57,402,068,394 83,358,197,954 10987654321:89,634,825,550 及 137,803,268,208 152,752,201,245 27182818284:45,111,908,393

G. 小學數學中的大約等於多少是怎麼定義的

大約等於多少一般是指接近某個整十,整百數。

比如298+195≈300+200=500,就是把298看成300,195看成200。

還有一種約等於,就是看要求精確的後一位數,四捨五入法。

如:2350≈2400【精確到百位】

0.235≈0.24【精確到百分位】

(7)數學1742約是多少擴展閱讀:

四捨五入與其他方法本質相同。但特殊之處在於,採用四捨五入,能使被保留部分的與實際值差值不超過最後一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的。這也是我們使用這種方法為基本保留法的原因。

在求商時的用法,除了取近似商(近似)用約等號以列、其餘情況一般都用等號。如:

10÷3=3……1 (有餘數除法的表示法)

10÷3=3.333(除不盡的表示法)

10÷3=3.3 (商取循環小數的表示法)

3 1/3=3.3 (化分數為循環小數的表示法)

10÷3≈3.3 (取近似商的表示法)

H. 小學三年級數學約等於怎麼算

得數四捨五入,比如:小學數學35約等於40。


四捨五入是一種精確度的計數保留法,與其他方法本質相同.但特殊之處在於,採用四捨五入,能使被保留部分的與實際值差值不超過最後一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的.這大概也是我們使用這種方法為基本保留法的原因。

「四捨五入」方法:

比保留的位數多看一位,該位上的數字是「5」或者比「5」大,向前進一,該位上的數字是「4」或者比「4」小,就捨去。

例如:6.56,保留一位小數,就是6.6。而6.54,保留一位小數,就是6.5。

在取小數 近似數的時候,如果尾數的最高位數字是4或者比4小,就把尾數去掉。如果尾數的最高位數是5或者比5大,就把尾數捨去並且在它的前一位進"1",這種取近似數的方法叫做四捨五入法。

《 九章算術》里也採用「四捨五入」的方法,在用比例法求各縣應出的車輛時,因為車輛是整數,他們就採用四捨五入的方法對演算結果加以處理。

I. 小學數學中的大約等於多少是怎麼定義的

大約等於多少一般是指接近某個整十,整百.數.
比如298+195≈300+200=500
就是把298看成300
還有一種約等於,就是看要求精確的後一位數,四捨五入法.
如:2350≈2400【精確到百位】
0.235≈0.24【精確到百分位】

J. 約等於多少怎麼算

得數四捨五入,比如:小學數學35約等於40。

四捨五入是一種精確度的計數保留法,與其他方法本質相同.但特殊之處在於,採用四捨五入,能使被保留部分的與實際值差值不超過最後一位數量級的二分之一:假如0~9等概率出現的話,對大量的被保留數據,這種保留法的誤差總和是最小的.這大概也是我們使用這種方法為基本保留法的原因。

(10)數學1742約是多少擴展閱讀:

大約等於,是一個估計的數字,是通過四捨五入計算出來的。

通常,他們會告訴你確切的數字,例如,十位,491年大約是490年,根據舍入演算法,如果個位上的數小於4,362年大約是360年,如果個位的數字大於5,287年大約是290年。

閱讀全文

與數學1742約是多少相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1344
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069