❶ 高中數學答題技巧有哪些
高中數學解題技巧主要有以下幾種方法:
1、配方法:把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。
2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。
3、換元法:所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數。
知道孩子數學學不好的原因:
1、不要讓孩子被動學習,還有很多同學在上了高中之後還想初中,那樣每天吊兒郎當,這是跟隨著老師的思路。自己沒有一些衍生,之前沒有學習方法,在下課了也不會找。道練習題去練習,就等著上課,並且可前面不會用寫對老師上課的內容都不知道上課光想著記筆記,沒有思路的學習是沒有成效的。
2、老師上課的時候就是把這個知識表達的清楚一點,分析一下重點和難點。然而還有很多學生上課不專心聽課。對很多葯店也都不知道,只是筆記記了一大堆,自己也看不懂問題還有很多,在課後也不會進行總結。只是快點兒寫作業。寫作業的時候,他們也就是亂套提醒他們對概念,法則都不了解。做題也只能是碰巧的做。
❷ 求函數解析式的方法有哪些
1、待定系數法,(已知函數 類型如:一次、二次函數、反比例函數等):若已知福(行)的結構時,可設出含參數的表達式,再根據已知條件,列方程或方程組,從而求出待定的參數,求得法(行)的表達式,待定系數法是一種重要的數學方法,它只適用於已知所求函數的類型求其解析式
2、換元法(注意新元的取值范圍)已知法(g(x))的表達式,欲求粉(x),我們常設t=g(x),從而求得
然後代入法(g(x))的表達式,從而得到法(t)的表達式,即為法(x)的表達式
3、配湊法(整體代換法)若已知法(g(x))的表達式,欲求粉(x)的表達式,用換元法有困難時(如g(x)不存在反函數)可把g(x)看成一個整體,把右邊變為由g(x)組成的式子,再換元求出f(x)的式子
4、消元法(如自變數互為倒數、已知f(x)為奇函數 且g(x)為偶函數等:若已知以函數為元的方程形式,若能設法構造另一個方程,組成方程組,再解這個方程組,求出函數元,稱這個方法為消元法
5、賦值法(特殊值代入法)在求某些函數的表達式或求某些函數值時,有時把已知條件中的某些變數賦值,使問題簡單明了,從而易於求出函數的表達式。
函數的定義域、值域
❸ 高中數學解題方法有哪些
1、配方法
把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
❹ 判斷函數的解析性有哪些方法
在區域上研究問題,解析和可微(可導)是等價的,兩者可以互推。在某點處研究問題,只有解析才能推出可微。可微推不出可導。討論可微性和解析性時,不管是用可微的充分性還是用必要性或充要性,只需看實部和虛部是在某點上或某線上滿足C-R方程還是在某個域滿足C-R方程。在域上就是解析的。
拓展資料:
1、連續性定義:若函數f(x)在x0有定義,且極限與函數值相等,則函數在x0連續
2、充分條件:若函數f(x)在x0可導或可微(或者更強的條件),則函數在x0連續
3、必要條件:若函數f(x)在x0無定義、或無極限、或極限不等於函數值,則在x0不連續
4、觀察圖像(這個不嚴謹,只適用直觀判斷)
5、記住一些基本初等函數的性質,大部分初等函數在定義域內都是連續的
6、連續函數的性質:連續函數的加減乘,復合函數等都是連續的
個人認為學函數要注意幾點:
1。清楚定義域,值域,這個是正確解答函數的前提。
2。一般題目都會給些基本知識,所以要清楚弄懂基礎概念:
例如:
奇(偶)函數及其等價數學表達式(例如:奇函數等價於f(x)=-f(-x))。
二次函數,冪函數、指數函數、對數函數,這些函數的圖象與性質。
函數在區間上單調增(減)證明。
周期函數證明。
3。培養數形結合的思維,進行數學符號語言與圖形語言的靈活轉換,記住基礎函數的圖像和性質,一開始可以對著課本做習題。
弄清楚以上概念,不管題目怎麼變換都是熟悉的模式,最多加上解題技巧,這些通過一定習題就可以練習出來,所以學函數抓基礎定義及其等價數學表達,數形結合三大關鍵因素。
❺ 解數學證明題的技巧有哪些
證明題有三種思考方式
● 正向思維
對於一般簡單的題目,我們正向思考,輕而易舉可以做出。這里就不詳細講述了。
● 逆向思維
顧名思義,就是從相反的方向思考問題。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯。
同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。
例如:
可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去…
這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。
● 正逆結合
對於從結論很難分析出思路的題目,可以結合結論和已知條件認真的分析。
初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。
給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
證明題要用到哪些原理
要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。
下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直於弦。
11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
六、證明角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
七、證明線段不等
1.同一三角形中,大角對大邊。
2.垂線段最短。
3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大於它的任何一部分。
八、證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大於和它不相鄰的任一內角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
4.同圓或等圓中,弧大則圓周角、圓心角大。
5.全量大於它的任何一部分。
九、證明比例式或等積式
1.利用相似三角形對應線段成比例。
2.利用內外角平分線定理。
3.平行線截線段成比例。
4.直角三角形中的比例中項定理即射影定理。
5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。
6.利用比利式或等積式化得。
十、證明四點共圓
1.對角互補的四邊形的頂點共圓。
2.外角等於內對角的四邊形內接於圓。
3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。
4.同斜邊的直角三角形的頂點共圓。
5.到頂點距離相等的各點共圓。
❻ 常用的數學分析方法有哪些
1.避免「一步到位」
是指解題過程中,省略關鍵步驟,而直接得到答案,這樣扣分是嚴重的.由於解答題是嚴格按照步驟給分的,如果解題過程中失去關鍵步驟,跳過擬考查的知識點、能力點,就意味著失去得分點,自然被扣分.
例1(2000年全國高考題) 已知函數y= cos2x+ sinxcosx+1,x∈R.
(I) 當函數y取得最大值時,求自變數x的集合;
(II) 該函數的圖像可由y=sinx(x∈R)的圖像經過怎樣的平移和伸縮變換得到?
解:(I)由題設可得,y= sin(2x+ )+ ,故有
當 x= +k ,k∈Z,函數y取得最大值.
(II) 略.
評註:在(Ⅰ)的解答中犯了「大題小作」中的「一步到位」錯誤,缺少了化簡過程的3個要點與何時取到最大值的1個要點,因而被扣分.
2. 避免「使用升華結論」
在解選擇和填空題中,使用升華結論(教材中未給出的正確結論)是允許的,而且還是一種簡捷快速的答題技巧.而直接運用(不加說明或證明)在解答題中是不合適的,且是「大題小作」,要適當扣分的.
解答高考解答題的理論根據應該是教材中的定義、定理、公理和公式,而學生使用「升華結論」則達不到考查能力、考查過程的目的,因此不能以題解題,不能直接運用教材以外別的東西,以免被扣分.
例2⑴(1991年全國高考題) 根據函數單調性的定義,證明函數f (x)=-x3+1在(-∞,+∞)上是減函數.
⑵(2001年全國高考題) 設拋物線y2 =2px (p>0)的焦點為F,經過點F的直線交拋物線於A、B兩點,點C在拋物線的准線上,且BC∥x軸.證明直線AC經過原點O.
評分標准中指出:
對於⑴:「利用y=x3在[0,+∞)上是增函數的性質,未證明y=x3在(-∞,+∞)上也是增函數而直接寫出f(x1)-f(x2)= - <0,未能證明為什麼 - <0過程,由評分標准知最多得3分.
對於⑵:有些考生證明時,直接運用課本中的引申結論「y1 y2=p2」而跳過擬考查的知識點、能力點而被扣2分.
對於課本習題、例題的結論,是要通過證明才能直接使用(黑體字結論例外),否則將被「定性」為解題不完整而被扣分.又如1996年高考理科第22(Ⅱ)及2001年全國高考理科第17(Ⅱ)利用面積射影定理,由於不加證明而直接使用,因而被扣分.
3 避免「答非所問」
是指沒有根據題意要求或沒有看清題意要求,用其它方法或結論作答,這明顯也要被扣分的.
例3(1993年全國高考題)已知數列
Sn為其前n項和.計算得 觀察上述結果,推測出計算Sn的公式,並用數學歸納法加以證明.
解:依據題意,推測出Sn的公式為:
Sn= .
∵ ak= = - ,
分別取k=1,2,3,…,n,並將n個式子相加得:
Sn=1- = .
評注 以上解法可謂「簡單、明了」,但證明時不用數學歸納法,為「答非所問」,不合題意,扣分是必然的. 又如1999年高考第22題(應用題),第(Ⅰ)問中求「冷軋機至少需要安裝多少對軋輥」,要求是用整數作答,不少考生未能用整數作答,違背題意而被扣分.
(四)了解「評分標准」,把握得分點
掌握解答題的「得分點」就要了解高考的評分標准,解答題評分標準是分步給分,但並非寫得越多得分越高,而是踏上得分點就給分,即按所用的數學知識,數學思想方法要點式給分,允許「等價答案」,允許「跳步得分」. 因此解答時,應步驟清,要點明,格式齊. 對於不同題型的給分規律有:
1.立幾題得分點
通常分作證,計算兩部分給分,各段中間又按要點給分.證明主要寫清兩點:①空間位置關系的判斷推理的依據(課本中的定理、公理);②什麼是空間角和距離及理由(緊扣定義). 特別要注意沒有寫清角、距離要被扣分. 計算過程的書寫:計算一般是解三角形,要寫清三角形的條件及解出的結果. 用等積法解題,要找出等積關系並計算. 都是分段得分的,如1998年23題,1999年22題,都有3個小題,每小題4分,其中作證2分,計算2分.
2.分類討論題得分點
按所分類分別給分,加上歸納的格式(即寫為「綜上:當××時,結論是××」)分. 如1996年第20題,按a>1和0<a<1兩類分別給5分,歸納給1分. 2000年理19(Ⅱ),求 a 的取值范圍,使函數在區間[0,+∞)上是單調函數,按 a≥1和0<a<1討論各得2分.
3.應用題得分點
按設列、解答兩部分給分. 特別要注意不答和答錯都要扣1分,應注意設、列、解、答的完整性,爭取步驟階段分.
4.推理證明題得分點
按推理格式,推理變形步驟給分. 對於用定義證明函數的單調性、奇偶性,用數學歸納法證題,都有嚴格的格式分,應完整,避免失分. 即使推理證明不出,寧可跳步作答,也要套用格式. 從條件、結論兩頭往中間靠,這樣寫完格式,這樣可以少扣分.
5.綜合題得分點
按解答的過程,分步給分,每個步驟又按要點給分. 盡可能把過程分步寫出,盡量不跳步,根據題意
列出關系,譯出題設中每一個條件,能演算幾步算幾步,尚未成功不等於失敗,特別是那些解題層次分明的題目,那些已經程序化的方法,每進行一步得分點的演算都可以得到這一步的滿分,最後結論雖然沒有算出來,但分數已過半,所以說,「大題拿小分」也是一個好主意. 因此盡量增加分步得分機會,千萬別輕易留空白題.
(五)常用的解答題解題技巧
1.較簡單的解答題的求解
對於比較容易解答的解答題(一般是前面3道),宜採用一慢一快的方法,就是審題要慢,解題要快,速戰速決,為後面3道解答題留下時間.
找到解題方法後,書寫要簡明扼要,快速規范,不要拖泥帶水,羅唆重復,用閱卷老師的話,就是寫出「得分點」,一般來講,一個原理寫一步就可以了。至於不是題目直接考查的過渡知識,可以直接寫出結論,高考允許合理省略非關鍵步驟,應詳略得當。
例2004北京理科第15題
在 中, , , ,求 的值和 的面積.
分析:本小題主要考查三角恆等變形、三角形面積公式等基本知識,考查運算能力
解:
又 ,
.
2.較難的解答題的求解
對於較難的解答題(後面3道)來說,要想在有限的時間內做全對是不大現實的.當然也不能全部放棄,應該盡可能的爭取多拿分.對於絕大多數考生來說,在這里重要的是:如何從拿不下來的題目中分段得點分。我們說,有什麼樣的解題策略,就有什麼樣的得分策略,下面談四個觀點。
(1)、缺步解答
如果我們遇到一個很困難的問題,確實啃不動,一個明智的策略是:將它分解成為一個系列的步驟,或者是一個個子問題,能演算幾步就演算幾步,尚未成功不等於徹底失敗,每進行一步得分點的演算就可以得到這一步的滿分,最後結論雖然沒有得出來,但分數卻已過半。因為近幾年高考解答題的特點是:入口易完善難,不可輕易放棄任何一題。
例: (2004浙江理科第21題)已知雙曲線的中心在原點,右頂點為A(1,0)點P、Q在雙曲線的右支上,支M(m,0)到直線AP的距離為1.
(Ⅰ)若直線AP的斜率為k,且 ,求實數m的取值范圍;
(Ⅱ)當 時,ΔAPQ的內心恰好是點M,求此雙曲線的方程.
解: (Ⅰ)由條件得直線AP的方程
即
因為點M到直線AP的距離為1,
∵ 即 .
∵ ∴
解得 +1≤m≤3或--1≤m≤1-- .
∴m的取值范圍是
(Ⅱ)可設雙曲線方程為 由
得 .
又因為M是ΔAPQ的內心,M到AP的距離為1,所以∠MAP=45º,直線AM是∠PAQ的角平分線,且M到AQ、PQ的距離均為1.因此, (不妨設P在第一象限)
直線PQ方程為 .
直線AP的方程y=x-1,
∴解得P的坐標是(2+ ,1+ ),將P點坐標代入 得,
所以所求雙曲線方程為
即
(2)、跳步解答
解題卡在某一過渡環節上是常見的,這時,我們可以先承認中間結論,往後推,看能否得到結論。如果得不出,證明這個途徑不對,立即改變方向;如果能得出預期結論,我們再回過頭來,集中力量攻克這個「中途點」。由於高考時間的限制,「中途點」的攻克來不及了,那麼可以把前面的寫下來,再寫上「證明某步之後,繼而有……」一定做到底。也許,後來中間步驟又想出來了,這時不要亂七八糟地補上去,可補在後面,可書寫為「事實上,某步可證如下」。
有的題目可能設有多問,第一問求不出來,可以把第一問當成已知,先做第二問,這也算做是跳步解答。
例: (2004天津文科第18題) 從4名男生和2名女生中任選3人參加演講比賽.
(I) 求所選3人都是男生的概率;
(II)求所選3人中恰有1名女生的概率;
(III)求所選3人中至少有1名女生的概率.
解: (I) 所選3人都是男生的概率為
(II)所選3人中恰有1名女生的概率為
(III)所選3人中至少有1名女生的概率為
這3道小題可以說是互相獨立的,彼此不相干.所以如果第1小題做不來,可以跳過去,直接做第2小題.
(3)、退步解答
「以退求進」是一個重要的解題策略,如果你不能解決題中所提出的問題,那麼,你可以從一般退到特殊,從復雜退到簡單,從整體退到局部。總之,退到一個你能夠解決的問題,比如,{an}是公比為q的等比數列,Sn為{an}的前n項和,若Sn成等差數列,求公比q=____.
對等比數列問題,我們需考慮到q=1,q≠1兩種情況,你可以先對特殊的q=1進行討論,滿足題意,找到解題思路和情緒上的穩定後,再討論q≠1時是否也滿足題意,發現無解,如果對q≠ 1的情況你確實不會解,你還可以開門見山的寫上:本題分兩種情況:q=1或q≠1.
也許你只能完成一種情況,但你沒有用一種情況來代替主體。在概念上、邏輯上是清楚的。另外「難的不會做簡單的」還為尋找正確的、一般的解題方法提供了有意義的啟發。
4、輔助解答
一道題目的完整解答,即要有主要的實質性的步驟,也要有次要的輔助性的步驟,如:准確的作圖,把題目中的條件翻譯成數學表達式,設應用題中的未知量,函數中變數的取值范圍,軌跡題中的動點坐標,數學歸納法證明時,第一步n的取值等,如果處理得當,也會增分,不要小視它們。
另外,書寫也是輔助解答,卷面隨意塗改及正確答案的位置不合理,都會造成不必要的失分。
所以,有人說,書寫工整,卷面整齊也得分,不無道理。
❼ 數學解題思想方法有哪些
數學解題思想方法有哪些
一.數學思想方法總論
高中數學一線牽,代數幾何兩珠連;
三個基本記心間,四種能力非等閑.
常規五法天天練,策略六項時時變,
精研數學七思想,誘思導學樂無邊.
一 線:函數一條主線(貫穿教材始終)
二 珠:代數、幾何珠聯璧合(注重知識交匯)
三 基:方法(熟) 知識(牢) 技能(巧)
四能力:概念運算(准確)、邏輯推理(嚴謹)、
空間想像(豐富)、分解問題(靈活)
五 法:換元法、配方法、待定系數法、分析法、歸納法.
六策略:以簡馭繁,正難則反,以退為進,化異為同,移花接木,以靜思動.
七思想:函數方程最重要,分類整合常用到,
數形結合千般好,化歸轉化離不了;
有限自將無限描,或然終被必然表,
特殊一般多辨證,知識交匯步步高.
二.數學知識方法分論:
集合與邏輯
集合邏輯互表裡,子交並補歸全集.
對錯難知開語句,是非分明即命題;
縱橫交錯原否逆,充分必要四關系.
真非假時假非真,或真且假運算奇.
函數與數列
數列函數子母胎,等差等比自成排.
數列求和幾多法?通項遞推思路開;
變數分離無好壞,函數復合有內外.
同增異減定單調,區間挖隱最值來.
三角函數
三角定義比值生,弧度互化實數融;
同角三類善誘導,和差倍半巧變通.
解前若能三平衡,解後便有一脈承;
角值計算大化小,弦切相逢異化同.
方程與不等式
函數方程不等根,常使參數范圍生;
一正二定三相等,均值定理最值成.
參數不定比大小,兩式不同三法證;
等與不等無絕對,變數分離方有恆.
解析幾何
聯立方程解交點,設而不求巧判別;
韋達定理表弦長,斜率轉化過中點.
選參建模求軌跡,曲線對稱找距離;
動點相關歸定義,動中求靜助解析.
立體幾何
多點共線兩面交,多線共面一法巧;
空間三垂優弦大,球面兩點劣弧小.
線線關系線面找,面面成角線線表;
等積轉化連射影,能割善補架通橋.
排列與組合
分步則乘分類加,欲鄰需捆欲隔插;
有序則排無序組,正難則反排除它.
元素重復連乘法,特元特位你先拿;
平均分組階乘除,多元少位我當家.
二項式定理
二項乘方知多少,萬里源頭通項找;
展開三定項指系,組合系數楊輝角.
整除證明底變妙,二項求和特值巧;
兩端對稱誰最大?主峰一覽眾山小.
概率與統計
概率統計同根生,隨機發生等可能;
互斥事件一枝秀,相互獨立同時爭.
樣本總體抽樣審,獨立重復二項分;
隨機變數分布列,期望方差論偽真.