導航:首頁 > 數字科學 > 數學的定義符號有哪些

數學的定義符號有哪些

發布時間:2022-08-08 01:06:54

『壹』 數學符號大全

數學符號有:≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ≱ ‖ ∠ ≲ ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ≰∥α β γ δ ε δ ε ζ Γ。

『貳』 數學所有符號解釋大全

(1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏。

(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。

(3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。

(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」

(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」

(6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等。

符號 意義
∞ 無窮大
PI 圓周率
|x| 函數的絕對值
∪ 集合並
∩ 集合交
≥ 大於等於
≤ 小於等於
≡ 恆等於或同餘
ln(x) 以e為底的對數
lg(x) 以10為底的對數
floor(x) 上取整函數
ceil(x) 下取整函數
x mod y 求余數
小數部分 x - floor(x)
∫f(x)δx 不定積分
∫[a:b]f(x)δx a到b的定積分

P為真等於1否則等於0
∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求極限
f(z) f關於z的m階導函數
C(n:m) 組合數,n中取m
P(n:m) 排列數
m|n m整除n
m⊥n m與n互質
a ∈ A a屬於集合A
#A 集合A中的元素個數

『叄』 數學集合中的所有符號及其意義是什麼

集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素.,集合可以用符號來表示,集合中的符號和意義如下:

∪ 並

∩ 交

⊂ A⊂B, A屬於B

⊃ A⊃B, A包括B

∈ a∈A,a是A的元素

⊆ A⊆B,A不大於B

⊇ A⊇B,A不小於B

Φ 空集

R 實數

N 自然數

Z 整數

Z+正整數

Z- 負整數

(3)數學的定義符號有哪些擴展閱讀:

集合有關概念 :

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

(1)元素的確定性;

(2)元素的互異性;

(3)元素的無序性

相關知識:

1、對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

2、任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

3、集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

集合的分類:

1、有限集 含有有限個元素的集合

2、無限集 含有無限個元素的集合

3、空集 不含任何元素的集合 例:{x|x2=-5}

集合的表示方法:

1、列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

2、描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

『肆』 數學符號都有那些都是什麼意思

整理了一些重要的數學符號。

有理數集Q
Q表示的意義是:有理數集。
但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
整數集合Z
整數的全體構成整數集,整數集是一個數環。在整數系中,零和正整數統稱為自然數。-1、-2、-3、…、-n、…(n為非零自然數)為負整數。則正整數、零與負整數構成整數系。整數不包括小數,分數。
實數集R
實數集,包含所有有理數和無理數的集合,通常用大寫字母R表示。
18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。

『伍』 數學符號都表示什麼怎麼讀

運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

關系符號:如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號。

「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。

「→」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號。

「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。

結合符號:如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」,比如。

性質符號:如正號「+」,負號「-」,正負號「」(以及與之對應使用的負正號「」)。

省略符號:如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵因為∴所以。

總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數(n元素的總個數;r參與選擇的元素個數),冪等。

排列組合符號:C組合數、A(或P)排列數、n元素的總個數、r參與選擇的元素個數、!階乘,如5!=5×4×3×2×1=120,規定0!=1、!!半階乘(又稱雙階乘)。

例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。

離散數學符號:∀全稱量、∃存在量詞、├斷定符(公式在L中可證)、╞滿足符(公式在E上有效,公式在E上可滿足)、﹁命題的「非」運算。

如命題的否定為﹁p、∧命題的「合取」(「與」)運算、∨命題的「析取」(「或」,「可兼或」)運算、→命題的「條件」運算。

↔命題的「雙條件」運算的、p<=>q命題p與q的等價關系、p=>q命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)、A*公式A的對偶公式,或表示A的數論倒數(此時亦可寫為)。

wff合式公式:iff當且僅當、↑命題的「與非」運算(「與非門」)、↓命題的「或非」運算(「或非門」)、□模態詞「必然」、◇模態詞「可能」、∅空集、∈屬於(如"A∈B",即「A屬於B」)、∉不屬於、P(A)集合A的冪集。

|A|集合A的點數、R²=R○R[R、=R、○R]關系R的「復合」、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,還有相應的⊄,⊈,⊉等。

∪集合的並運算:U(P)表示P的領域、∩集合的交運算、-或集合的差運算、⊕集合的對稱差運算、〡限制、集合關於關系R的等價類。

A/R集合A上關於R的商集、[a]元素a產生的循環群、I環,理想、Z/(n)模n的同餘類集合、r(R)關系R的自反閉包。

s(R)關系R的對稱閉包、CP命題演繹的定理(CP規則)、EG存在推廣規則(存在量詞引入規則)、ES存在量詞特指規則(存在量詞消去規則)、UG全稱推廣規則(全稱量詞引入規則)、US全稱特指規則(全稱量詞消去規則)。

(5)數學的定義符號有哪些擴展閱讀:

更多數學表達符號:

∞無窮大、π圓周率、|x|絕對值、∪並集、∩交集、≥大於等於、≤小於等於、≡恆等於或同餘、ln(x)以e為底的對數、lg(x)以10為底的對數、floor(x)上取整函數、ceil(x)下取整函數。

xmody求余數、x-floor(x)小數部分、∫f(x)dx不定積分、∫[a:b]f(x)dxa到b的定積分、f(x)函數f在自變數x處的值、sin(x)在自變數x處的正弦函數值、exp(x)在自變數x處的指數函數值,常被寫作ex、logba以b為底a的對數。

cosx在自變數x處餘弦函數的值、tanx其值等於sinx/cosx、cotx餘切函數的值或cosx/sinx、secx正割含數的值,其值等於1/cosx、cscx餘割函數的值,其值等於1/sinx、asinxy正弦函數反函數在x處的值,即x=siny。

acosxy餘弦函數反函數在x處的值,即x=cosy、atanxy正切函數反函數在x處的值,即x=tany、acotxy餘切函數反函數在x處的值,即x=coty、asecxy正割函數反函數在x處的值,即x=secy、acscxy餘割函數反函數在x處的值,即x=cscy。

『陸』 數學有哪些符號數學中有哪些符號

1.基本符號:+ - × ÷(/)
2.分數號:/
3.正負號:±
4.相似全等:∽ ≌
5.因為所以:∵ ∴
6.判斷類:= ≠ < ≮(不小於) > ≯(不大於)
7.集合類:∈(屬於) ∪(並集) ∩(交集)
8.求和符號:∑
9.n次方符號:¹(一次方) ²(平方) ³(立方) ⁴(4次方) ⁿ(n次方)
10.下角標:₁ ₂ ₃ ₄
(如:A₁B₂C₃D₄ 效果如何?)
11.或與非的"非":¬
12.導數符號(備注符號):′ 〃
13.度:° ℃
14.任意:∀
15.推出號:⇒
16.等價號:⇔
17.包含被包含:⊆ ⊇ ⊂ ⊃
18.導數:∫ ∬
19.箭頭類:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←
20.絕對值:|
21.弧:⌒
22.圓:⊙ 11.或與非的"非":¬
12.導數符號(備注符號):′ 〃
13.度:° ℃
14.任意:∀
15.推出號:⇒
16.等價號:⇔
17.包含被包含:⊆ ⊇ ⊂ ⊃
18.導數:∫ ∬
19.箭頭類:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←
20.絕對值:|
21.弧:⌒
22.圓:⊙

『柒』 高中常用的數學符號有哪些

數學符號 如加號(+),減號(-),乘號(×或?),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫),曲線積分(∬)等。 關系符號 如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≣」是大於或等於符號(也可寫作「≤」),「≢」是小於或等於符號(也可寫作「≥」),。「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∠」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「?」是「包含」符號等。 結合符號 如小括弧「()」中括弧「[]」,大括弧「{}」橫線「—」 性質符號 如正號「+」,負號「-」,絕對值符號「| |」正負號「±」 省略符號 如三角形(△),直角三角形(Rt△),正弦(sin),餘弦(cos),x的函數(f(x)),極限(lim),角(∟), ∮因為,(一個腳站著的,站不住) ∭所以,(兩個腳站著的,能站住) 總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(C(r)(n) ),冪(A,Ac,Aq,x^n)等。 排列組合符號 C-組合數 A-排列數 N-元素的總個數 R-參與選擇的元素個數 n!-階乘 ,如5!=5×4×3×2×1=120 C-Combination- 組合 A-Arrangement-排列 φ 空集 ∈ 屬於(不屬於) |A| 集合A的點數  包含 (或下面加 ≠) 真包含 ∪ 集合的並運算 ∩ 集合的交運算 a ∈ A a屬於集合A [a] 元素a 產生的循環群 I (i大寫) 環,理想 Z/(n) 模n的同餘類集合 r(R) 關系 R的自反閉包 s(R) 關系 的對稱閉包

f:X→Y f是X到Y的函數 GCD(x,y) x,y最大公約數 LCM(x,y) x,y最小公倍數 C 復數集 N
自然數集: N* 正自然數集 P 素數集 Q 有理數集 R 實數集 Z 整數集 數學符號的意義 符號(Symbol) 意義(Meaning) = 等於 is equal to ≠ 不等於 is not equal to < 小於 is less than > 大於 is greater than || 平行 is parallel to ≣ 大於等於 is greater than or equal to ≢ 小於等於 is less than or equal to ≡ 恆等於或同餘 π 圓周率 |x| 絕對值 absolute value of X ∽ 相似 is similar to ≌ 全等 is equal to(especially for triangle ) >> 遠遠大於號 << 遠遠小於號 ∞ 無窮大 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 x - floor(x) 小數部分 ∫f(x)dx 不定積分 ∫[a:b]f(x)dx a到b的定積分

『捌』 數學符號有哪些呢

內容如下:

1、幾何學符號:⊥∥∠⌒⊙≡(恆等於或同餘)≌△(三角形)∽(相似)。

2、代數符號:∝∧∨~∫∮≠≤(小於等於)≥(大於等於)≈∞(無窮大)。

3、集合符號:∪(集合並)∩(集合交)∈。

4、特殊符號:∑π(圓周率)。

5、推理符號:↑→←↓↖↗↘↙。

符號的作用

一個符號不僅是普遍的,而且是極其多變。可以用不同的語言表達同樣的意思,也可以在同一種語言內,用不同的詞表達某種思想和觀念。「真正的人類符號並不體現在它的一律性上,而是體現在它的多面性上,而是靈活多變的」。卡西爾認為,正是符號的這三大特性使符號超越於信號。

人的「符號」不是「事實性的」而是「理想性的」,人類意義世界的一部分。信號是「操作者」,而符號是「指稱者」,信號有著某種物理或實體性的存在,而符號是觀念性的,意義性的存在,具有功能性的價值。

『玖』 數學符號都有哪些

數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現在常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。

1.運算符號:

如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

2.關系符號:

如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」),x,y等任何字母都可以代表未知數。

3.結合符號:

如小括弧「()」,中括弧「[ ]」,大括弧「{ }」,橫線「—」

4.性質符號:

如正號「+」,負號「-」,正負號「

5.省略符號:

∵因為

∴所以

6.排列組合符號:

C組合數

A (或P)排列數

n元素的總個數

r參與選擇的元素個數

!階乘,如5!=5×4×3×2×1=120,規定0!=1

7.離散數學符號

∀全稱量詞

∃存在量詞

其他:

在Microsoft Word中可以插入一般應用條件下的所有數學符號,以Word2010軟體為例介紹操作方法:第1步,打開Word2010文檔窗口,單擊需要添加數學符號的公式,並將插入條游標定位到目標位置。第2步,在「公式工具/設計」功能區的「符號」分組中,單擊「其他」按鈕打開符號面板。默認顯示的「基礎數學」符號面板。用戶可以在「基礎數學」符號面板中找到最常用的數學符號。同樣地,Alt+41420(即壓下Alt不放,依次按41420(小鍵盤),最後放開Alt 就可以打出 √。

『拾』 數學學習中有哪些必須掌握的數學符號

幾何符號:⊥,∥,∠,⌒,⊙,≡,≌,△代數符號∝,∧,∨,~,∫,≠,≤,≥,≈,∞,∶運算符號如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫),曲線積分(∮)等。數量符。如:i,2+i,a,x,自然對數底e,圓周率π。關系符號如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」),「≤」是小於或等於符號(也可寫作「≯」),。「→,」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「⊆,⊂,⊇,⊃」是「包含」符號等。I,(i大寫),環,理想Z/(n),模n的同餘類集合r(R),關系,R的自反閉包s(R),關系,的對稱閉包CP,命題演繹的定理(CP,規則)EG,存在推廣規則(存在量詞引入規則)ES,存在量詞特指規則(存在量詞消去規則UG,全稱推廣規則(全稱量詞引入規則)US,全稱特指規則(全稱量詞消去規則)R,關系r,相容關系R○S,關系,與關系,的復合domf,函數,的定義域(前域)ranf,函數,的值域f:X→Y,f是X到Y的函數。

閱讀全文

與數學的定義符號有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:996
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1343
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069