❶ 數學集合中的R*和R+有什麼區別
全體實數和全體正實數
❷ 數學的R是什麼意思
R代表集合實數集。
實數集是包含所有有理數和無理數的集合,通常用大寫字母R表示。
實數集的公理是:設A、B是兩個包含於R的集合,且對任何x屬於A,y屬於B,都有x<y,那麼必存在c屬於R,使得對任何x屬於A,y屬於B,都有x<c<y。
(2)在數學集合中r包括哪些數字擴展閱讀:
R的常用子集:
1、Q
有理數集,即由所有有理數所構成的集合,用黑體字母Q表示。有理數集是實數集的子集。
2、N+
正整數集就是即所有正數且是整數的數的集合,是在自然數集中排除0的集合,一直到無窮大。正整數集通常用符號N+、N*、N1、N>0表示。
3、Z
由全體整數組成的集合叫整數集。它包括全體正整數、全體負整數和零。數學中整數集通常用Z來表示。
❸ 在數學中,N、Z、Q、R 分別代表什麼呢
N全體非負整數(或自然數)組成的集合;R是實數集;Z是整數集;Q是有理數集;Z*是正整數集;N*是正整數集。
集合及運算的概念
集合:一般的,一定范圍內某些確定的,不同的對象的全體構成一個集合。
子集:對於兩個集合A和B,如果集合A中的任意一個元素都是集合B中的元素,我們就說這兩個集合有包含關系,稱集合A是集合B的子集,記作A⊆B讀作A包含於B。
空集:不含任何元素的集合叫做空集。記為Φ。
集合的三要素:確定性、互異性、無序性。
集合的表示方法:列舉法、描述法、視圖法、區間法。
集合的分類:(按集合中元素個數多少分為:)有限集、無限集、空集。
(3)在數學集合中r包括哪些數字擴展閱讀:
集合的運算性質
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,則A=B,A⊇B,B⊇C,則A⊇C。
常用結論
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
❹ R在集合中代表什麼
R在集合中代表實數集。
實數集通俗地認為,通常包含所有有理數和無理數的集合就是實數集,通常用大寫字母R表示。18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。
同時集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。
(4)在數學集合中r包括哪些數字擴展閱讀
R集合的加法定理:
1、對於任意屬於集合R的元素a、b,可以定義它們的加法a+b,且a+b屬於R;
2、加法有恆元0,且a+0=0+a=a(從而存在相反數);
3、加法有交換律,a+b=b+a;
4、加法有結合律,(a+b)+c=a+(b+c)。
R集合的乘法定理:
1、對於任意屬於集合R的元素a、b,可以定義它們的乘法a·b,且a·b屬於R;
2、乘法有恆元1,且a·1=1·a=a(從而除0外存在倒數);
3、乘法有交換律,a·b=b·a;
4、乘法有結合律,(a·b)·c=a·(b·c);
5、乘法對加法有分配率,即a·(b+c)=(b+c)·a=a·b+a·c。
❺ r在數學中代表什麼數
R代表集合實數集。
實數集是包含所有有理數和無理數的集合,通常用大寫字母R表示。
R的常用子集:
1、Q。
有理數集,即由所有有理數所構成的`集合,用黑體字母Q表示。有理數集是實數集的子集。
2、N+。
正整數集就是即所有正數且是整數的數的集合,是在自然數集中排除0的集合,一直到無窮大。正整數集通常用符號N+、N*、N1、N>0表示。
3、Z。
由全體整數組成的集合叫整數集。它包括全體正整數、全體負整數和零。數學中整數集通常用Z來表示。
實數集簡介
通俗地認為,通常包含所有有理數和無理數的集合就是實數集,通常用大寫字母R表示。
18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。
❻ 數學上的R代表什麼數
代表圓的半徑,圓或圓的半徑是從其中心到其周邊的任何線段,並且在更現代的使用中,它也是其中任何一個的長度。 這個名字來自拉丁半徑,意思是射線,也是一個戰車的輪輻。
半徑的復數可以是半徑(拉丁文復數)或常規英文復數半徑。半徑的典型縮寫和數學變數名稱為r。 通過延伸,直徑d定義為半徑的兩倍:d=2r。
具有周長(圓周)C的圓的半徑為:
(6)在數學集合中r包括哪些數字擴展閱讀
如果物體沒有中心,則該術語可能指其周長,其外接圓的半徑或外接球體。 在任一情況下,半徑可以大於直徑的一半,通常將其定義為圖中任何兩個點之間的最大距離。 幾何圖形的半徑通常是其中包含的最大圓或球的半徑。 環,管或其他中空物體的內半徑是其空腔的半徑 。
對於常規多邊形,半徑與其周長相同。正多邊形的內半徑也稱為心距。在圖論中,圖的半徑是從u到圖的任何其他頂點的最大距離的所有頂點u的最小值。
❼ 數學里的特定集合N,N*,Q,R代表的數集范圍是什麼
分別為自然數,正整數,有理數,實數
❽ 數學集合中,N,N*,Z,Q,R,C分別是什麼意思
1、全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N
2、非負整數集內排除0的集,也稱正整數集,記作N+(或N*)
3、全體整數的集合通常稱作整數集,記作Z
4、全體有理數的集合通常簡稱有理數集,記作Q
5、全體實數的集合通常簡稱實數集,記作R
6、復數集合計作C
(8)在數學集合中r包括哪些數字擴展閱讀
一、集合的運算:
1、集合交換律:
A∩B=B∩A
A∪B=B∪A
2、集合結合律:
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3、集合分配律:
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
二、集合的表示方法:常用的有列舉法和描述法。
1、列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……}
2、描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π}
3、圖式法(Venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。
❾ R+在數學中是什麼意思
R+在數學中表示正實數的意思。即1、2、3……
常見的集合字母有:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Z:整數集合{…,-1,0,1,…}
Q:有理數集合
Q+:正有理數集合
Q-:負有理數集合
R:實數集合(包括有理數和無理數)
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
集合常見符號
1、∈
讀作「屬於」。若a∈A,則a屬於集合A,a是集合A中的元素。
2、⊆
對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含於集合B,或集合B包含集合A,也說集合A是集合B的子集。
3、∁
若給定全集U,有A⊆U,則A在U中的相對補集稱為A的絕對補集(或簡稱補集),即由U中所有不屬於A的元素組成的集合,寫作∁UA。
4、∩
由所有屬於集合A且屬於集合B的元素組成的集合,叫做A,B的交集。A 和 B 的交集寫作 "A ∩B"。表示:A 交 B
5、∪
由所有屬於A或屬於B的元素所組成的集合,叫做A,B的並集。讀作:A並B。