A. 六年級上冊數學重點知識點有哪些
六年級上冊數學重點知識點如下:
1、分數乘法的計演算法則
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
2、分數的倒數
找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。
3、分數乘小數
分數乘小數,可以把分數化成小數再乘,也可以把小數化成分數再乘,但一般採用把小數化成分數再乘,因為有些分數化不成有限小數。
4、分數乘分數
分數乘分數的計算方法:分數乘分數,用分子乘分子的積作分子,用分母乘分母的積作分母。
5、分數混合運算
分數混合運算的順序和整數混合運算的順序相同,即:有括弧的,先算括弧裡面的,再算括弧外面的。沒有括弧的,先算乘法,再算加減法。如果只有加減法的,按從左往右的順序計算。
6、整數的倒數
找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。
7、圓的面積公式:
圓所佔平面的大小叫做圓的面積。πr^2;用字母S表示。一條弧所對的圓周角是圓心角的二分之一。在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
8、周長計算公式
(1)已知直徑:C=πd。
(2)已知半徑:C=2πr。
(3)已知周長:D=c/π。
(4)圓周長的一半:1/2周長(曲線)。
(5)半圓的周長:1/2周長+直徑(π÷2+1)。
B. 小學都有哪些數學知識點。(北師大版 六年級上冊)要詳細的!
北師大版六年級上冊數學的知識點教學目標(供參考)
目
標
內容
知識技能
數學素養
數與代數
數的運算
能計算實際問題中「增加百分之幾」或「減少百分之幾」。
體會百分數與現實生活的密切聯系,提高運用數學解決實際問題的能力;通過觀察、分析、歸納、類比與猜測、驗證,發展初步的合情推理,體驗數學問題的探索性和挑戰性。
能解決「比一個數增加百分之幾的數」或「比一個數減少百分之幾的數」。
能用方程解決有關百分數的逆解題。
解決與儲蓄有關的實際問題。
比的認識
理解比的意義及其與除法、分數的關系,會求比值。
運用商不變的性質或分數的基本性質化簡比。
能運用比的意義解決按照一定的比進行分配的實際問題。
空間與圖形
圖形的認識
認識圓、體會圓的特徵及圓心和半徑的作用,會用圓規畫圓。
通過觀察、操作、想像等活動,發展空間觀念。通過動手拼擺等活動,體會「化曲為直」的數學思想;結合欣賞和設計,發展想像力和創造力;提高學生靈活運用各種策略解決問題的能力。
用圓的知識解釋生活中的簡單現象。
掌握圓的周長和面積的計算方法。
利用圓規設計簡單的圖案。
運用圓的周長和面積的知識解決實際問題(包括復雜的組合圖形周長和面積的計算)。
圖形與變換
能有條理的表達一個簡單圖形經過平移、旋轉或軸對稱製作復雜圖形的過程。
通過欣賞和設計圖案,使學生感受圖形世界的神奇,發展學生的空間觀念。
能靈活運用平移、旋轉和軸對稱在方格紙上設計圖案
圖形與位置
能正確辨認從不同方向(正面、側面、上面)觀察到的立體圖形(5個小正方體)的形狀,並畫出草圖。
通過觀察物體,發現規律,不斷發展學生的空間觀念。
能根據觀察到的正面、側面、上面的平面圖形還原立體圖形。
能根據給定的兩個方向觀察到的平面圖形的形狀確定搭成的立體圖形所需小立方體的數量范圍。
利用觀察范圍隨觀察點、觀察角度的變化而改變的規律解釋生活中的一些現象。
統計與概率
數據統計
認識復式條形統計圖和復式折線統計圖,了解他們的特點。
經歷收集、整理和分析數據的過程,逐步形成統計觀念。
能根據需要選擇復式條形統計圖和復式折線統計圖有效地表示數據。
能讀懂簡單的復式統計圖,根據統計結果做出簡單的判斷和預測。
綜合實踐
數學與體育
用列表、畫圖的方式尋找解決問題的規律。
體會數學知識在體育、生活中的應用,發展數學應用意識,體會圖表的關系,學會分析量與量之間的關系,提高觀察分析能力,增強應用意識。
運用圓的有關知識計算所走彎道距離。
利用數學知識解決營養配餐問題。
生活中的數
了解收集數據的常用方法。
通過對現實生活中的數據的處理,發展數感與處理數據的能力;體會數在表達、交流和傳遞信息中的作用。
體會大數估計的策略和方法,進行簡單的估算。
了解數字的用途,知道一個「編號」中某些數字所代表的意義。
進一步體會負數的意義。
會畫折線統計圖描述事物的變化情況。
看圖找關系
從圖中分析出某些量之間的關系,並用語言表達。
發展有條理思考和表達的能力。
體會圖刻畫事物或數之間的關系,能分析一些簡單的關系。
第一單元:圓
圓的認識(一)
1.圓中心的一點叫圓心,用O表示.一端在圓心,另一端在圓上的線段叫半徑,用r表示.兩端都在圓上,並過圓心的線段叫直徑,用d表示.
2.圓有無數條半徑,有無數條直徑.
3.圓心決定圓的位置,半徑決定圓的大小.
圓的認識(二)
4.把圓對折,再對折就能找到圓心.
5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸.圓有無數條對稱軸.
6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.
圓的周長
7.圓一周的長度就是圓的周長.
8.圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時通常取3.14.
9.C=πd或C=πr.
10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4
圓的面積
11.用S表示圓的面積, r表示圓的半徑,那麼S=πr^2 S環=π(R^2-r^2)
12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400
13.周長相等時,圓的面積最大.面積相等時,圓的周長最小.
第二單元:百分數的應用
百分數的應用(四)
14.利息=本金乘利率乘時間
第四單元:比的認識
15.兩個數相除,又叫做這兩個數的比.比的後項不能為0.16.比的前項和後項同時乘上或除以一個相同的數(0除外).比值不變,這叫做比的基本性質.
C. 小學六年級上冊數學必考知識點有哪些
小學六年級上冊數學必考知識點如下:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
2、分數乘整數的運演算法則是:分子與整數相乘,分母不變。
3、在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。
4、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。
5、假分數的倒數小於或等於1。
D. 六年級上冊數學必考知識點有哪些
六年級上冊數學必考知識點有:
1、分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。
2、比例的性質:在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。
3、直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
4、圓的面積公式:圓所佔平面的大小叫做圓的面積。πr^2,用字母S表示。
5、百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。
E. 六年級上冊數學重點知識點有哪些
六年級數學上冊必考知識點:
1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。
3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。
4、分數乘整數:數形結合、轉化化歸。
5、倒數:乘積是1的兩個數叫做互為倒數。
F. 小學數學六年級上冊知識點總結
《小學蘇教數學一二三四五六上冊知識點歸納》網路網盤資源免費下載
鏈接:https://pan..com/s/1C0FyvStiI3Q1lrSHYNkUsw
小學蘇教數學一二三四五六上冊知識點歸納|一年級上冊數學期末復習知識點歸納(17頁).doc|五年級上冊數學數學期末復習知識點歸納(7頁).doc|五年級上冊數學期末復習知識點歸納(23頁)(教師版).docx|五年級上冊數學期末復習知識點歸納(21頁)(學生版).docx|四年級上冊數學期末復習知識點歸納(20頁)(教師版).docx|四年級上冊數學期末復習知識點歸納(18頁)(學生版).docx|三年級上冊數學數學期末復習知識點歸納(3頁).doc|三年級上冊數學期末復習知識點歸納(22頁)(教師版).docx|三年級上冊數學期末復習知識點歸納(20頁)(學生版).docx|六年級上冊數學期末復習知識點歸納(17頁)(教師版).doc|六年級上冊數學期末復習期末知識點歸納(4頁).doc|六年級上冊期末復習期末知識點歸納(16頁)(學生版).doc|二年級上冊數學期末復習知識點歸納(3頁).docx
G. 六年級數學必考上冊知識點有哪些
六年級數學必考上冊知識點如下:
1、分數乘法:分數的分子與分子相乘,分母與分母相乘,可約分的先約分。
2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變,分數乘分數,用分子相乘的積作分子,分母相乘的積作分母,但分子分母不能為零。
3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,求幾個相同加數的和的簡便運算。
4、分數乘整數:數形結合、轉化化歸。
5、比的基本性質:比的前項和後項都乘以或除以一個不為零的數。
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。
因此,我們可以學習群、環、域和其他的抽象系統。把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。