導航:首頁 > 數字科學 > 小學數學教學中如何利用聯想來建模

小學數學教學中如何利用聯想來建模

發布時間:2022-08-11 19:45:55

① 怎樣引導學生建立數學模型解決實際問題

經過多年的課堂教學實踐,讓我深深體會到數學教育的根本仼務,在於教會學生如何學習、如何應用知識解決實際問題,作為數學教師,應該教育自己的學生學會把實際問題轉化為數學問題加以解決,即建立數學模型。也許很多教師都會問:「為什麼自己的學生這么笨,解決實際問題的能力這么差」,其實這些問題跟我們平時的教學有很大的關系,正因為我們沒有對學生進行建立數學模型的系統訓練,沒有培養學生的建模意識,因此,學生解決問題的能力得不到提高,影響了學生的學習成績。所以,本人認為,我們數學教學中的一個重點是培養學生的建模意識,訓練學生的建模能力。把實際問題轉化為數學問題是絕大多數初中學生的難題,只有在教學中有意識的培養學生的建模思想,才能幫助學生克服這一難題,釋放出學習和解決實際問題的強大動力。那如何構造數學模型呢?
一、對數學建模的認知
在課堂教學中,要想培養學生運用數學模型去解決實際應用問題的意識,成功建立起數學模型,就必須讓學生首先認知數學模型。數學模型是用數學語言模擬現實的一種模型,也就是把一個實際問題中某些事物的主要特徵,主要關系抽象成數學語言,近似地反映客觀事物的內在聯系與變化過程。一切數學概念、各種數學公式、方程式、各種函數關系式等都叫做數學模型。

建立數學模型的方法是把實際問題構造成相應的數學模型,通過對數學模型的研究,從而解決問題的一種數學方法,通常分以下三個步驟。
第一,把實際問題的特點進行數學抽象,構造適當的數學模型。
二、數學模型的常見類型
在課堂教學中,我把初中階段常見的數學模型分為四類:①三角函數、函數模型;②方程、不等式模型;③幾何模型;④統計模型。下面以課堂教學中的案例進行分類說明。
三、明確學生數學建模障礙,尋找解決方法
第一,初中數學實際應用問題中,常常有許多其他知識領域的名詞術語,由於學生與外界接觸較少,對這些名詞術語感到陌生,不知其意,從而就無法讀懂題,無法正確理解題意,更談不上解決問題。比如對實際生活中的方向角、坡角、採光度、利率、利息、利潤、打折等概念不理解,影響了學生構建數學模型。針對學生此方面的障礙,我通過讓學生運用網路平台及教師講解的兩種方式,將這些名詞的意思完全弄明白後,教師再分析講解,從而順利建立數學模型來解決實際問題。
第二,數學建模方法是利用數學知識和數學方法解決實際問題的一種腦力勞動,許多學生,特別是農村中學生不具備良好的心裡品質,所以缺乏對解決實際問題的信心。針對此建模障礙,數學教學中要重視數學應用意識的培養,注重學生各種數學能力的訓練,如數學語言、閱讀理解等。具體講,應做好以下幾個方面的教學。
1.讓學生體驗數學,品嘗成功的喜悅,著力培養學生的自信心
在平時的教學中,應加強實際問題的教學,使學生從生活中發現數學、創造數學、運用數學,並在此過程中獲得足夠的自信。例如,教學儲蓄存款利息計算方法時,可以組織學生到銀行去實地調查,並向學生提出問題:如何選擇儲蓄存款的期限定利率,假設向銀行存款5000元,試計算3年後可得的利息金額,存款方式分別為:①1年定期,每年到期後本息轉存;②先存2年定期,到期後本息轉存;③3年定期,整存整取。以上幾種存款方式,哪種所得的利息最多?請用所學的數學知識討論所得結論。這次調查使學生突破了對存款利率、利息計算的心理恐懼,並根據調查數據計算出了存款得息最多的方式,且多數學生能用數學原理去解釋和說明。從上面的例子可以看出,在教學中要注意聯系身邊的事物,為學生創造體驗數學的機會,就能增強學生數學建模的信心。
2.培養學生閱讀理解能力
通過閱讀有助於學生探究能力和自學能力的培養,受自身閱讀分析能力、數學基礎知識掌握程度以及數學語言轉換能力的影響,許多學生無法把實際問題與對應的數學模型聯系起來。例如,馬航MH370失聯後,我國政府積極參與搜救,某日,我國兩艘專業救助船A、B同時收到有關可疑漂浮物的訊息,可疑漂浮物P在救助船A的北偏東53.5°方向上,在救助船B的西北方向上,船B在船A正東方向140海里處:①求可疑漂浮物P到A、B兩船所在直線的距離;②若救助船A、若救助船B分別以40海里/時,30海里/時的速度同時出發,勻速直線前往搜救,試通過計算判斷哪艘船先到達P處。根據課堂調查,學生閱讀了以上題目後,問其想到了什麼數學知識,建立怎樣的數學模型來解決問題,許多學生答不出來。我認為原因在於學生存在把主要語言換成數學語言的轉換障礙,從而無法將實際問題建立起數學模型,因此,數學教學必須重視數學閱讀,作為數學教師,不僅要重視培養學生的閱讀能力,還要交給學生科學有效的閱讀方法,使學生認識到數學閱讀的重要性。
總之,培養學生解決實際問題的能力,就是培養學生的建模能力,對提高學生學習興趣,培養創新意識具有重要的作用。我們平時在教學中要加以重視,並給予學生正確的引導。

② 數學建模思想在小學數學教學中的應用

數學建模思想應用在小學數學教學中,就是讓學習知其然,更要知其所以然,諸如公式定理等都要指導學生探究其來歷,不要直接告訴學生結論,如圓周率,讓學生親自測量得出結論。

③ 如何在小學數學教學中滲透模型思想

數學在本質上就是在不斷的抽象、概括、模式化的過程中發展和豐富起來的。數學學習只有深入到「模型」「建模」的意義上,才是一種真正的數學學習。這種「深入」,就小學數學教學而言,具有鮮明的階段性、初始性特點,它更多地是指用數學建模的思想和精神來指導著數學教學,「從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型並進行解釋與運用的過程,進而使學生獲得對數學的理解的同時,在思維能力、情感態度與價值觀等多方面得到進步和發展。」在此基礎上,初步形成模型思想,提高學習數學的興趣和應用意識。

【教學片段】
出示情境圖。
師:誰來說一說第一幅圖,你看到了什麼?
生:從圖中我看到了有5個小朋友在澆花。
師:第二幅圖呢?
生:第二幅圖中有2個小朋友去提水了,剩下3個小朋友。
師:你能把兩幅圖的意思連起來說嗎?
生:有5個小朋友在澆花,走了2個,還剩下3個。
師:同學們觀察得很仔細,也說得很好。你們能根據這兩幅圖的意思提一個數學問題嗎?
生:有5個小朋友在澆花,走了2個,還剩幾個?
生(齊):3個。
師:對,大家能不能用圓片代替小朋友,將這一過程擺一擺呢?
(教師在行間指導學生擺圓片,並請一生將圓片擺在情境圖的下面。)
師:(結合情境圖和圓片說明)5個小朋友在澆花,走了2個,還剩3個;從5個圓片中拿走2個,還剩3個,都可以用同一個算式(學生齊接話:5-2=3)來表示。(在圓片下板書:5-2=3)
生齊讀:5減2等於3。
師:誰來說一說這里的5表示什麼?2、3又表示什麼呢?
……
師:同學們說得真好!在生活中存在著許許多多這樣的數學問題,5-2=3還可以表示什麼呢?請同桌互相說一說。
生1:有5瓶牛奶,喝掉2瓶,還剩3瓶。
生2:樹上有5隻小鳥,飛走2隻,還剩3隻。
……
除了教學充分展開外,更主要的是滲透了初步的數學建模思想,訓練的是學生抽象、概括、舉一反三的學習能力。且這種訓練並不是簡單、生硬地進行,而是和低年級學生數學學習的特點相貼切——由具體、形象的實例開始,藉助於操作予以內化和強化,最後通過思維發散和聯想加以擴展和推廣,賦予「5-2=3」以更多的「模型」意義。
再比如,在小學階段,學生認識小數時主要是將它和分數之間進行意義上的關聯,即:一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……。按照螺旋上升的教材編排原則,上述內容大多分解在三、四年級分兩次學完,三年級先認識一位小數。如何在三年級初步認識一位小數時就體現出「建模」的思想呢,我進行了如下教學:
課始,教師出示到超市購買的一些物品和相應的價錢:水彩筆12元、美工刀3元5角、鉛筆0.4元。當「0.4元」出現後,教師提問:
師:知道「0.4元」到底是多少錢嗎?
生:0.4元就是4角錢。
(板書4角=0.4元)
師:4角錢有沒有1元多?
生:沒有。
師:看來,和1元相比,0.4元只能算是一個「零頭」了。如果我們用這樣的一個長方形來表示1元(出示圖1),你能把它分一分、塗一塗,將0.4元表示出來嗎?
圖1 圖2
(學生拿出練習紙畫畫塗塗,把自己的想法表示出來。交流時,尋找共性特點:平均分成10份,塗出其中的4份)
師:為什麼這樣就將「0.4元」表示出來了呢?
生:因為1元等於10角,平均分成10份,1份就是1角,4份就是4角。
師:看著大家畫出的圖示,讓我想起以前咱們學什麼時,也是這樣子平均分一分、塗一塗?
生:分數!
師:那0.4元如果用分數表示,如何表示呢?
生:十分之四元。
師:數學真是有趣,原來0.4元也就是我們熟悉的十分之四元。
(出示圖2)
師:老師購買了一塊橡皮,它的價錢是多少呢?(出示:0.8元)0.8元是多少錢?
生:0.8元就是8角
師:又是一個不足1元的零頭,如果我們還是用這樣的一個長方形來表示1元,那0.8元又該怎麼表示呢?
學生模仿者剛才的方式表示出「0.8元也就是十分之八元」(見右圖)。接著,老師給學生提供一個空白的平均分成10份的長方形,任意塗出其中一部分,表示出一個小數和相應的分數。幾個學生自由展示後,組織梳理,從0.1就是十分之一,0.2就是十分之二……
師:接下來我們再來看看筆記本的價格,我給你一個圖示(見下圖),你知道它的價錢了嗎?
生:筆記本的價格是1.2
師:剛才的小數都是「零點幾」,現在怎麼變成「一點幾」了?
生:現在有兩個長方形了,第一個塗滿了顏色,表示整1元。第二個平均分成了10份,塗了其中的2份,也就是2角錢,0.2元,合起來就是1.2元了。
師:我買的鋼筆的價錢是8.6元,如果讓你畫一幅圖來表示它的價錢,你准備怎樣畫呢?
生:我准備先畫9個大小一樣的長方形,然後把前面8個塗滿顏色,第9個長方形平均分成10份,塗出其中的6份。
……
上述教學過程抓住了知識間的聯系(小數和十進分數的關系)而展開,但又不是停留在教師直接的講解和「告訴」,而是讓學生充分展開探索過程,藉助於直觀圖示的形象支撐,建立起了一位小數的「直觀模型」(長方形等分、塗色)。這種形象的「直觀模型」既搭起了小數和分數之間的橋梁,也具有強大的「擴展」功能,對後面學習兩位小數、三位小數(同樣的長方形,只是平均分成100份、1000份)以及抽象概括「小數的意義」具有統攝作用。
從上述兩例可以看出,運用建模思想來指導小學數學教學,在很大程度上是要在學生的認知過程中建立起一種統攝性、符號化的具有數學結構特徵的「模型」載體,通過這樣的具有「模型」功能的載體,幫助學生實現數學抽象,為後續學習提供強有力的基礎支持。當然,對學生「模型」意識的培養和「建模」方法的指導,要根據具體內容和具體年級而有層次不同的要求,低年級要恰到好處地結合日常實例和常規教學對學生進行「模型」及「模型意識」的滲透、點化,高年級則可以更明確地引導學生關注數學學習中「模型」的存在,培養初步的建模能力。

④ 如何在數學教學中讓學生學會數學建模

一、數學建模促進相美課程的學習

計算方法足計算機課程重要的組成部分。數值分析與計算方法通常使用C語言等描述演算法,復雜的演算法描述甚為噦嗦,採用數學軟體(Matlab,Mathematica,Maple,MathCAD等)的命令描述演算法。既簡單又能易於上機實驗。求特徵根與特徵向量、樣條與插值、方程和程組求解等,數學軟體中使用參數調用標準的函數或過程就可實現問題求解。用於直接計算或驗證用演算法語言編寫的計算方法結果的正確性.頗有裨益。概率統計、規劃優化、線性代數、微積分、平面幾何與立體幾何等科目。數學建模提供了問題求解的極住手段.對這些課程的輔助學習幫助極大。

二、數學建橫促進科學問題的探索

自然科學中的許多前沿研究問題不少最終可以歸結為某些數學問題。數學建模將這些應用問題的靜態特性和靜態特性用數據和圖形的方式多方面描述,有助於問題的解決。比如離子通道實驗反映給葯後鉀離子濃度的變化過程,用隨機微分方程來描述,利用數學吏驗模擬和模擬,輔助前沿課題的研究。經濟均衡模型的分析和模擬.描述了市場經濟的「看不見的手」的強大魔力。我們在課程穿插r諸如此類的我們的研究課題中的應用實例.可知學生已經去感受前沿問題的研究

三、數學建橫培彝數學課件創作人才

遠程數學教學系統需要製作火的數學課件.製作數學課件存在的主要困難是:如何獲得大量的數學對象(數學符號、數學公式,數學表格、數學圖形)。數學建模的特點是利用數學軟體(Matlab.Mathematica,SAS等),完成復雜的數值計算和符號運算。並分析大量精確的數學圖形擻學表格,得到實驗結論。數學軟體的HTML、TeX、圖形輸出格式,可以直接用於數學課件的創作。我們在講授用於數值計算和符號運算、製作圖表的數學軟體的同時,講授了呵方便得到高質螢的數學符號和公式的數學排版系統(LaTeX、ams'~X等),由於不少學生已經熟悉網頁製作軟體(Flash.Firework、Dreamweaver等)和圖形處理軟體。學生提交的電子版的數學實驗報告.梢加潤色,頃刻成為高水平的數學課件樣本。

⑤ 在小學數學教學中如何建模

數學模型是對某種事物系統的特徵或數量依存關系概括或近似表述的數學結構。數學中的各種概念、公式和理論都是由現實世界的原型抽象出來的,從這個意義上講,所有的數學知識都是刻畫現實世界的模型。狹義地理解,數學模型指那些反映了特定問題或特定具體事物系統的數學關系結構,是相應系統中各變數及其相互關系的數學表達。數學建模就是建立數學模型來解決問題的方法。《數學課程標准》安排了「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四塊學習領域,強調學生的數學活動,發展學生的數感、符號感、空間觀念、以及應用意識與推理的能力。這些內容中最重要的部分,就是數學模型。在小學階段,數學模型的表現形式為一系列的概念系統,演算法系統,關系、定律、公理系統等。

⑥ 如何在小學數學教學中培養學生的想像力

一、豐富學生想像活動的表象材料
小學生的思維特點是以具體形象為主要形式逐步過渡到以抽象思維為主要形式。而想像是以豐富的表象儲備為基礎的,只有積累了准確、豐富的表象才能進行海闊天空的想像。因此,在教學中教師要充分利用直觀教具和形象化的材料,並經常組織學生去參觀、游覽等;在實際生活中要引導學生廣泛接觸各種事物,仔細、全面地進行觀察比較,分析綜合。
1、藉助演示積累表象
在教學過程中,教師通過充分的感性材料,讓學生獲得全方位、立體的感知,把抽象知識形象化,從而在頭腦中留下鮮明的印象。如在教學三角形穩定性和平行四邊形易變形的特性時,僅靠感知三角形和平行四邊形本身的形狀是不能獲得明確的認知的,因此學生在頭腦中不能真正建立起「穩定」和「變形」的表象。我們在教學中可以先出示用木條做的三角形、平行四邊形,並用教具演示,用手從各個不同的方位拉,並可以讓學生親手拉拉,這就很容易在頭腦中建立起「穩定」和「變形」的表象。
2、引導操作豐富表象
動手操作能讓學生的各種感官都參與到學習中去,從多方位、多角度觀察、認知事物,從而在頭腦中建立起准確、豐富的表象。如在教學「分數的意義」時,可以讓學生動手摺紙。學生在活動過程中折出七、八種不同的表示把單位「1」四等分的形狀,從而豐富自己的表象。
3、通過電教加深表象
在教學活動中,也可以充分利用現代化的教學手段,向學生傳輸豐富的、大量的、形象的信息,加深學生的表象認識。如在教學「長方體的認識」中,用多媒體演示長方體的各個面,相對面的大小比較,相對的四條棱,八個頂點等。然後讓學生閉上眼睛想像長方體的特徵,再用多媒體演示長方體的展開圖,從而將長方體的特徵深深地印在腦海里。
二、提供學生想像活動的空間時間
小學數學教學,是讓每個學生根據自己的體驗,用自己的思維方式自由地、開放地去探索、發現、再創造有關的數學知識的過程,從而培養學生的自主意識、探索精神和創造能力。這就需要教師在教學中,藉助材料給學生足夠的思考空間。
如在復習三角形、平行四邊形、梯形的面積時提問,要求學生想像:如果把梯形的上底變得和下底一樣長,這時成了什麼圖形?與梯形面積有什麼關系?如果把梯形的上底縮為0,這時成了什麼圖形?與梯形面積有什麼關系?這時如果提供學生想像的空間,讓他們利用手中的紙和筆折一折、畫一畫、量一量、剪一剪,自由討論、探究。最後,學生會發現:三角形可以看作上底為0的梯形,平行四邊形可以看作上底和下底相等的梯形。這樣根據問題想像,通過動手「做數學」、然後根據討論再想像,使有不同差異的學生都能親身體驗獲得知識的快樂,同時又進一步認識了三種圖形的聯系和區別,激發了學生的智慧,培養了學生的能力。
在提供學生想像活動的同時,還需要教師安排足夠的時間(可以採取同桌、小組討論、交流、辯論等形式),讓學生充分地去思考、討論、探索。在這時間內,學生的想像活動將會更為廣闊、更為豐富,創新成果也可能在這時間內源源不斷地產生。
三、拓展學生想像活動的聯想廣度
聯想往往由某一事物的觸發而想像出與這一事物相似,或與之相反的事物形象來的思維過程。通過聯想往往可以得到一種嶄新的形象,或重現某種表象。例如,當學生看到眼前的兩條線段的垂直關系時,會聯想到天安門廣場上的旗桿,人民英雄紀念碑等形象。當學生求比值時,會聯想到除法運算。這些聯想的展開,在學生理解、掌握新的知識和解決問題的過程中,具有積極的意義。
在教學中,教師應抓住有利時機,從小引導學生形成自覺地聯想能力。如學生理解了「5比9少4」的算理後,要讓學生聯想到「4比9少5」或「9比5多4」、「9比4多5」等。學生認識了有限小數後,要引導從「有限」聯想到「無限」,並追問「從有限小數的意義里,你能反過來理解無限小數的意義嗎?」在出示「一條公路,修了五分之三」的條件後,可引導學生從「修了五分之三」聯想到「剩下幾分之幾」。經常這樣從已知出發誘導學生展開聯想,養成習慣後學生在解題遇到困難時,就會自覺地調整思維,聯想出新的意念,產生新的領悟。
當然,還可以運用逆向聯想,通過誘導學生運用對比聯想,進入與之相反的未知領域,獲得新知。如在教學「分數、小數加減混合運算」時,學生掌握了先把分數化成小數來計算的規律後,教師說:「大家已經知道,分數、小數加減混合運算中的分數如果能化成有限小數,就把分數化成小數來算比較簡便,那麼——,你們這時一定又想到另外的情況,誰來說說想法?」經過誘導,學生會反想開去:式中的分數如果不能化成有限小數該怎麼算呢?並且有的學生會自然地想到把小數化成分數來算的辦法。這樣,學生不僅在對比聯想中從正、反兩方面把握分數、小數加減混合運算的一般規律,而且經歷了由正及反的逆向聯想過程。
總之,教和學的活動都離不開想像。教師的教學藝術中充滿著想像。富有想像力的教師,會創造性的教,使教學富有成效;富有想像力的學生,會創造性的學,使學習更有收獲。

⑦ 如何在小學數學教學中滲透數學思想

摘要: 數學思想方法是人類思想文化寶庫中的瑰寶,是數學的精髓。「小學數學思想方法」是在小學數學中運用的研究問題的思想和方法。探討在小學數學教學中滲透數學思想方法有利於深刻地理解數學的內容和知識體系;有利於提高學生的數學素質;有利於對學生進行美育的滲透和辨證唯物主義的啟蒙教育;有利於教師以較高的觀點分析處理小學教材。本論文從分析教材和參考教育資料上探討小學數學教材中數學思想方法的重要性,搜索和概括小學數學中幾種常用的數學思想方法及教學策略,例如符號化思想、數學模型、統計思想等;滲透數學思想方法的教學中證明:有目的、有計劃的滲透數學思想方法可以讓不同程度的學生從中受益,從而提高數學學習的效率及教學質量。
關鍵詞:數學思想方法 滲透
小學數學教學不僅要傳授學生知識,而且也要在教學中滲透數學思想方法。數學思想方法是數學知識不可分割的有機組成部分,小學數學教材中,蘊含了許多數學思想和方法,如符號化思想、數學模型思想、統計思想、化歸思想、組合思想、變換思想、對應思想、極限思想、集合思想、轉化建模的思想以及猜想、驗證的方法和反證法等。學生對數學的學習不單純是知識的獲得和反復的操練,貫穿始終的還有數學思想方法。如果說數學教材中的基礎知識和基本技能是一條明線的話,那麼蘊含在教材中的數學思想方法就是一條暗線。教師要注意數學思想方法的滲透,抓住教學內容中的有利因素,有意識地加以引導,有目的、有選擇、適時地進行滲透,使學生在潛移默化中掌握數學思想方法。
一、 教學中滲透數學思想方法是必然趨勢。
所謂數學思想,是指人們對數學理論與內容的本質認識,它直接支配著數學的實踐活動。所謂數學方法, 是指某一數學活動過程的途徑、程序、手段,它具有過程性、層次性和可操作性等特點。數學思想是數學方法 的靈魂,數學方法是數學思想的表現形式和得以實現的手段,因此,人們把它們稱為數學思想方法。小學數學教學中滲透數學思想方法的必要性主要有以下四點:
1、創新人才培養的需要。當今世界,科技發展突飛猛進,知識經濟初見端倪,國際競爭日趨激烈,人的素質的提高和「人才高地」的構築,越來越成為經濟增長和社會發展的決定性因素。素質教育的重要性被凸現出來。數學教學也應實施素質教育,我國《全日制義務教育數學課程標准》明確指出:義務教育階段的數學課程致力於學生體會數學與自然及人類社會的密切聯系,了解數學的價值,增進對數學的理解和應用數學的信心;學會運用數學的思維方式去觀察分析現實社會,去解決日常生活中和其他學科學習中的問題;形成勇於探索,勇於創新的科學精神;獲得對未來社會生活和進一步發展所必需的重要數學知識,(包括數學知識,數學活動經驗)以及基本的思想方法和必要的應用技能。創新人才需要高素質的人,高素質的人必須具備優秀的思維品質,而數學是思維的科學,思維能力是數學能力的核心。在數學教學中滲透數學思想方法是培養學生的創新意識最根本的途徑。
2、數學教學改革的需要。根據有關調查發現,在數學教學中數學思想方法的教學不受重視。相當一部份教師根本沒有把數學思想方法納入教學目標。而加強數學思想方法的教學是進一步提高數學教學質量的需要。從數學教材體系看,整個小學數學教材中貫穿著兩條主線,一是寫進教材的最基礎的數學知識,它是明線,一貫很受重視,必須切實保證學生學好。另一條是數學能力培養和數學思想方法的滲透,這是條暗線,較少或沒有直接寫進教材,但對小學生的成長卻十分重要,也越來越引起人們的重視。在教學中不能只注重數學知識的教學,忽視數學思想方法的教學。兩條線應在課堂教學中並進,無形的數學思想將有形的數學知識貫穿始終。重視數學思想方法的教學有利於教師從整體上把握數學教學目的,將數學的本質、知識形成的過程,解決問題的過程展示給學生,教學達到事半功倍。現在教學中存在重知識結論的教學,輕知識發生過程的教學;重知識達標評價,輕數學思想形成的評價;重學生眼前的分數利益,輕學生的長遠素質發展等的現狀。一些教師對數學思想方法的理解不深透,數學思想方法的滲透教學在課堂教學中短時期難以見成效。因此,在小學數學教學中,數學思想方法的教學難以規范有序的實施,成為被人遺忘、冷落的「角落」。數學教學若是堅持 「數學知識的教學」則遠遠不能培養數學的思維能力,而數學思維能力的培養需要數學思想方法的教學與滲透。基於以上現狀,數學思想方法的教學在小學數學教學法中有必要進行實踐與探索。
3、 在認知心理學里,思想方法屬於元認知范疇,它對認知活動起著監控、調節作用,對培養能力起著決定性 的作用。學習數學的目的「就意味著解題」(波利亞語),解題關鍵在於找到合適的解題思路,數學思想方法 就是幫助構建解題思路的指導思想。因此,向學生滲透一些基本的數學思想方法,提高學生的元認知水平,是 培養學生分析問題和解決問題能力的重要途徑。
4、小學數學教學的根本任務是全面提高學生素質,其中最重要的因素是思維素質,而數學思想方法就是增強 學生數學觀念,形成良好思維素質的關鍵。如果將學生的數學素質看作一個坐標系,那麼數學知識、技能就好 比橫軸上的因素,而數學思想方法就是縱軸的內容。淡化或忽視數學思想方法的教學,不僅不利於學生從縱橫 兩個維度上把握數學學科的基本結構,也必將影響其能力的發展和數學素質的提高。因此,向學生滲透一些基 本的數學思想方法,是數學教學改革的新視角,是進行數學素質教育的突破口。
二、現行小學數學教材中主要數學思想方法的知識分布及其教學策略。
現行的小學數學無論是新教材還是舊教材從教材內容看,小學數學解題常用到數學模型、符號化思想、統計思想、化合思想、組合思想等。這些數學思想方法對幫助學生解決實際問題有著重要的作用。
1、 符號化思想。
英國著名哲學家、數學家羅素說過:「什麼是數學?數學就是符號加邏輯」。小學教材中大致出現如下幾類符號:(1)個體符號:表示數的符號,如:1、2、3、4…,0;a,b,c,…,π,χ以及表示小數、分數、百分數的符號。(2)數的運算符號:+,-,×(·),÷(/,:)。(3)關系符號:=,≈,>,<,≠等。(4)結合符號:(),〔 〕等以及表示角度的計量單位符號和表示豎式運算的分隔符號等。
由於數學符號的抽象性和小學生思維習慣的具體性之間存在著矛盾,又由於符號常常是概念的代表。所以教師在教學中滲透符號化思想就要注意:①讓學生正確理解與使用數學符號。在實際的教學中,學生在使用這些數學符號時往往會出現如下的錯誤。例如:在教學低年級文字題「90比60 多幾?」小學生由於對加法的意義的不理解,往往看「多」就用「+」,看「少」就用「-」。誤列式為「90+60」。又例高年級文字題「一個數的6倍少24是180,求這個數是多少?」學生也往往看見「倍」用「×」,看「少」就用「-」,誤列式為「(180-24)×6」。象這樣的例子,教師在教學中注意讓學生理解符號的內涵,正確理解使用符號所表示的概念。如果只從解法上予以糾正而不從符號化思想上予以滲透,將事倍功半,學生今後還會出現類似的錯誤。②掌握日常語言與符號語言間的轉化。數學教學實際上是數學語言的教學。在教學活動中,要幫助學生初步學會簡單的數學符號語言和日常語言的轉化,即將日常語言敘述的數量關系或空間形式轉化為數學符號語言。反之,也能將符號語言轉化為問題,看懂抽象的符號所反映的數量關系或空間形式。例如:
小營村有棉田75公頃, 已知一個數的60%是 解:設全村耕地面積是
是全村耕地面積的60% 全分析轉化75,求這個數是多少? χ公頃。
村耕地面積是多少公頃? X 60%=75

日常語言 數學語言 符號語言

因此,教師在教學當中要引導學生用數學語言描述生活語言,而不要機械的把數學符號灌輸給學生,從而培養學生抽象思維能力。③在填數中滲透變元思想。小學數學教科書在不同階段,對變元思想有不同水平、不同形式的滲透,以便讓學生逐步了解變元思想。例如:3.□7>3.27,45.16<45.1□,學生在方框里填上一個數很容易,但教師要明白,若將方框里填上χ就變成一元一次不等式。因此,教師應引導學生繼續思考:方框內最多可以填幾個數?這種思考能是學生初步了解變元思想。④在字母表示數中滲透符號化思想。在小學教材中,用字母表示數有表示運算定律,表示數量關系,面積體積公式等。例如:加法交換律:a+b=b+a,路程=速度×時間用字母表示s=vt,等。教師在教學用字母表示數時要循序漸進,從學生的生活中、原有的認知結構結合起來自然的建構。
2、 數學模型方法。
著名數學家華羅庚先生說:「數無形時不直觀,形無數時難入微」,這句話形象簡練地指出了形和數的互相依賴、相互制約的辯證關系。數學模型是對客觀事物的空間形式和數量關系的一個近似的反映。數學模型可做廣義和狹義理解。按廣義的理解,凡一切數學概念、數學公式、數學理論體系、方程式和演算法系統都可以叫做數學模型。數學模型可以分為三類:①概念型數學模型,如實數、函數、集合、向量等。②方法型模型,如各種方程、公式等。③結構型模型,如群、環、域、向量空間等。數學模型在解題中的基本構造如下:
實際問題

數學抽象
數學模型 還原說明
演算 推理
數學模型的解

由於數學模型的直觀性能將概念的本質屬性變得明顯,學生掌握較容易,因此,在小學數學教學中恰當地滲透數學模型方法,有助於小學生掌握數學知識,增強解題能力,提高數學教學的效果。小學數學教學一般運用的是概念型數學模型和方法型的數學模型。
① 集合模型在教學中的滲透。三角形按角分類可以用下圖表示:
三角形

直角三角形
銳角三角形鈍角三角形

學生弄懂集合圖的含義後,在今後的學習中會嘗試用集合圖來表示概念間的聯系。如:

平行四邊形
長方形
正方形

在應用題的解題中,教師也可以啟發學生用集合圖來幫助分析題意探尋解題方法。如:工程隊計劃修一條長250千米公路,第一天修了全長的20%,第二天修了全長的40%,剩下的第三天修完,第三天修了多少千米?

250千米(「1」)
第一天第二天 第三天
20% 40% ?

從圖中可以看出,第三天修的路長是全長250千米的(1-20%-40%) ,此題迎刃而解:250×(1-20%-40%)=100(千米)。
②方程模型在教學中的滲透。列方程解應用題的關鍵是用數學模型來模擬數量關系,即根據條件用兩種不同的方式表示同一量,列出已知數與未知量之間的關系式。在小學中高年級已逐步用方程來解答文字題與應用題。例如:一個工廠原來每天製造機器零件1800個,比現在少10%,現在每天製造機器零件多少個?
解:設現在每天製造機器零件χ個。

現在每天製造 原來每天製造 原來每天製造機
機器零件 — 比現在少10%, = 器零件1800個

χ 10%χ 1800
於是列出方程:χ-10%χ=1800。也就是原來每天製造機器零件1800個相當於現在的(1-10%)。還可列出方程χ·(1-10%)=1800。
③幾何模型在教學中的滲透。解應用題時,若能將難題的數學問題化為與之相關的圖形,通過作圖來構造幾何模型,再根據圖形的性質和特點解題,將會使問題的解答簡易直觀。例如:一台壓路機輪寬6米,如果它一分鍾行駛200米,照這樣計算,一小時它壓過路面是多少平方米?
200米

輪寬6米

從圖中可以看出,這題實際就是求60個長200米、寬6米的長方形的面積。6×200×60=32000(平方米)。
④公式模型在教學中的滲透。數學公式既是反映客觀世界數學關系的符號,又是現實世界抽象出來的數學模型,因為它摒棄了各個事物的個別屬性,因此它更具有典型的意義。例如:工作總量=工作效率×工作時間,路程=速度×時間,總產量=單產量×公頃數等。利用這些抽象出來的數學模型可以解決許多相關的題。例題「一件工作,甲單獨做要6小時,乙單獨做要用4小時,甲做完1/3後,兩人合作,還要幾小時做完?」解決這道題將工作總量看作單位「1」,甲的工作效率看作1/6,乙的效率看作1/4,根據工作總量=工作效率×工作時間這個公式模型,列式得出:(1-1/3)÷(1/6+1/4)=1.6(小時)。
3、統計思想
統計的基本思想是:從局部觀測資料的統計特徵來推斷整個系統的狀態,或判斷某一論斷以多大的概率來保證其正確性,或者算出發生錯誤判斷的概率。統計方法是由「局部到整體」、「由特殊到一般」的科學方法。小學數學中統計思想體現在:簡單的數據整理和求平均數,簡單的統計表和統計圖。學生在會整理、製表、作圖的同時要能從數據、圖表中發現一些相關的問題,得出一些結論。在教材的編排上,在低中年級讓學生領悟略樸素的統計思想後,在中年級學習數據整理的方法上到高年級進一步按數據的大小分組統計的整理方法和復式條形統計圖以及折線統計圖。除了按課本的安排教學外,教師也可在平時的教學中有機的滲透統計的思想。例如:在課前布置學生收集有關的資料。如《億以內數的讀寫》一課,可讓學生收集生活中有關億以內數的相關數據,通過課前收集、課上的交流與整理不僅學生學會了讀寫這些數,而且在接受國情教育中體會了統計的思想。在有些課上也可當堂收集資料統計數據,為教學內容服務。如《三步應用題》一課,課上調查同學們的定報情況,包括人數,單價,數量,報刊的種類等。通過圖表等形式,提出問題,圍繞著三步應用題的解題思路進行教學。這樣的教學,教師有意識的滲透統計思想,學生學到生活中的數學,學習的有效性大大提高。當然,在小學數學中統計思想的滲透只能是初步的,僅僅涉及到整理樣本數據的一些最簡單的方法。至於總體推測,只是引導學生作些初步的想像和估算,以逐步接受統計思想的熏陶,同時也為今後的進一步學習打下基礎。
4、.化歸思想
化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個 較簡單的問題。應當指出,這種化歸思想不同於一般所講的「轉化」、「轉換」。它具有不可逆轉的單向性。
例1 、狐狸和黃鼠狼進行跳躍比賽,狐狸每次可向前跳4 1/2 米,黃鼠狼每次可向前跳2 3/4米。它們每 秒種都只跳一次。比賽途中,從起點開始,每隔12 3/8米設有一個陷阱, 當它們之中有一個掉進陷阱時,另 一個跳了多少米?
這是一個實際問題,但通過分析知道,當狐狸(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每 次所跳距離4 1/2(或2 3/4)米的整倍數,又是陷阱間隔12 3/8米的整倍數,也就是4 1/2和12 3/8的「 最小公倍數」(或2 3/4和12 3/8的「最小公倍數」)。針對兩種情況,再分別算出各跳了幾次,確定誰先掉 入陷阱,問題就基本解決了。上面的思考過程,實質上是把一個實際問題通過分析轉化、歸結為一個求「最小 公倍數」的問題,即把一個實際問題轉化、歸結為一個數學問題,這種化歸思想正是數學能力的表現之一。
5、.組合思想
組合思想是把所研究的對象進行合理的分組,並對可能出現的各種情況既不重復又不遺漏地一一求解。
例4 在下面的乘法算式中,相同的漢字代表相同的數字, 不同的漢字代表不同的數字,求這個算式。
從小愛數學
× 4
──────
學數愛小從
分析:由於五位數乘以4的積還是五位數, 所以被乘數的首位數字「從」只能是1或2,但如果「從」=1, 「學」×4的積的個位應是1,「學」無解。所以「從」=2。
在個位上,「學」×4的積的個位是2,「學」=3或8。但由於「學」又是積的首位數字,必須大於或等於 8,所以「學」=8。
在千位上,由於「小」×4不能再向萬位進位,所以「小」=1 或0。若「小」=0,則十位上「數」×4+ 3(進位)的個位是0,這不可能,所以「小」=1。
在十位上,「數」×4+3(進位)的個位是1,推出「數」=7。
在百位上,「愛」×4+3(進位)的個位還是「愛」,且百位必須向千位進3,所以「愛」=9。
故欲求乘法算式為
2 1 9 7 8
× 4
──────
8 7 9 1 2
上面這種分類求解方法既不重復,又不遺漏,體現了組合思想。
6、在實際的教學中由於執教者對教材的理解不同,對同一教學內容會用不同的思想方法進行教學。有的教學內容往往通過幾種數學思想方法去分析與解答。因此,教師在教學中要充分理解教材的教育功能,挖掘其隱藏的數學思想方法,在導出結論、尋找方法、揭示規律的過程中,使學生掌握其來龍去脈,培養學生自覺運用數學思想方法的意識。除以上例舉的五種思想方法外,變換思想、對應思想、極限思想、集合思想、聯想思想、、歸納猜想方法、演繹法轉化建模的思想以及猜想、驗證的方法和反證法等在小學數學教學中也時常應用,教師也應注意有意識地在教學中滲透。
三、在日常教學中滲透數學思想方法。
新一輪基礎教育課程改革制定的新《課程標准》特別關注學生在知識與技能、過程與方法、情感態度與價值觀這三個維度。《課程標准》中提到:義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現人人學到有價值的數學;人人都獲得必需的數學;不同的人在數學上得到不同的發展。這就要求我們教師在教學中不能只關注知識與技能,更要關注技能與方法。
1、 滲透數學思想方法教學的原則
(1)過程性原則。
在教學中滲透數學思想方法時,不直接點明所應用的數學思想方法,而是通過精心設計的教學過程,有意識的引導學生潛移默化地領會蘊含其中的數學思想和方法。例如:在教學加法交換律時,通過一個猜球的小游戲,讓學生用日常生活語言敘述游戲中:「變與不變的道理」。然後,進一步讓學生用圖形或數學符號表示,進而抽象出數學模型A+B=B+A。
(2)反復性原則。
數學方法屬於邏輯思維的范疇,學生對它的領會和掌握具有一個「從個別到一般,從具體到抽象,從感性到理性,從低級到高級」的認知過程。那麼,教師在教學中應作到滲透與反復相結合。例如:在教學運算定律的應用、典型應用題及解決一些實際問題時,反復滲透集合模型、方程模型、集合模型、公式模型等各種數學模型方法。
(3)系統性原則。
數學思想方法的滲透要由淺入深,不能隨意性太強,對一種數學思想方法挖掘到什麼程度,學生能理解到什麼程度,教師要心中有數。所以,教師在制定教學計劃時,要充分了解這一冊教材中可以結合哪些內容進行什麼數學思想方法的滲透,再結合後續的教學整理出數學思想方法教學的系統。
(3)明確性原則。
數學思想方法如果長期、反復、不明確的滲透,學生就不會有意識的領會與使用。所以,在一個教學階段,教師就要有意識的總結我們解題時所應用到的思想方法,使得學生對數學思想方法的規律、運用方法適度明確化,利於今後的學習。
2、 滲透數學思想方法的有效途徑
(1) 在知識的發生過程中,適時滲透數學思想方法。
在教學中教師不要簡單的給出定義,不要過早的下結論,不要死板的找關聯,這利於培養學生的分析、觀察、比較、抽象、概括的邏輯思維加工的能力。例如:在教學「小數的性質」一課,教師不是簡單地告訴學生什麼是小數的性質,而是通過比較0.10與0.100的大小,由學生自己揭示小數的性質。學生分小組討論0.10與0.100相等的理由有五、六種之多。有的利用數形結合的方法來驗證;有的用實際測量的方法驗證;有的用商不變的性質類比驗證;有的用反證法驗證等等。
(2) 通過小結、復習提煉概括數學思想方法。
在每一個單元整理與復習時,除了讓學生整理數學知識點,還要讓學生回憶解題是所應用到的一些典型的思想方法。從而讓學生運用這些方法來解決實際問題。
(3) 在教學中注意多種數學思想方法的綜合運用。
在解決實際問題的過程中,往往需要多種方法同時運用才能奏效。那麼,在教學時注意引導學生綜合運用的能力。
(4) 注意總結與評價。
在進行一段時間的訓練後,結合學生的作業、測試,教師要及時的給學生總結與評價。評價時不要簡單的對結果做出是非的評價,而要通過分析學生的解題思路及運用到的一些數學思想方法給予肯定。以此激勵學生的創新能力,激發他的學習動力。
已經有人通過實驗研究一學期的教學,在研究過程中不斷的改進與總結,初步看見一些成效。從學生的成績可以看出,在教學中有目的、有計劃、有序列的進行數學思想方法的滲透,學生能夠接受,可以讓不同程度的學生受益,鍛煉他們的思維能力,增強解決問題的能力,從而提高教學質量。
四、結論
在小學數學中滲透數學思想方法隨著新一輪課程改革的進行已放在重要而顯性的地位。每一個教師都要在實踐中積極地改革與嘗試。通過有效的實踐與研究,在小學數學中滲透數學思想方法是可行的,學生是完全可以接受的,並且通過有目的、有計劃、有序列的滲透,學生的思維能力得以增強,不同的學生都得到不同的收獲,他們得到的不僅是「魚」,還有「漁」,對學生的長遠發展有著積極的意義及深遠的影響。教師在這一研究中,提高了自身的數學修養,提升了教學理念,真正以「人」為本提高了課堂效益與教學質量。

⑧ 如何培養小學生的數學建模思想

生活中多用物體思想建模,多聯想,多動腦。讓孩子覺得數學建模是件有趣而且很了不起的事

⑨ 小學數學建模論文

數學建模論文範文--利用數學建模解數學應用題
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。

一、數學應用題的特點
我們常把來源於客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源於實際生活的應用題;與模向學科知識網路交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要採用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示後再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第四、數學應用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難於進行題型模式訓練,用「題海戰術」無法解決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具有廣闊的發展空間和潛力。
二、數學應用題如何建模
建立數學模型是解數學應用題的關鍵,如何建立數學模型可分為以下幾個層次:
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,註解圖為:
將題材設條件翻譯
成數學表示形式

應用題 審題 題設條件代入數學模型 求解
選定可直接運用的
數學模型
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然後確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然後才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然後才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關繫到數學應用題的解題質量,同時也體現一個學生的綜合能力。
3.1提高分析、理解、閱讀能力。
閱讀理解能力是數學建模的前提,數學應用題一般都創設一個新的背景,也針對問題本身使用一些專門術語,並給出即時定義。如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了「減薄率」這一專門術語,並給出了即時定義,能否深刻理解,反映了自身綜合素質,這種理解能力直接影響數學建模質量。
3.2強化將文字語言敘述轉譯成數學符號語言的能力。
將數學應用題中所有表示數量關系的文字、圖象語言翻譯成數學符號語言即數、式子、方程、不等式、函數等,這種譯釋能力是數學建成模的基礎性工作。
例如:一種產品原來的成本為a元,在今後幾年內,計劃使成本平均每一年比上一年降低p%,經過五年後的成本為多少?
將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5
3.3增強選擇數學模型的能力。
選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現數學能力的強弱。建立數學模型主要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函數建模為例,以下實際問題所選擇的數學模型列表:
函數建模類型 實際問題
一次函數 成本、利潤、銷售收入等
二次函數 優化問題、用料最省問題、造價最低、利潤最大等
冪函數、指數函數、對數函數 細胞分裂、生物繁殖等
三角函數 測量、交流量、力學問題等

3.4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
利用數學建模解數學應用題對於多角度、多層次、多側面思考問題,培養學生發散思維能力是很有益的,是提高學生素質,進行素質教育的一條有效途徑。同時數學建模的應用也是科學實踐,有利於實踐能力的培養,是實施素質教育所必須的,需要引起教育工作者的足夠重視。

加強高中數學建模教學培養學生的創新能力

摘要:通過對高中數學新教材的教學,結合新教材的編寫特點和高中研究性學習的開展,對如何加強高中數學建模教學,培養學生的創新能力方面進行探索。
關鍵詞:創新能力;數學建模;研究性學習。
《全日制普通高級中學數學教學大綱(試驗修訂版)》對學生提出新的教學要求,要求學生:
(1)學會提出問題和明確探究方向;
(2)體驗數學活動的過程;
(3)培養創新精神和應用能力。
其中,創新意識與實踐能力是新大綱中最突出的特點之一,數學學習不僅要在數學基礎知識,基本技能和思維能力,運算能力,空間想像能力等方面得到訓練和提高,而且在應用數學分析和解決實際問題的能力方面同樣需要得到訓練和提高,而培養學生的分析和解決實際問題的能力僅僅靠課堂教學是不夠的,必須要有實踐、培養學生的創新意識和實踐能力是數學教學的一個重要目的和一條基本原則,要使學生學會提出問題並明確探究方向,能夠運用已有的知識進行交流,並將實際問題抽象為數學問題,就必須建立數學模型,從而形成比較完整的數學知識結構。
數學模型是數學知識與數學應用的橋梁,研究和學習數學模型,能幫助學生探索數學的應用,產生對數學學習的興趣,培養學生的創新意識和實踐能力,加強數學建模教學與學習對學生的智力開發具有深遠的意義,現就如何加強高中數學建模教學談幾點體會。
一.要重視各章前問題的教學,使學生明白建立數學模型的實際意義。
教材的每一章都由一個有關的實際問題引入,可直接告訴學生,學了本章的教學內容及方法後,這個實際問題就能用數學模型得到解決,這樣,學生就會產生創新意識,對新數學模型的渴求,實踐意識,學完要在實踐中試一試。
如新教材「三角函數」章前提出:有一塊以O點為圓心的半圓形空地,要在這塊空地上劃出一個內接矩形ABCD辟為綠冊,使其冊邊AD落在半圓的直徑上,另兩點BC落在半圓的圓周上,已知半圓的半徑長為a,如何選擇關於點O對稱的點A、D的位置,可以使矩形面積最大?
這是培養創新意識及實踐能力的好時機要注意引導,對所考察的實際問題進行抽象分析,建立相應的數學模型,並通過新舊兩種思路方法,提出新知識,激發學生的知欲,如不可挫傷學生的積極性,失去「亮點」。
這樣通過章前問題教學,學生明白了數學就是學習,研究和應用數學模型,同時培養學生追求新方法的意識及參與實踐的意識。因此,要重視章前問題的教學,還可據市場經濟的建設與發展的需要及學生實踐活動中發現的問題,補充一些實例,強化這方面的教學,使學生在日常生活及學習中重視數學,培養學生數學建模意識。
2.通過幾何、三角形測量問題和列方程解應用題的教學滲透數學建模的思想與思維過程。
學習幾何、三角的測量問題,使學生多方面全方位地感受數學建模思想,讓學生認識更多現在數學模型,鞏固數學建模思維過程、教學中對學生展示建模的如下過程:
現實原型問題
數學模型
數學抽象
簡化原則
演算推理
現實原型問題的解
數學模型的解
反映性原則
返回解釋
列方程解應用題體現了在數學建模思維過程,要據所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利於解答的思想。且解題過程中重要的步驟是據題意更出方程,從而使學生明白,數學建模過程的重點及難點就是據實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯想現成的數學模型或變換問題構造新的數學模型來解決問題。如利息(復利)的數列模型、利潤計算的方程模型決策問題的函數模型以及不等式模型等。
3.結合各章研究性課題的學習,培養學生建立數學模型的能力,拓展數學建模形式的多樣性式與活潑性。
高中新大綱要求每學期至少安排一個研究性課題,就是為了培養學生的數學建模能力,如「數列」章中的「分期付款問題」、「平面向是『章中』向量在物理中的應用」等,同時,還可設計類似利潤調查、洽談、采購、銷售等問題。設計了如下研究性問題。
例1根據下表給出的數據資料,確定該國人口增長規律,預測該國2000年的人口數。
時間(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990
人中數(百萬) 39 50 63 76 92 106 123 132 145
分析:這是一個確定人口增長模型的問題,為使問題簡化,應作如下假設:(1)該國的政治、經濟、社會環境穩定;(2)該國的人口增長數由人口的生育,死亡引起;(3)人口數量化是連續的。基於上述假設,我們認為人口數量是時間函數。建模思路是根據給出的數據資料繪出散點圖,然後尋找一條直線或曲線,使它們盡可能與這些散點吻合,該直線或曲線就被認為近似地描述了該國人口增長規律,從而進一步作出預測。
通過上題的研究,既復習鞏固了函數知識更培養了學生的數學建模能力和實踐能力及創新意識。在日常教學中注意訓練學生用數學模型來解決現實生活問題;培養學生做生活的有心人及生活中「數」意識和觀察實踐能力,如記住一些常用及常見的數據,如:人行車、自行車的速度,自己的身高、體重等。利用學校條件,組織學生到操場進行實習活動,活動一結束,就回課堂把實際問題化成相應的數學模型來解決。如:推鉛球的角度與距離關系;全班同學手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。
四、培養學生的其他能力,完善數學建模思想。
由於數學模型這一思想方法幾乎貫穿於整個中小學數學學習過程之中,小學解算術運用題中學建立函數表達式及解析幾何里的軌跡方程等都孕育著數學模型的思想方法,熟練掌握和運用這種方法,是培養學生運用數學分析問題、解決問題能力的關鍵,我認為這就要求培養學生以下幾點能力,才能更好的完善數學建模思想:
(1)理解實際問題的能力;
(2)洞察能力,即關於抓住系統要點的能力;
(3)抽象分析問題的能力;
(4)「翻譯」能力,即把經過一生抽象、簡化的實際問題用數學的語文符號表達出來,形成數學模型的能力和對應用數學方法進行推演或計算得到注結果能自然語言表達出來的能力;
(5)運用數學知識的能力;
(6)通過實際加以檢驗的能力。
只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
例2:解方程組

x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本題若用常規解法求相當繁難,仔細觀察題設條件,挖掘隱含信息,聯想各種知識,即可構造各種等價數學模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不難得到兩兩之積的和(XY+YZ+ZX)=1/3,再由(3)又可將三根之積(XYZ=1/27),由韋達定理,可構造一個一元三次方程模型。(4)x,y,z 恰好是其三個根
t3-t2+1/3t-1/27=0 (4)
函數模型:
由(1)(2)知若以xz(x+y+z)為一次項系數,(x2+y2+z2)為常數項,則以3=(12+12+12)為二次項系數的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2為完全平方函數3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也適合(3)
平面解析模型
方程(1)(2)有實數解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點後者有公共點的充要條件是圓心(O、O)到直線x+y的距離不大於半徑。
總之,只要教師在教學中通過自學出現的實際的問題,根據當地及學生的實際,使數學知識與生活、生產實際聯系起來,就能增強學生應用數學模型解決實際問題的意識,從而提高學生的創新意識與實踐能力。

數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。

一、數學應用題的特點
我們常把來源於客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源於實際生活的應用題;與模向學科知識網路交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要採用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示後再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第四、數學應用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難於進行題型模式訓練,用「題海戰術」無法解決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具有廣闊的發展空間和潛力。
二、數學應用題如何建模
建立數學模型是解數學應用題的關鍵,如何建立數學模型可分為以下幾個層次:
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,註解圖為:
將題材設條件翻譯
成數學表示形式

應用題 審題 題設條件代入數學模型 求解
選定可直接運用的
數學模型
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然後確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然後才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然後才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關繫到數學應用題的解題質量,同時也體現一個學生的綜合能力。
3.1提高分析、理解、閱讀能力。
閱讀理解能力是數學建模的前提,數學應用題一般都創設一個新的背景,也針對問題本身使用一些專門術語,並給出即時定義。如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了「減薄率」這一專門術語,並給出了即時定義,能否深刻理解,反映了自身綜合素質,這種理解能力直接影響數學建模質量。
3.2強化將文字語言敘述轉譯成數學符號語言的能力。
將數學應用題中所有表示數量關系的文字、圖象語言翻譯成數學符號語言即數、式子、方程、不等式、函數等,這種譯釋能力是數學建成模的基礎性工作。
例如:一種產品原來的成本為a元,在今後幾年內,計劃使成本平均每一年比上一年降低p%,經過五年後的成本為多少?
將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5
3.3增強選擇數學模型的能力。
選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現數學能力的強弱。建立數學模型主要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函數建模為例,以下實際問題所選擇的數學模型列表:
函數建模類型 實際問題
一次函數 成本、利潤、銷售收入等
二次函數 優化問題、用料最省問題、造價最低、利潤最大等
冪函數、指數函數、對數函數 細胞分裂、生物繁殖等
三角函數 測量、交流量、力學問題等

3.4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
利用數學建模解數學應用題對於多角度、多層次、多側面思考問題,培養學生發散思維能力是很有益的,是提高學生素質,進行素質教育的一條有效途徑。同時數學建模的應用也是科學實踐,有利於實踐能力的培養,是實施素質教育所必須的,需要引起教育工作者的足夠重視。

閱讀全文

與小學數學教學中如何利用聯想來建模相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:994
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1343
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069