① 有沒人能告訴我離散數學怎麼復習.全蒙
離散數學是現代數學的一個重要分支,是計算機科學中基礎理論的核心課程。離散數學以研究離散量的結構和相互間的關系為主要目標,其研究對象一般地是有限個或可數個元素,因此他充分描述了計算機科學離散性的特點。由於離散數學在計算機科學中的重要性,因此,許多大學都把它作為研究生入學考試的專業課程中的一門,或者是一門中的一部分。
作為計算機系的一門課程,離散數學有與其它課程相通相似的部分,當然也有它自身的特點,現在我們就它作為考試內容時具有的特點作一個簡要的分析。
1、定義和定理多。
離散數學是建立在大量定義上面的邏輯推理學科。因而對概念的理解是我們學習這門學科的核心。在這些概念的基礎上,特別要注意概念之間的聯系,而描述這些聯系的實體則是大量的定理和性質。
在考試中的一部分內容就是考察大家對定義和定理的識記、理解和運用。如2002年上海交通大學的試題,問什麼是相容關系。如果知道的話,很容易得分;如果不清楚,那麼無論如何也得不到分數的。這類型題目往往因其難度低而在復習中被忽視。實際上這是一種相當錯誤的認識,在研究生入學考試的專業課試題中,經常出現直接考查對某知識點的識記的題目。對於這種題目,考生應該能夠准確、全面、完整地再現此知識點。任何的模糊和遺漏,都會造成極為可惜的失分。我們建議讀者,在復習的時候,對重要知識的記憶,務必以上面提到的「准確、全面、完整」為標准來要求自己,不能達到,就說明還不過關,還要下工夫。關於這一點,在後續章節中我們仍然會強調,使之貫穿於整個離散數學的復習過程中。
離散數學的定義主要分布在集合論的關系和函數部分,還有代數系統的群、環、域、格和布爾代數中。一定要很好地識記和理解。
2、方法性強。
離散數學的證明題中,方法性是非常強的,如果知道一道題用怎樣的方法證明,很輕易就可以證出來,反之則事倍功半。所以在平常復習中,要善於總結,那麼遇到比較陌生的題也可以游刃有餘了。在本書中,我們為讀者總結了不少解題方法。讀者首先應該熟悉並且會用這些方法。同時我們還鼓勵讀者勤於思考,對於一道題,盡可能地多探討幾種解法。
3、有窮性。
由於離散數學較為「呆板」,出新題比較困難
② 離散數學怎麼復習啊,我們要閉卷考
離散數學的主要內容在教材的目錄上可以看到,主要由集合與映射、二元關系、命題邏輯、謂詞邏輯、代數結構、圖論、幾類特殊的圖和組合計數等章節組成。
平時做好基本功就不必擔心。
③ 離散數學講些什麼內容在計算機科學有什麼應用該怎麼學好
離散數學是講的是離散量的結構及其相互關系,在計算機中是在數據結構中應用的,想要學好必須要認真聽講,好好復習。
離散數學與數據結構的關系非常緊密,數據結構課程描述的的對象有四種,分別是線形結構、集合、樹形結構和圖結構,這些對象都是離散數學研究的內容。線形結構中的線形表、棧、隊列等都是根據數據元素之間關系的不同而建立的對象。
離散數學中的關系這一章就是研究有關元素之間的不同關系的內容;數據結構中的集合對象以及集合的各種運算都是離散數學中集合論研究的內容;離散數學中的樹和圖論的內容為數據結構中的樹形結構對象和圖結構。
④ 如何備注自考,特別是關於離散數學,怎麼復習
你是問如何備戰自考吧,我覺得首先在考前兩個月你得開始准備看書,看到重點時應該自己在另外的本子上以問題的形式把它記錄下來,每次復習該章知識點時,先看看自己的問題自己能不能回答出來。如果是離散數學的話,你還得多做題目,主要是以真題為主,祝您好運!
⑤ 離散數學該怎麼復習啊
1.熟記所有定理。
2.多做課後練習題。
離散數學的問題一般就那幾種模式,只要做的練習夠多,考試還是比較簡單的。
⑥ 談談如何學習離散數學
學習離散數學有兩項最基本的任務:其一是通過學習離散數學,使學生了解和掌握在後續課程中要直接用到的一些數學概念和基本原理,掌握計算機中常用的科學論證方法,為後續課程的學習奠定一個良好的數學基礎;其二是在離散數學的學習過程中,培訓自學能力、抽象思維能力和邏輯推理能力,以提高專業理論水平。因此學習離散數學對於計算機、通信等專業後續課程的學習和今後從事計算機科學等工作是至關重要的。但是由於離散數學的離散性、知識的分散性和處理問題的特殊性,使部分學生在剛剛接觸離散數學時,對其中的一些概念和處理問題的方法往往感到困惑,特別是在做證明題時感到無從下手,找不到正確的解題思路。因此,對離散數學的學習方法給予適當的指導和對學習過程中遇到的一些問題分析是十分必要的。 一、認知離散數學 離散數學是計算機科學基礎理論的核心課程之一,是計算機及應用、通信等專業的一門重要的基礎課。它以研究量的結構和相互關系為主要目標,其研究對象一般是有限個或可數個元素,充分體現了計算機科學離散性的特點。學習離散數學的目的是為學習計算機、通信等專業各後續課程做好必要的知識准備,進一步提高抽象思維和邏輯推理的能力,為計算機的應用提供必要的描述工具和理論基礎。 1.定義和定理多 離散數學是建立在大量定義、定理之上的邏輯推理學科,因此對概念的理解是學習這門課程的核心。在學習這些概念的基礎上,要特別注意概念之間的聯系,而描述這些聯系的實體則是大量的定理和性質。在考試中有一部分內容是考查學生對定義和定理的識記、理解和運用,因此要真正理解離散數學中所給出的每個基本概念的真正的含義。比如,命題的定義、五個基本聯結詞、公式的主析取範式和主合取範式、三個推理規則以及反證法;集合的五種運算的定義;關系的定義和關系的四個性質;函數(映射)和幾種特殊函數(映射)的定義;圖、完全圖、簡單圖、子圖、補圖的定義;圖中簡單路、基本路的定義以及兩個圖同構的定義;樹與最小生成樹的定義。掌握和理解這些概念對於學好離散數學是至關重要的。 2. 方法性強 在離散數學的學習過程中,一定要注重和掌握離散數學處理問題的方法,在做題時,找到一個合適的解題思路和方法是極為重要的。如果知道了一道題用怎樣的方法去做或證明,就能很容易地做或證出來。反之,則事倍功半。在離散數學中,雖然各種各樣的題種類繁多,但每類題的解法均有規律可循。所以在聽課和平時的復習中,要善於總結和歸納具有規律性的內容。在平時的講課和復習中,老師會總結各類解題思路和方法。作為學生,首先應該熟悉並且會用這些方法,同時,還要勤於思考,對於一道題,進可能地多探討幾種解法。 3. 抽象性強 離散數學的特點是知識點集中,對抽象思維能力的要求較高。由於這些定義的抽象性,使初學者往往不能在腦海中直接建立起它們與現實世界中客觀事物的聯系。不管是哪本離散數學教材,都會在每一章中首先列出若干個定義和定理,接著就是這些定義和定理的直接應用,如果沒有較好的抽象思維能力,學習離散數學確實具有一定的困難。因此,在離散數學的學習中,要注重抽象思維能力、邏輯推理能力的培養和訓練,這種能力的培養對今後從事各種工作都是極其重要的。 在學習離散數學中所遇到的這些困難,可以通過多學、多看、認真分析講課中所給出的典型例題的解題過程,再加上多練,從而逐步得到解決。在此特別強調一點:深入地理解和掌握離散數學的基本概念、基本定理和結論,是學好離散數學的重要前提之一。所以,同學們要准確、全面、完整地記憶和理解所有這些基本定義和定理。 4. 內在聯系性 離散數學的三大體系雖然來自於不同的學科,但是這三大體系前後貫通,形成一個有機的整體。通過認真的分析可尋找出三大部分之間知識的內在聯系性和規律性。如:集合論、函數、關系和圖論,其解題思路和證明方法均有相同或相似之處。 二、認知解題規范 一般來說,離散數學的考試要求分為:了解、理解和掌握。了解是能正確判別有關概念和方法;理解是能正確表達有關概念和方法的含義;掌握是在理解的基礎上加以靈活應用。為了考核學生對這三部分的理解和掌握的程度,試題類型一般可分為:判斷題、填空題、選擇題、計算題和證明題。判斷題、填空題、選擇題主要涉及基本概念、基本理論、重要性質和結論、公式及其簡單計算;計算題主要考核學生的基本運用技能和速度,要求寫出完整的計算過程和步驟;證明題主要考查應用概念、性質、定理及重要結論進行邏輯推理的能力,要求寫出嚴格的推理和論證過程。 學習離散數學的最大困難是它的抽象性和邏輯推理的嚴密性。在離散數學中,假設讓你解一道題或證明一個命題,你應首先讀懂題意,然後尋找解題或證明的思路和方法,當你相信已找到了解題或證明的思路和方法,你必須把它嚴格地寫出來。一個寫得很好的解題過程或證明是一系列的陳述,其中每一條陳述都是前面的陳述經過簡單的推理而得到的。仔細地寫解題過程或證明是很重要的,既能讓讀者理解它,又能保證解題過程或證明准確無誤。一個好的解題過程或證明應該是條理清楚、論據充分、表述簡潔的。針對這一要求,在講課中老師會提供大量的典型例題供同學們參考和學習。 通過離散數學的學習和訓練,能使同學們學會在離散數學中處理問題的一般性的規律和方法,一旦掌握了離散數學中這種處理問題的思想方法,學習和掌握離散數學的知識就不再是一件難事了。
⑦ 如何復習離散數學如果有是視頻推薦最好了
《離散數學》
鏈接:https://pan..com/s/1OASQoSrSjuykG6jABmsXQg
若資源有問題歡迎追問~