導航:首頁 > 數字科學 > 數學為什麼與計算機如此密切

數學為什麼與計算機如此密切

發布時間:2022-08-15 22:44:16

A. 計算機與數學關系 是什麼

計算機科學和數學的關系有點奇怪。二三十年以前,計算機科學基本上還是數學的一個分
支。而現在,計算機科學擁有廣泛的研究領域和眾多的研究人員,在很多方面反過來推動
數學發展,從某種意義上可以說是孩子長得比媽媽還高了。
但不管怎麼樣,這個孩子身上始終流著母親的血液。這血液是the mathematical underpi
nning of computer science(計算機科學的數學基礎),-- 也就是理論計算機科學。
現代計算機科學和數學的另一個交叉是計算數學/數值分析/科學計算,傳統上不包含在理
論計算機科學以內。所以本文對計算數學全部予以忽略。
最常和理論計算機科學放在一起的一個詞是什麼?答:離散數學。這兩者的關系是如此密
切,以至於它們在不少場合下成為同義詞。
傳統上,數學是以分析為中心的。數學系的同學要學習三四個學期的數學分析,然後是復
變,實變,泛函等等。實變和泛函被很多人認為是現代數學的入門。在物理,化學,工程
上應用的,也以分析為主。
隨著計算機科學的出現,一些以前不太受到重視的數學分支突然重要起來。人們發現,這
些分支處理的數學對象與傳統的分析有明顯的區別:分析研究的對象是連續的,因而微分
,積分成為基本的運算;而這些分支研究的對象是離散的,因而很少有機會進行此類的計
算。人們從而稱這些分支為「離散數學」。「離散數學」的名字越來越響亮,最後導致以
分析為中心的傳統數學分支被相對稱為「連續數學」。
離散數學經過幾十年發展,基本上穩定下來。一般認為,離散數學包含以下學科:
1) 集合論,數理邏輯與元數學。這是整個數學的基礎,也是計算機科學的基礎。
2) 圖論,演算法圖論;組合數學,組合演算法。計算機科學,尤其是理論計算機科學的核心是
演算法,而大量的演算法建立在圖和組合的基礎上。
3) 抽象代數。代數是無所不在的,本來在數學中就非常重要。在計算機科學中,人們驚訝
地發現代數竟然有如此之多的應用。
但是,理論計算機科學僅僅就是在數學的上面加上「離散」的帽子這么簡單嗎?一直到大
約十幾年前,終於有一位大師告訴我們:不是。D.E.Knuth(他有多偉大,我想不用我廢話了)在Stanford開設了一門全新的課程Concrete Mathematics。 Concrete這個詞在這里有兩層含義:
第一,針對abstract而言。Knuth認為,傳統數學研究的對象過於抽象,導致對具體的問題
關心不夠。他抱怨說,在研究中他需要的數學往往並不存在,所以他只能自己去創造一些
數學。為了直接面向應用的需要,他要提倡「具體」的數學。在這里我做一點簡單的解釋。例如在集合論中,數學家關心的都是最根本的問題--公理系統的各種性質之類。而一些具體集合的性質,各種常見集合,關系,映射都是什麼樣的,數學家覺得並不重要。然而,在計算機科學中應用的,恰恰就是這些具體的東西。Knuth能夠首先看到這一點,不愧為當世計算機第一人。
第二,Concrete是Continuous(連續)加上discrete(離散)。不管連續數學還是離散數學,
都是有用的數學!
前面主要是從數學角度來看的。從計算機角度來看,理論計算機科學目前主要的研究領域
包括:可計算性理論,演算法設計與復雜性分析,密碼學與信息安全,分布式計算理論,並
行計算理論,網路理論,生物信息計算,計算幾何學,程序語言理論等等。這些領域互相
交叉,而且新的課題在不斷提出,所以很難理出一個頭緒來。
下面隨便舉一些例子。
由於應用需求的推動,密碼學現在成為研究的熱點。密碼學建立在數論(尤其是計算數論)
,代數,資訊理論,概率論和隨機過程的基礎上,有時也用到圖論和組合學等。
很多人以為密碼學就是加密解密,而加密就是用一個函數把數據打亂。這就大錯特錯了。
現代密碼學至少包含以下層次的內容:
第一,密碼學的基礎。例如,分解一個大數真的很困難嗎?能否有一般的工具證明協議正
確?
第二,密碼學的基本課題。例如,比以前更好的單向函數,簽名協議等。
第三,密碼學的高級問題。例如,零知識證明的長度,秘密分享的方法。
第四,密碼學的新應用。例如,數字現金,叛徒追蹤等。

計算機的核心是計算,其本質是數學。計算機的生命是靠程序延續,演算法是程序的靈魂
摘自網路

B. 數學對計算機的貢獻

數學是計算機發展的基礎。

從計算機的發明開始,最初的計算機就是為了實現數字計算。早期的計算機也是以處理數學好計算為目的的。

計算機上的演算法,都是來自數學。計算機專業的必修課數學也占很大比例,圖論等都是從數學發發展過去的。

計算機編程需要邏輯,數理邏輯是最嚴謹的,它也是計算機軟體得以保證質量的基礎。

計算機的發展也依賴數學。硬體上的更新都要用數學模型來模擬。

人類的個個方面的發展都是各學科協同的結果。所以,數學為計算機做出了貢獻,同時,計算機也促進了數學的發展。

C. 大學數學與計算機的關系大嗎

大學數學與計算機的關系大。

數學專業與計算機專業的關系還是比較緊密的,目前不少數學專業都開設了較多的計算類課程,比如信計專業就是一個典型的代表。從當前考研的情況來看,數學相關專業跨考計算機專業是比較普遍的現象,而且由於具有扎實的數學基礎,所以在讀研計算機專業期間,也並不會遇到太大的障礙。

大一高等數學攻略注意事項

高等數學老師還是需要自己好好的熟悉一下,比如咱們要是不滿意你的老師,那麼一定要調整好自己的心態,否則你是么有什麼好的心情好好的上課的。

書本一定需要熟悉,因為高等數學的概念性的知識非常的多,而且一下子會出來很多,所以空的時候自己盡量的多花些時間在課本上。

D. 計算機與數學之間是一種什麼樣的關系

計算機科學和數學的關系有點奇怪。二三十年以前,計算機科學基本上還是數學的一個分支。而現在,計算機科學擁有廣泛的研究領域和眾多的研究人員,在很多方面反過來推動數學發展,從某種意義上可以說是孩子長得比媽媽還高了。
傳統上,數學是以分析為中心的。數學系的同學要學習三四個學期的數學分析,然後是復變,實變,泛函等等。實變和泛函被很多人認為是現代數學的入門。在物理,化學,工程上應用的,也以分析為主。
隨著計算機科學的出現,一些以前不太受到重視的數學分支突然重要起來。人們發現,這些分支處理的數學對象與傳統的分析有明顯的區別:分析研究的對象是連續的,因而微分,積分成為基本的運算;而這些分支研究的對象是離散的,因而很少有機會進行此類的計算。人們從而稱這些分支為「離散數學」。「離散數學」的名字越來越響亮,最後導致以分析為中心的傳統數學分支被相對稱為「連續數學」。
離散數學經過幾十年發展,基本上穩定下來。一般認為,離散數學包含以下學科:
1) 集合論,數理邏輯與元數學。這是整個數學的基礎,也是計算機科學的基礎。
2) 圖論,演算法圖論;組合數學,組合演算法。計算機科學,尤其是理論計算機科學的核心是演算法,而大量的演算法建立在圖和組合的基礎上。
3) 抽象代數。代數是無所不在的,本來在數學中就非常重要。在計算機科學中,人們驚訝地發現代數竟然有如此之多的應用。但是,理論計算機科學僅僅就是在數學的上面加上「離散」的帽子這么簡單嗎?一直到大約十幾年前,終於有一位大師告訴我們:不是。
第一,針對abstract而言。Knuth認為,傳統數學研究的對象過於抽象,導致對具體的問題關心不夠。他抱怨說,在研究中他需要的數學往往並不存在,所以他只能自己去創造一些數學。為了直接面向應用的需要,他要提倡「具體」的數學。
第二,Concrete是Continuous(連續)加上discrete(離散)。不管連續數學還是離散數學,都是有用的數學!
前面主要是從數學角度來看的。從計算機角度來看,理論計算機科學目前主要的研究領域包括:可計算性理論,演算法設計與復雜性分析,密碼學與信息安全,分布式計算理論,並行計算理論,網路理論,生物信息計算,計算幾何學,程序語言理論等等。這些領域互相交叉,而且新的課題在不斷提出,所以很難理出一個頭緒來。

E. 數學與計算機結合的意義

計算機用到的數學理論都不方便在普及課堂上講授的,
象二值邏輯的連接詞功能集中,與非連接詞構成連接詞完備集,因此計算機的邏輯電路可以完全用與非門設計,節省了集成電路設計製造工藝;
程序設計中,對源代碼字元進行掃描編譯,用到有限自動機理論;
顯示屏幕是二維平面,用來模擬三維畫面,要用到射影幾何,還要用解析幾何判斷圖形之間的關系;
很難給初學者講明白的;

還不如講點,
統計學的一些基本知識;
在規范市場中股票期權定價的BS模型;
博弈論在選舉中的應用,象囚徒困境什麼的

F. 數學與計算機的關系

計算機科學和數學的關系有點奇怪。二三十年以前,計算機科學基本上還是數學的一個分
支。而現在,計算機科學擁有廣泛的研究領域和眾多的研究人員,在很多方面反過來推動
數學發展。
現代計算機科學和數學的另一個交叉是計算數學/數值分析/科學計算,傳統上不包含在理
論計算機科學以內。
最常和理論計算機科學放在一起的一個詞是什麼?答:離散數學。這兩者的關系是如此密
切,以至於它們在不少場合下成為同義詞。
傳統上,數學是以分析為中心的。數學系的同學要學習三四個學期的數學分析,然後是復
變,實變,泛函等等。實變和泛函被很多人認為是現代數學的入門。在物理,化學,工程
上應用的,也以分析為主。
隨著計算機科學的出現,一些以前不太受到重視的數學分支突然重要起來。人們發現,這
些分支處理的數學對象與傳統的分析有明顯的區別:分析研究的對象是連續的,因而微分
,積分成為基本的運算;而這些分支研究的對象是離散的,因而很少有機會進行此類的計
算。人們從而稱這些分支為「離散數學」。「離散數學」的名字越來越響亮,最後導致以
分析為中心的傳統數學分支被相對稱為「連續數學」。

G. 數學與計算機演算法有什麼關系

數學是基礎學科,有豐富的數學基礎可以對理解編程中的邏輯有幫助。

編程對不同的人有不同的意義:

對於一般的程序員就是代碼的產出和可運行程序(數學在這裡面並不是特別重要,更重要的是對各種框架的理解、熟練掌握、設計模式等)。

對於演算法工程師來說,數學就很重要了(例如機器學習,密碼學,計算機圖形學等,當然這個對題主來說還太遙遠)。

題主說的函數實際上就是為了實現目的的一種封裝形式,而遞歸只是在函數中調用自身(當然需要終止條件)。

(7)數學為什麼與計算機如此密切擴展閱讀:

計算機的三個主要特徵

1、運算速度快:計算機內部電路能高速准確地完成各種算術運算。當今計算機系統的計算速度已達到每秒數萬億次運算,微機也可達到每秒一億次運算,使大量復雜的科學計算問題得以解決。例如,計算衛星軌道、大型水壩和24小時的天氣可能需要數年甚至數十年,而在現代,用電腦幾分鍾就可以完成。

2、計算精度高:科學技術的發展,特別是尖端科學技術的發展,對計算精度要求很高。計算機控制的導彈之所以能夠准確命中預定目標,與計算機的精確計算是分不開的。一般的計算機可以有十幾位甚至幾十位數字(二進制)有效數字,其計算精度可以從千分之幾到百萬分之一,是任何計算工具都無法比擬的。

3、邏輯操作能力強:計算機不僅可以進行精確計算,還具有邏輯操作功能,可以對信息進行比較和判斷。計算機可參與操作數據、程序、中間結果和最終結果保存,並可根據判斷結果自動執行下一條指令,供用戶隨時調用。

閱讀全文

與數學為什麼與計算機如此密切相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:745
乙酸乙酯化學式怎麼算 瀏覽:1410
沈陽初中的數學是什麼版本的 瀏覽:1361
華為手機家人共享如何查看地理位置 瀏覽:1052
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:892
數學c什麼意思是什麼意思是什麼 瀏覽:1419
中考初中地理如何補 瀏覽:1310
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:710
數學奧數卡怎麼辦 瀏覽:1399
如何回答地理是什麼 瀏覽:1033
win7如何刪除電腦文件瀏覽歷史 瀏覽:1062
大學物理實驗干什麼用的到 瀏覽:1492
二年級上冊數學框框怎麼填 瀏覽:1711
西安瑞禧生物科技有限公司怎麼樣 瀏覽:994
武大的分析化學怎麼樣 瀏覽:1254
ige電化學發光偏高怎麼辦 瀏覽:1343
學而思初中英語和語文怎麼樣 瀏覽:1663
下列哪個水飛薊素化學結構 瀏覽:1429
化學理學哪些專業好 瀏覽:1492
數學中的棱的意思是什麼 瀏覽:1069