1. 什麼是數學建模意義
摘要:隨著全球經濟的發展,計算機的迅速發展,利用計算機去解決數學問題再用數學去解決實際問題顯得尤為重要,而數學建模就是利用計算機與數學解決實際問題。本文從四個方面論述了現代數學應用中數學建模的重要性,詳細闡述了數學建模在生活中的應用和怎樣在學校教育中開展數學建模的教學這兩個問題。通過對四個方面即概念、重要性、應用、養數學建模的能力的深刻論述得出結論,數學建模是架於數學理論和生活實際之間的一個橋梁,讓人們看到了數學建模的價值,體會到數學建模的教學在現代教育中的重要地位和作用。
關鍵詞:數學建模;綜合素質;教學;數學應用
(一)數學建模的概念
數學建模非常廣泛、簡單,它一直與生活、學習息息相關。例如,在學習中學數學的課程時,根據應用題的已知量列出的數學等式就是最簡單的數學模型,對方程進行求解的過程就是在進行簡單的數學建模。數學建模就是應用數學模型來解決各種實際問題的方法。也就是通過對實際問題的抽象、簡化、確定變數和參數、並應用某些「規律」建立變數,參數間的確定性的數學問題(也可稱為一個數學模型)求解數學問題,解釋驗證所得到的解,從而確定能否應用於解決實際問題的多次循環,不斷深化結果。它是用數學方法解決各種實際問題的橋梁。
(二)數學建模的思想內涵
2. 第一講 什麼是數學建模
數學建模就是利用數學模型來解決問題。,她得關鍵是提煉數學模型,所謂提煉數學模型,就是運用科學抽象法,把復雜的研究對象轉化為數學問題,經合理簡化後,建立起揭示研究對象定量的規律性的數學關系式提煉數學模型,一般採用以下六個步驟完成: 第一步:根據研究對象的特點,確定研究對象屬哪類自然事物或自然現象,從而確定使用何種數學方法與建立何種數學模型。 第二步:確定幾個基本量和基本的科學概念,用以反映研究對象的狀態。這需要根據已有的科學理論或假說及實驗信息資料的分析確定。第三步:抓住主要矛盾進行科學抽象。 第四步:對簡化後的基本量進行標定,給出它們的科學內涵。 第五步:按數學模型求出結果。 第六步:驗證數學模型。
3. 數學建模的基本思想
數學建模就是構造數學模型的過程,即用數學的語言--公式、符號、圖表等刻畫和描述一個實際問題,然後經過數學的處理--計算、迭代等得到定量的結果,以供人們作分析、預報、決策和控制。而所謂的數學模型,是關於部分現實世界為一定目的而作的抽象、簡化的數學結構。簡言之,數學模型是用數學術語對部分現實世界的描述。
4. 數學建模思想方法有哪些
數學建模屬於一門應用數學,學習這門課要求我們學會如何將實際問題經過分析、簡化轉化為一個數學問題,然後用適當的數學方法去解決.數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段.為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學.使用數學語言描述的事物就稱為數學模型.
數學建模的過程
1)模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息.用數學語言來描述問題.(2) 模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設.(3) 模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構.(盡量用簡單的數學工具)(4) 利用獲取的數據資料,對模型的所有參數做出計算(估計).(5) 模型分析:對所得的結果進行數學上的分析.(6) 模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性.如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋.如果模型與實際吻合較差,則應該修改假設,再次重復建模過程.(7) 模型應用:應用方式因問題的性質和建模的目的而異.
數學建模的意義是:
1、培養創新意識和創造能力
2、訓練快速獲取信息和資料的能力
3、鍛煉快速了解和掌握新知識的技能
4、培養團隊合作意識和團隊合作精神
5、增強寫作技能和排版技術
6、榮獲國家級獎勵有利於保送研究生
7、榮獲國際級獎勵有利於申請出國留學
5. 什麼是數學建模
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述,也就是建立數學模型,然後用通過計算得到的結果來解釋實際問題,並接受實際的檢驗。這個建立數學模型的全過程就稱為數學建模。
建模過程
編輯
模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所要建立模型的思路進行闡述,對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用與推廣
應用方式因問題的性質和建模的目的而異。而模型的推廣就是在現有模型的基礎上對模型有有一個更加全面,考慮更符合現實情況都適用的模型。
建模意義
編輯
思考方法
數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包含抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只研究數學而不管數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。
數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
6. 數學建模是什麼
數學建模就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
數學建模就是建立數學模型,建立數學模型的過程就是數學建模的過程。數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
(6)數學中什麼是數學建模思想擴展閱讀:
從基本物理定律以及系統的結構數據來推導出模型。
1. 比例分析法--建立變數之間函數關系的最基本最常用的方法。
2. 代數方法--求解離散問題(離散的數據、符號、圖形)的主要方法。
3. 邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策等學科中得到廣泛應用。
4. 常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"的表達式。
5. 偏微分方程--解決因變數與兩個以上自變數之間的變化規律。
從大量的觀測數據利用統計方法建立數學模型。
1. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2…n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
2. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
3. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2…n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
4. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
7. 數學建模的思想是什麼
樓上說了那麼多,,也看不完,簡單來說,就是用數學方法解決一個實際問題,每一個問題都沒有一個准確的答案,,只有更好,基礎就是要有較好的數學基礎,,,。
8. 什麼是數學建模思想數學建模思想在數學中有什麼作用
上一節課,我們講了「【關系】是數學思想的基礎,也是數學思想的核心!」可以說,數學是一門關系學。不論是什麼樣的數學題,其實都是在圍繞著「關系」來論證的。解題的過程,其實就是「找關系,理順關系」的過程。那麼,我們今天講一下數學思想中的「建模思想」:
「數學建模思想」的核心,就是數學和生活密不可分,數學是生活的縮影。所有的數學題都能在生活中找到它的原形,每一道數學題其實就是生活中存在的一個東西。把數學題當成生活中的東西看,一個抽象,一個直觀,把抽象和直觀聯系起來,數學題也就由難變得簡單了!
好了,同學們,講到這里,你們還會把數學題當成一個乾巴巴的白紙黑字嗎?數學建模思想吃透了,學起數學來就事半功倍了!
今天就講到這里,我們下一節課講「學習最有效的方法」!謝謝大家!
9. 數學建模 什麼意思
數學建模就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
數學模型(Mathematical Model)是一種模擬,是用數學符號,數學式子,程序,圖形等對實際課題本質屬性的抽象而又簡潔的刻畫,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。
數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)。
(9)數學中什麼是數學建模思想擴展閱讀:
建模過程
1、模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。
2、模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
3、模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
4、模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
5、模型分析
對所要建立模型的思路進行闡述,對所得的結果進行數學上的分析。
6、模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
7、模型應用與推廣
應用方式因問題的性質和建模的目的而異,而模型的推廣就是在現有模型的基礎上對模型有一個更加全面的考慮,建立更符合現實情況的模型。
10. 什麼建模思想
數學建模屬於一門應用數學,學習這門課要求我們學會如何將實際問題經過分析、簡化轉化為一個數學問題,然後用適當的數學方法去解決。