A. 【數學】sin cos tan分別是什麼意思
tan 就是正切的意思,直角三角函數中,銳角對應的邊跟另一條直角邊的比
cos 就是餘弦的意思,銳角相鄰的那條直角邊與斜邊的比
sin 就是正弦的意思,銳角對應的邊與斜邊的邊
三角學中」正弦」和」餘弦」的概念就是由印度數學家首先引進的,他們還造出了比托勒密更精確的正弦表。
我們已知道,托勒密和希帕克造出的弦表是圓的全弦表,它是把圓弧同弧所夾的弦對應起來的。印度數學家不同,他們把半弦(AC)與全弦所對弧的一半(AD)相對應,即將AC與∠AOC對應,這樣,他們造出的就不再是」全弦表」,而是」正弦表」了。
印度人稱連結弧(AB)的兩端的弦(AB)為」吉瓦(jiba)」,是弓弦的意思;稱AB的一半(AC) 為」阿爾哈吉瓦」。後來」吉瓦」這個詞譯成阿拉伯文時被誤解為」彎曲」、」凹處」,阿拉伯語是 」dschaib」。十二世紀,阿拉伯文被轉譯成拉丁文,這個字被意譯成了」sinus」。
B. 數學sin、cos是什麼意思
sin,
cos,
tan
都是三角函數,分別叫做「正弦」、「餘弦」、「正切」。
在初中階段,這三個三角函數是這樣解釋的:
在一個直角三角形中,設∠C=90°,∠A,
B,
C
所對的邊分別記作
a,b,c,那麼對於銳角∠A,它的對邊
a
和斜邊
c
的比值
a/c
叫做∠A的正弦,記作
sinA;它的鄰直角邊
b
和斜邊
c
的比值
b/c
叫做∠A的餘弦,記作
cosA;它的對邊
a
和鄰直角邊
b
的比值
a/b
叫做∠A的正切,記作
tanA。
在高中階段,這三個三角函數是這樣解釋的:
在一個平面直角坐標系中,以原點為圓心,1
為半徑畫一個圓,這個圓交
x
軸於
A
點。以
O
為旋轉中心,將
A
點逆時針旋轉一定的角度α至
B
點,設此時
B
點的坐標是(x,y),那麼此時
y
的值就叫做α的正弦,記作
sinα;此時
x
的值就叫做α的餘弦,記作
cosα;y
與
x
的比值
y/x
就叫做α的正切,記作
tanα。
C. cos在數學中是什麼意思
COS是餘弦(一種數學符號)。
三角形中一個角的臨邊(相臨的短的那條邊)比斜邊(最長的那條邊)。餘弦(餘弦函數),三角函數的一種。在Rt△ABC(直角三角形)中,∠C=90°(如圖所示),∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。餘弦函數:f(x)=cosx(x∈R)。
餘弦定理,歐氏平面幾何學基本定理。餘弦定理是描述三角形中三邊長度與一個角的餘弦值關系的數學定理,是勾股定理在一般三角形情形下的推廣,勾股定理是餘弦定理的特例。
餘弦定理的歷史可追溯至西元三世紀前歐幾里得的幾何原本,在書中將三角形分為鈍角和銳角來解釋,這同時對應現代數學中餘弦值的正負。
D. 數學cos是什麼意思
cos是餘弦函數的表達式。
餘弦函數的定義域是整個實數集,值域是[-1,1]。它是周期函數,其最小正周期為2π,在自變數為2kπ(k為整數)時,該函數有極大值1;在自變數為(2k+1)π時,該函數有極小值-1。餘弦函數是偶函數,其圖像關於y軸對稱。
已知三角形的三條邊長,可求出三個內角;已知三角形的兩邊及夾角,可求出第三邊;已知三角形兩邊及其一邊對角,可求其它的角和第三條邊。
解讀:
在Rt△ABC(直角三角形)中,∠C=90°,∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。餘弦函數:f(x)=cosx(x∈R)。
弦定理亦稱第二餘弦定理。關於三角形邊角關系的重要定理之一。該定理斷言:三角形任一邊的平方等於其他兩邊平方和減去這兩邊與它們夾角的餘弦的積的兩倍。
E. cos公式是什麼
cos公式:cos (-a)=cos (a) 2、cos (2π-a)=sin (a) 3、cos (π-a)=-cos (a) 4、cos (π+a)=-cos (a) 5、cos (a+b)=cos(a)cos (b)-sin (a)sin (b) 6、cos (a-b)=cos (a)cos (b)+sin (a)sin (b)。
三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變數,角度對應任意角終邊與單位圓交點坐標或其比值為因變數的函數。
也可以等價地用與單位圓有關的各種線段的長度來定義,三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。
在數學分析中,三角函數也被定義為無窮級數或特定微分方程的解,允許它們的取值擴展到任意實數值,甚至是復數值。
常見的三角函數包括正弦函數、餘弦函數和正切函數,在航海學、測繪學、工程學等其他學科中,還會用到如餘切函數、正割函數、餘割函數、正矢函數、余矢函數、半正矢函數、半余矢函數等其他的三角函數,不同的三角函數之間的關系可以通過幾何直觀或者計算得出,稱為三角恆等式。
F. 數學中的Sin和Cos是什麼意思
sin, cos都是三角函數,分別叫做「正弦」、「餘弦」、「正切」。
在初中階段,這三個三角函數是這樣解釋的:
在一個直角三角形中,設∠C=90°,∠A,B,C所對的邊分別記作a,b,c,那麼對於銳角∠A,它的對邊a和斜邊c的比值a/c叫做∠A的正弦,記作sinA;它的鄰直角邊b和斜邊c的比值b/c叫做∠A的餘弦,記作cosA;它的對邊a和鄰直角邊b的比值a/b叫做∠A的正切,記作tanA。
在高中階段,這三個三角函數是這樣解釋的:
在一個平面直角坐標系中,以原點為圓心,1為半徑畫一個圓,這個圓交x軸於A點。以O為旋轉中心,將A點逆時針旋轉一定的角度α至B點,設此時B點的坐標是(x,y),那麼此時y的值就叫做α的正弦,記作sinα;此時x的值就叫做α的餘弦,記作cosα;y與x的比值y/x就叫做α的正切,記作tanα。
三角函數公式
三角函數是數學中屬於初等函數中的超越函數的函數。它們的本質是任何角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的。其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
三角函數公式看似很多、很復雜,但只要掌握了三角函數的本質及內部規律,就會發現三角函數各個公式之間有強大的聯系。而掌握三角函數的內部規律及本質也是學好三角函數的關鍵所在。
G. cos是什麼
cos即餘弦(餘弦函數),三角函數的一種。
在Rt△ABC(直角三角形)中,∠C=90°(如圖所示),∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。餘弦函數:f(x)=cosx(x∈R)。
三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變數,角度對應任意角終邊與單位圓交點坐標或其比值為因變數的函數。
也可以等價地用與單位圓有關的各種線段的長度來定義。三角函數在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究周期性現象的基礎數學工具。在數學分析中,三角函數也被定義為無窮級數或特定微分方程的解,允許它們的取值擴展到任意實數值,甚至是復數值。
常見的三角函數包括正弦函數、餘弦函數和正切函數。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函數、正割函數、餘割函數、正矢函數、余矢函數、半正矢函數、半余矢函數等其他的三角函數。不同的三角函數之間的關系可以通過幾何直觀或者計算得出,稱為三角恆等式。
H. cos數學公式
cos數學公式:cosA=(b^2+c^2-a^2)/2bc。餘弦定理,歐氏平面幾何學基本定理。餘弦定理是描述三角形中三邊長度與一個角的餘弦值關系的數學定理,是勾股定理在一般三角形情形下的推廣,勾股定理是餘弦定理的特例。餘弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求三角的問題,若對餘弦定理加以變形並適當移於其它知識,則使用起來更為方便、靈活。
I. 數學中cos是什麼意思
cos是餘弦函數的表達式。餘弦函數的定義域是整個實數集,值域是[-1,1]。它是周期函數,其最小正周期為2π,在自變數為2kπ(k為整數)時,該函數有極大值1;在自變數為(2k+1)π時,該函數有極小值-1。餘弦函數是偶函數,其圖像關於y軸對稱。
在Rt△ABC(直角三角形)中,∠C=90°(如圖所示),∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。餘弦函數:f(x)=cosx(x∈R)。
J. 數學cos公式是什麼
cos是餘弦(餘弦函數),三角函數的一種。
餘弦(餘弦函數),三角函數的一種。在Rt△ABC(直角三角形)中,∠C=90°(如圖所示),∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。餘弦函數:f(x)=cosx(x∈R)。
(10)數學公式cos是什麼意思擴展閱讀:
同角三角函數的基本關系式
倒數關系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的關系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的關系:sin2α+cos2α=1、1+tan2α=sec2α、1+cot2α=csc2α;
平方關系:sin²α+cos²α=1。